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Abstract

Cash management is concerned with optimizing the short-term funding
requirements of a company. To this end, different optimization strategies
have been proposed to minimize costs using daily cash flow forecasts as
the main input to the models. However, the effect of the accuracy of
such forecasts on cash management policies has not been studied. In
this article, using two real data sets from the textile industry, we show
that predictive accuracy is highly correlated with cost savings when using
daily forecasts in cash management models. A new method is proposed
to help cash managers estimate if efforts in improving predictive accuracy
are proportionally rewarded by cost savings. Our results imply the need
for an analysis of potential cost savings derived from improving predictive
accuracy. From that, the search for better forecasting models is in place
to improve cash management.

1 Introduction

Cash flow management is concerned with the efficient use of a company’s cash
as a critical task in working capital management. Decision making in cash flow
management focuses on keeping the balance between what the company holds
in cash and what has been placed in short-term investments, such as deposit
accounts or treasury bills. Different models have been designed to answer to
these questions and reviews can be found in Gregory (1976); Srinivasan and Kim
(1986); da Costa Moraes et al. (2015). However, to the best of our knowledge,
little attention has been placed on the utility of cash flow forecasts with the
exception of Stone (1972) and Gormley and Meade (2007). Both works showed
the utility of forecasting in cash management, but none of them researched the
importance of the predictive accuracy of the forecasts used in their respective
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models. Therefore, it is unknown whether even small improvements in predictive
accuracy may lead to savings that could perhaps amount to millions of euros in
total.

The corporate cash management problem was first addressed from an inven-
tory control point of view by Baumol (1952) in a deterministic way. Miller and
Orr (1966) introduced a simple stochastic approach by considering a symmet-
ric Bernouilli process in which both the inflow and the outflow were exactly of
the same size and had probability 1/2. Later, while Girgis (1968) considered
continuous net cash flows with both fixed and linear transaction costs, Eppen
and Fama (1969) focused on discrete net cash flows with only variable trans-
action costs. The use of forecasts in the corporate cash management problem
was first introduced by Stone (1972) as a way of smoothing cash flows. More
recently, Gormley and Meade (2007) used the model proposed by Penttinen
(1991) as a benchmark to demonstrate the utility of cash flow forecasts in the
cash management problem. They proposed a dynamic simple policy to minimize
transaction costs, under a general cost structure, and developed a time series
model to provide forecasts. Surprisingly, even though their model is based on
cash flow forecasts, they ignored the possibility of exploring alternative forecast-
ing methods. We claim this step as a mandatory one, specially when improving
forecasting accuracy may be correlated with cost savings. This hypothesis was
suggested by the authors but was not verified.

In cash flow forecasting, Stone (1976); Stone and Miller (1981, 1987), Stone
and Wood (1977), Miller and Stone (1985), and Maier et al. (1981) presented
different useful linear models. A measure of quality of any forecasting technique
is its predictive accuracy. However, under an economic perspective, predictive
accuracy must be mapped to estimated cost savings. This analysis allows to
know how much companies can save by improving predictive models and, con-
sequently, the cost of not predicting, i.e., the missed savings minus the cost of
implementing the model. For example, if a reduction of 32% in forecasting error
produced e320.000 in savings per year, it can be stated that, on average, each
percentage point of predictive accuracy is e10.000 worth.

Overall, one can conclude that when using forecasts in cash management
models, predictive accuracy of these forecasts attracted little attention of the
research community, neglecting its significance and implications. Consequently,
our discussion leads to assess the quality of alternative forecasting methods.
In this paper, we present and compare different forecasting methods including
linear and non-linear models. In this sense, we expect that non-linear models
such as radial basis functions and random forests can deal with cash flow time-
series in a cost-saving approach.

Using two real data sets from companies in the textile industry in Spain, in
this paper:

• We show empirically that forecasting accuracy is highly correlated with
savings in cash management. Thus, a comparison in terms of accuracy
and savings between different forecasting models is performed.

• We argue that the effect of forecasting accuracy on cash management can
be estimated in advance. Thus, a new methodology for estimating this
effect is proposed.

The rest of this paper is organized as follows. We firstly describe our real
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cash flow data sets in Section 2. We later enumerate different forecasting mod-
els: linear models such as autoregressive and regression models; and non-linear
models, such as radial basis function models and random forests in Section 3.
These forecasting models will be ranked according to its predictive accuracy in
the evaluation Section 4. In Section 5, we empirically verify that a better fore-
cast produces a better policy. Moreover, we estimate how much savings (if any)
can be obtained by the cash policies produced by an improvement in forecasting
accuracy. Finally, Section 6 concludes.

2 Description and data preprocessing

In this section, we describe the two real cash flow data sets used in this pa-
per. Data sets 1 and 2 gather net daily flow on workdays from two different
companies in the textile industry. Both sets of observations are in the domain
of real numbers and their values’ distributions present a bell-like shape but ex-
cess kurtosis. A sample of our real net daily cash flow is shown in Figure 1.
For confidentiality reasons, figures show demeaned data divided by the stan-
dard deviation. Besides, an additional transformation is performed to deal with
anomalies. More specifically, following the recommendations in Gormley and
Meade (2007), any observation greater than five times the standard deviation
is replaced by a value of magnitude exactly five times the standard deviation.
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Figure 1: Normalized net daily cash flow sample plot and histogram for data
set 1 (adimensional).

In order to cover a wider range of realistic industrial company cases, a num-
ber of cash flow data sets are derived from the two real data sets as follows:

• Real cash flow: data sets 1 and 2.

• Stable cash flow: data set 3 is derived from data set 1 and applies to
companies in a more stable environment with daily cash flows character-
ized by a low variance. In this case, observations greater than three times
the standard deviation are replaced by values of exactly three times the
standard deviation.
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• Unstable cash flow: data set 4 also derives from data set 1 and applies
for companies with high variance in its daily cash flow due to different
reasons such as a reduced number of customers or suppliers as it is the
case of small companies. In this case, observations greater than three
times the standard deviation are replaced by values of exactly two times
the original observation.

• Random shock cash flow: data sets 5 and 6 are derived from data sets 1 and
2 respectively and aim to cover the likely occurrence of unexpected changes
in industrial markets. In this case, 5% of the observations are randomly
chosen and replaced by values drawn from a uniform distribution between
the minimum and the maximum of the original time series.

A summary of the characteristics of each data set is presented in Table 1.

Table 1: Data set summary.

Data Set Length Case Std.Dev. Kurtosis
1 2717 Real cash flow 95745 4.82
2 1218 Real cash flow 44733 5.19
3 2717 Stable cash flow 89467 2.51
4 2717 Unstable cash flow 132170 20.66
5 2717 Random shock cash flow 113208 4.58
6 1218 Random shock cash flow 54270 4.85

For comparison purposes with Gormley and Meade (2007), here we assume
that, apart from daily cash flow data, no other extra features are provided by the
company. However, a set of available explanatory variables can be proposed.
According to Miller and Stone (1985), and Stone and Wood (1977), we may
find seasonal patterns in daily cash flow data. Thus, we consider basic calendar
effects such as the day-of-week effect and the day-of-month effect by using cat-
egorical or dummy variables. In the latter case, each dummy variable takes a
value of one if time t occurs at the corresponding day of the week/month, and
zero otherwise. Month and week dummy variables are also added to the set of
the explanatory variables. A further step in the search of explanatory power is
explored by considering past values of the time series. From that, a tentative
set of explanatory variables is listed below:

• Day-of-month: Day of month categorical variables or dummy variables
(dt1, . . . , dt31).

• Day-of-week: Day of week categorical variables or dummy variables for
working days (st1, . . . , st5).

• Month: Month dummy variables (mt1, . . . ,mt12).

• Week: Week dummy variables (wt1, . . . , wt53).

• Past values: Previous observations of the daily cash flow time series
(yt−1, . . . , yt−p) where p is the total number of observations considered.

From a combination of these explanatory variables, different predictive mod-
els can be built and compared in terms of forecasting accuracy.
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3 Building forecasting models

The accuracy of any forecasting model depends on its ability to capture the spe-
cific characteristics of the data used. According to Stone (1972), real-world cash
flows are neither completely known in advance nor are they completely unpre-
dictable. However, a wide set of tools and techniques are available to improve
forecasting accuracy. We claim that exploring alternative models to improve
forecasting ability is mandatory, specially if improving forecasting accuracy can
lead to cost savings.

In this section, we present a number of forecasting models to be evaluated
allowing us to identify our best-in-class forecaster that will ultimately be used as
the main input to the cash management model. We do not intend to determine
the best cash flow forecaster among all methods presented in forecasting research
literature. Instead, our final goal is to verify if a better forecaster, in terms of
forecasting accuracy, is able to produce a better cash policy in terms of cost
savings. In this sense, we expect that non-linear models outperform two of the
most usual linear models in cash flow forecasting allowing cash managers to
deploy better cash policies.

Then, we here consider four different forecasting models: autoregressive,
regression, radial basis functions and random forests. Firstly, we follow the
autoregressive approach to daily cash flow forecasting along the lines of Gormley
and Meade (2007). In contrast to such approach, we expect that the use of the
set of explanatory variables mentioned earlier rather than only a number of
previous values of a time series can help obtain a more accurate prediction.
Then, we secondly consider a linear regression model with a set of explanatory
variables.

While linear models are often employed in finance due to their simplicity,
many non-linear models have been proposed to explain financial phenomena.
Perhaps one of the most widely known non-linear model in finance is the Black
and Scholes (1973) option pricing model. Moreover, there is a reason for opti-
mism about the use of non-linear models in time-series prediction and finance
as stated in Weigend (1994); Kantz and Schreiber (2004); Small (2005). Firstly,
several limitations of linear models were pointed out by Miller and Stone (1985)
in daily cash flow forecasting such as interactions and holiday effects. Addition-
ally, statistical hypothesis such as normality and stationarity are required by
linear models to produce reliable results. On the other hand, alternative ap-
proaches to discover the relationship between time-series observations are also
available. In this sense, non-linear models allow to explore beyond the con-
straints imposed by linear models through a much wider class of functions.

Although non-linear time series analysis is not as well established as its lin-
ear counterpart (De Gooijer and Hyndman, 2006), works by Teräsvirta (2006);
Bradley and Jansen (2004); Clements et al. (2004); Sarantis (2001); Conejo et al.
(2005) constitute good examples of its application to finance and economics. In
this paper, we consider two non-linear models such as radial basis functions and
random forest models due to the lack of attention of the research community.
Next, we briefly describe our selection of forecasters and provide details on the
implementation of non-linear models.
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3.1 Autoregressive model

A widespread linear model in time series data is the autoregressive (AR) process,
where predictions are based on a linear combination of previous observations
(Box and Jenkins, 1976). AR models for cash flow forecasting can be found in
Gormley and Meade (2007); Laukaitis (2008). On the other hand, as mentioned
in Section 2, our cash flow data have a bell-like shape but excess kurtosis.
Hence, we follow the recommendations in Gormley and Meade (2007) and use
an extension of the Box-Cox transformation described in Box and Cox (1964)
to approximate our data to a Gaussian distribution by tuning a parameter λ.
Predictions are assessed using the following equation:

y
(λ)
t = β0 +

p∑
i=1

βiy
(λ)
t−i + ε (1)

where y(λ) is the cash flow forecast at time t, [y
(λ)
t−1, y

(λ)
t−2 · · · , y

(λ)
t−p] are the p-

previous observations of a transformed time series, βi is the i -th estimation co-
efficient, and ε stands for the prediction error. Superscript (λ) in both forecasts
and previous observations denotes data transformation. This transformation is

reversible and, therefore, yt can be derived from y
(λ)
t . When training the model,

the number of previous observations, p, is automatically chosen by minimizing
the Akaike Information Criteria (AIC) using the ar function in R (R Core Team,
2014) for the autoregressive model. AIC is a measure of the quality of a time
series model that is usually accepted as a selection criterion Akaike (1974).

3.2 Regression model

An autoregressive model is only based on the previous observations of the time
series and misses possible patterns, if any, hidden in the data. When dealing
with daily data, these patterns refer to calendar variations such as holidays,
day of the month or day of the week. Trying to identify these patterns, here
we consider a general regression model based on different explanatory variables.
Regression models have been used for cash flow forecasting purposes in Stone
and Wood (1977); Stone and Miller (1987); Miller and Stone (1985). In this
case, it is important to say that the ability of the modeler in the search for
the best explanatory variables plays a key role. A general regression model is
represented by the following equation:

yt =

n∑
i=0

βixti + ε. (2)

In this general model (2) we relate yt, the value of the cash flow at time
t to a linear combination of explanatory variables xt1, xt2, . . . , xtn at the same
time t, being βi the i -th regression coefficient, and ε the prediction error. From
the general model (2), a number of particular models can be derived for pre-
dictions depending on the different explanatory variables considered. For the
implementation of these models we use the lm function in R.
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3.3 Radial basis function model

Financial data are usually originated by complex systems that may include
non-linear processes. In order to capture non-linearity in the data, we also
consider Radial Basis Function (RBF) models as described in Weigend (1994);
Broomhead and Lowe (1988). To use an RBF model, we first partition the
input space by applying the k-medoids algorithm (Park and Jun, 2009) over the
training set. Then a scalar Gaussian RBF φ(x) is used for forecasting:

yt = b0 +

K∑
k=1

bkφ(‖xt − ck‖) + ε (3)

where yt is the value of the target variable at time t, K is the total number of
clusters, bk is the coefficient associated to the k -th cluster, ck is the k -th cluster
medoid, xt is the input data point at time t, ‖ ‖ is the Euclidean distance and
ε is the prediction error. Finally, φ(x) is the following Gaussian function:

φ(x, α) = e−x
2/αρk (4)

where α is a positive integer parameter and ρk is the mean distance between the
elements inside the k -th cluster. In this case, predictions are produced using
our tentative set of explanatory variables and general matrix functions in R.

Next, we provide an example of predictions obtained using RBF for the last
3 days of data set 1 based on the previous 21 cash flow observations. Two pa-
rameters have to be chosen to produce forecasts using RBF: the total number of
clusters K, defining the degree of partition of the input space and the parameter
α, determining the contribution of deviate points to the prediction. For the sole
purpose of this example, we set K = 5 and α = 10. Then, we proceed as follows:

1. We create the input space (2714 − 21) × 21 matrix X by embedding in
each row 21 consecutive cash flows. Firstly, we firstly transform cash

flows to y
(λ)
t , as explained in Section 3.1. To avoid high values bias, we

later standardize transformed cash flows by demeaning and dividing by
the standard deviation.

2. We create a column vector y of length 2693 with subsequent cash flows.

3. We select each cluster medoids ck from rows in X using the k-medoids
algorithm.

4. We compute ρk as the mean Euclidean distance between the elements of
the k-th cluster to its medoid ck.

5. We compute the 2693 × 5 matrix Φ where each row contains distances
computed using the function φ(‖xt − ck‖) for each point in the input
space to each cluster.

6. We obtain the column vector b of weights by solving b = (ΦTΦ)−1ΦTy
using least squares.

7. We produce a 3× 21 matrix X̂ with the previous 21 observations prior to
each of the 3 cash flows to be predicted and a 3 × 6 matrix Φ̂ where the
first column is set to 1 and the rest of elements are distances computed
using the function φ(‖xt−ck‖) for each point in X̂ to each cluster medoid.
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8. We forecast by means of ŷ = Φ̂b, that has to be re-scaled by multiplying by
the standard deviation and adding the mean and, finally, λ-transformed.

Now, we are in a position to compare these forecasts to real values and to
other forecasts and compute predictive accuracy as we will see below.

3.4 Random forest model

Decision trees are non-linear models that split the input space in subsets based
on the value of a particular feature. On the other hand, an ensemble method-
ology is able to construct a predictive model by integrating multiple trees in
what is called a decision forest (Dietterich, 2000). Regression forests are used
for the non-linear regression of dependent variables given independent inputs
based on an ensemble of slightly different trees. Particularly, random forests
(RF) are ensembles of randomly trained decision trees (Ho, 1995, 1998; Crimin-
isi and Shotton, 2013). Recent examples of time series forecasting using random
forests can be found in Kumar and Thenmozhi (2006); Kane et al. (2014); Mei
et al. (2014); Zagorecki (2015).

We make predictions using the R package randomForest by Liaw and Wiener
(2002) which implements Breiman’s random forest algorithm for classification
and regression (Breiman, 2001). In this paper, we limit ourselves to select
three parameters: the number (a) of randomly trained trees, the number (b)
of variables randomly sampled as candidates at each split, and the node size
(c) or the minimum amount of observations in a terminal node used to control
overfitting.

For instance, assume we know there is a strong daily seasonality in our cash
flow. One possible way to assess how strong is this seasonality is to produce
predictions using two explanatory variables: Day-of-month and Day-of-week.
Hence, we aim to create a random forest model and predict the last 100 days
of data set 1 based on these two variables. An example on how to proceed is as
follows:

1. Create a 2617× 2 matrix X containing in each row the Day-of-month and
the Day-of-week of past cash flows.

2. Create a column vector y of length 2617 with the corresponding cash flows.

3. Create a model based on X and y, with a = 100 randomly trained trees,
with b = 2 randomly sampled variables and node size c = 50.

4. Produce a 100× 2 matrix X̂ with the Day-of-month and the Day-of-week
of last 100 cash flows of data set 1.

5. Input matrix X̂ to the model to obtain the forecasts.

Now, we are in a position to assess the importance of each explanatory
variable or to test the quality of our predictions as we do next.

4 Forecasting models’ comparison

In this section, we aim to evaluate the forecasting accuracy of the presented
models for comparison purposes. Autoregressive, regression, radial basis func-
tion and random forests models may produce different predictions with different
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accuracy. The comparison will allow us to determine our best-in-class forecaster
to be later used as the input to establish the best cash management policy avail-
able. More precisely, we use time series cross-validation for different prediction
horizons (h) from 1 up to 100 days ahead by comparing the mean square error
ε(h) for different models:

ε(h) =

∑
test(ŷt+h − yt+h)2∑
test(y − yt+h)2

(5)

where h is the prediction horizon in days, ŷt+h is the prediction at time t+ h,
yt+h is the real observation at the time t+ h, and y is the the arithmetic mean
of the real observations on the training set. Note that the closer ε is to zero, the
better the predictive accuracy. If ε is close to one, the performance is similar
to that of the mean as a naive forecast. Values greater than one show that the
forecaster has no predictive ability.

In Hyndman and Athanasopoulos (2013), two different time series cross-
validation approaches were suggested: one with a fixed origin for the training
set, and one with a rolling origin. Algorithm 1 implements these two cross-
validation methods.

Algorithm 1: Time series cross validation algorithm

1 Input: Cash flow data set of T observations, FixedOrigin, minimum
number g of observations to forecast and prediction horizon h;

2 Output: Forecast accuracy for different prediction horizons;
3 for i = 1, 2, . . . , T − g − h+ 1 do
4 Select the observation at time g + h+ i− 1 for the test set;
5 if FixedOrigin = True then
6 Estimate the model with observations at times 1, 2, . . . , g + i− 1;
7 else
8 Estimate the model with observations at times

i, i+ 1, . . . , g + i− 1;

9 end
10 Compute the h-step error on the forecast for time g + h+ i− 1;

11 end
12 Compute ε(h) based on the errors obtained;

If the binary variable FixedOrigin is set to True, the training set is formed
by all the observations that occurred prior to the first observation that forms the
test set (Method 1). We can get rid of the oldest observations by setting Fixe-
dOrigin to False (Method 2) and considering only the g most recent values (e.g.,
the last two or three years) by applying a sliding window of observations. In
both methods we assume that a minimum number of g observations is required
to produce a reliable forecast. In our experiments, high values of g produced
almost no difference between Method 1 and Method 2. Using Method 2, smaller
values of g in steps of 250, equivalent to 1 year of observations, were also tried
with worse results. Because of that, here we only present results for Method 1.

When parameters selection was necessary, an evaluation of the coefficient of
determination, R2, over a training set with the oldest 65% of the observations
was performed to choose the best value for each of the parameters. An explo-
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ration of the tentative explanatory variables mentioned above was performed.
More precisely, we computed the error ε(h) for h ∈ [1, 2, . . . , 100] using Algo-
rithm 1 (Method 1) for different tentative forecasting models with data sets 1
and 2. The first 65% of the data was considered as the minimum length of
the data to train the model. Results showed that the day-of-month and the
day-of-week presented the best forecasting ability using RF models with data
set 1 (Table 2) and using RBF with data set 2 (Table 3).

Table 2: Model characterization and average error ratio (ε) for horizons up to
100 days (Data set 1).

Model Input variables Parameters ε (Std.Dev.)
AR p past values p coefficients 1.00 (0.007)
REG dt2, . . . , dt31, st1, . . . , st,4 35 coefficients 0.70 (0.007)
RBF 20 past values, Day-of-month K = 35, α = 10 0.88 (0.003)
RF dt2, . . . , dt31, st1, . . . , st4 a = 20, b = 11, c = 50 0.68 (0.010)

Table 3: Model characterization and average error ratio (ε) for horizons up to
100 days (Data set 2).

Model Input variables Parameters ε (Std.Dev.)
AR p past values p coefficients 1.00 (0.002)
REG dt2, . . . , dt31, st1, . . . , st4 35 coefficients 0.96 (0.008)
RBF Day-of-month, day-of-week K = 10, α = 10 0.93 (0.008)
RF Day-of-month, day-of-week a = 20, b = 11, c = 50 0.94 (0.006)

The relative performance for different prediction horizons using models from
Tables 2 and 3 is plotted in Figures 2 and 3 respectively. As expected, autore-
gressive models performed no better than the mean as a naive forecaster. In the
case of data set 1, random forests and regression models performed better than
radial basis functions. On the other hand, a small difference in performance
was found between regression, radial basis function and random forest models
for data set 2.

Results for the rest of our illustration data sets are shown in Table 4. In
data set 1, a small difference in forecasting accuracy was found in favor of the
random forest model in comparison to a regression model. Additionally, the
performance of radial basis function models in the data set 1 was worse than
the regression and random forest models but it was better in the data set 2.
From that, it is clear that forecasting accuracy of the autoregressive model can
be improved by considering regression, radial basis functions and random forest
models using some basic explanatory variables. Next, we measure the savings
produced by a better prediction.
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Figure 2: Mean square error comparison for different predictive models (Data
set 1).
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Figure 3: Mean square error comparison for different predictive models (Data
set 2).

5 Does a better forecast produce a better cash-
management policy?

Gormley and Meade (2007) proposed a Dynamic Simple Policy (DSP) to demon-
strate the utility of cash flow forecasts in the management of corporate cash
balances. They proposed the use of an autoregressive model as the main input
to their model. However, gains in forecast accuracy over a naive mean model
were scant. Gormley and Meade expected that savings obtained using a non-
naive forecasting model would increase if there were more systematic variation
in the cash flow and, consequently, higher forecast accuracy. In the previous
section, we showed that a better cash flow prediction can be obtained by using
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Table 4: Average predictive accuracy for prediction horizons from 1 to 100 days
using Method 1. Standard deviations are shown in parenthesis and best values
are bold.

Data set Autoregressive Regression Radial Basis
Function

Random
Forest

1 0,998 0,704 0,880 0,680
(0,007) (0,007) (0,003) (0,009)

2 0,999 0,962 0,930 0,942
(0,002) (0,008) (0,008) (0,006)

3 0,997 0,697 0.870) 0,669
(0,008) (0,007) (0.004) (0,009)

4 0,998 0,763 0.952 0,749
(0,006) (0,007) (0.002) (0,010)

5 0,999 0,826 0.902 ) 0,821
(0,003) (0,004) (0.002) (0,006)

6 0,999 0,977 0.946 0,949
(0,003) (0,007) (0.011) (0,009)

different forecast models. In this section, we verify that a better prediction
produces a better policy. As a consequence, we find that the savings produced
by a better forecasting model are significantly higher than those obtained by a
naive forecasting model.

Here, we exploit a simple policy equivalent to that of Gormley and Meade
using the best forecasters as detailed in Section 4 and compare to the results
obtained by a constant mean forecast. Since the forecast accuracy of the autore-
gressive model almost equals the mean forecast accuracy (Tables 2 and 3), the
comparison to the mean is equivalent to the comparison to the autoregressive
model. In what follows, we firstly introduce our empirical settings; secondly, we
show empirically that forecasting accuracy leads to cost savings in the corporate
cash management problem using a simple policy; and finally, we analyze poten-
tial cost savings of improving predictive accuracy of daily cash flow forecasts
and a simple policy.

5.1 Empirical settings

The corporate cash management problem can be approached from a stochastic
point of view by allowing cash balances to wander between two limits: the lower
(D) and the upper balance limit (V ). When the cash balance reaches any of
these limits a cash transfer is made to return to the corresponding rebalance
level (d, v). A model of this kind using daily forecasts was proposed by Gormley
and Meade (2007) as a trade-off between transaction and holding costs that can
be summarized as follows:

• q: Holding cost per money unit of positive balances at the end of the day.

• u: Shortage cost per money unit of negative balances at the end of the
day.
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• γ+0 : Fixed cost of transfer into account.

• γ−0 : Fixed cost of transfer from account.

• γ+1 : Variable cost of transfer into account.

• γ−1 : Variable cost of transfer from account.

Recall from section 2 that we are dealing with a real business problem.
Hence, we focus on current costs charged by banks to industrial companies in
Spain. Current bank practices tend to charge a fixed cost for transfers between
e1 and e5 and no variable cost so that we set γ+1 = 0 and γ−1 = 0. The
shortage cost (u) per money unit of a negative cash balance is around 30%
which represents a high penalty for negative cash balances. Finally, the holding
cost (q) per money unit of a positive cash balance is an opportunity cost of
returns not obtained from alternative investments. Since this is not an actual
cost but an opportunity cost based on judgmental criteria we set a range between
10% p.a.1 and 20% p.a. based on expected alternative investments returns. We
firstly try 15 different cost structures considered as the most likely scenario
under current costs in Spain, denoted by (1) in Table 5. We also consider two
additional scenarios, denoted by (2) and (3), to evaluate the effect of changes
in particular costs. The second scenario tests the variation of the shortage cost
(u) and the third one considers the introduction of variable transfer costs (γ1).

Table 5: Cost scenarios.

Cost Most likely
scenario (1)

Alternative Scenarios

Varying
shortage
cost u (2)

Introduction of
variable cost γ1
(3)

Holding cost q 10, 15, 20% 15 % p.a. 15 % p.a.
Shortage cost u 30 % 10, 20, 40 % 30 %
Fixed into account γ+0 1, 2, 3, 4, 5 e 3 e 3 e
Fixed from accountγ−0 1, 2, 3, 4, 5 e 3 e 3 e
Variable into accountγ+1 0 % 0 % 0.1, 0.2, 0.4 h
Variable from account γ−1 0 % 0 % 0.1, 0.2, 0.4 h

In our experiments, parameter selection of the cash management model is
performed under a business perspective. In Gormley and Meade (2007) the
policy parameter values D, d, v, V were chosen to minimize the expected cost
over horizon T using a genetic algorithm (Chelouah and Siarry, 2000). Here,
since the focus is placed on the comparison between policies obtained from
different forecasting models, parameter optimization plays a secondary role.
Therefore, these parameters are empirically chosen and kept unaltered in the
comparison between savings for each forecasting model and each cost scenario.
However, in order to evaluate the influence of these parameters on the utility
of the forecast, three different cases are studied based on risk tolerance. Since

1Per annum.
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the cost of a negative balance is very high, common sense leads us to set D to
a minimum level so that only a given percentage (MaxPct) of expected cash
flows can bring the balance from value D to a negative value. The higher
the percentage, the higher the probability of an overdraft and, consequently,
the riskier the policy under these cost structures. We study three cases with
different levels of risk:

1. Low risk or MaxPct = 5%.

2. Medium risk or MaxPct = 10%.

3. High risk or MaxPct = 15%.

On the other hand, the use of dynamic simple policy assumes that an un-
limited cash buffer is available to transfer into the bank account whenever it is
necessary. In practice, this situation is unrealistic. Thus, we restrict high bal-
ance levels by setting an upper limit to 1.5 times the lower cash balance limit.
Following the recommendations in Gormley and Meade (2007), the positive shift
from the lower balance limit (D) of lower rebalance level (d) is proportional to
the difference between the higher (V ) and the lower balance (D) limits. Finally,
the negative shift from the higher balance limit (V ) to obtain the higher re-
balance level is proportional to the difference between the higher balance limit
(V ) and the lower rebalance level (d). Here, we chose proportionality constants
α1 = 0.5 and α2 = 0.5 to produce an even distance between policy parameters.
The entire analysis would remain the same when varying this setting. As a
summary, parameters selection is done according to:

• D = |oth| where oth is the N ·MaxPct-th element of vector ot of ascending
ordered values of cash flow being N the total number of observations.

• V = 1.5D, then V −D =
D

2

• d = D + α1(V −D) with α1 = 0.5

• v = V − α2(V − d) with α2 = 0.5.

Predicted cash flows using different forecasters are used to compare the effect
on the total cost over different prediction horizons (h) from 1 up to 100 days
ahead. We set g to the minimum number of observations required to estimate
the model that is equivalent to 65% of the data set. We proceed as detailed in
Algorithm 2.

14



Algorithm 2: Comparison algorithm

1 Input:Cash flow data set of T observations, g, h,MaxPct, and a
forecaster;

2 Output:Average cost difference between a forecaster and the mean as a
forecast;

3 for i = 1, 2, . . . , T − g − h+ 1 do
4 Estimate the model with observations at times 1, 2, . . . , g + i− 1;
5 Predict for times g + i up to g + h+ i using the forecaster;
6 Predict for times g + i up to g + h+ i using the mean forecaster;
7 for j = 1, 2, . . ., Number of cost structures do
8 Compute cost for the ith forecast when using the j th structure;
9 Compute cost for the ith mean forecast and the j th structure;

10 end

11 end
12 Compute average cost for each cost structure using the forecaster;
13 Compute average cost for each cost structure using the mean forecaster;
14 Compute difference between average cost of the mean and the forecaster;

5.2 Impact of predictive accuracy on cost savings

Cost savings are computed as the daily average cost differences between the
naive forecast and the best-in-class forecaster for each of the data sets (Table
6). Recall that this comparison to the mean is equivalent to the comparison to
the autoregressive model.

From these results, we can say that, in general, an increase in forecast accu-
racy leads to significant cost savings using a simple policy. A better forecasting
model produces higher savings for either conservative or riskier policies (Table
6). The effect of forecasting accuracy in daily costs dramatically rises when the
policy parameters are reduced as a consequence of a riskier policy. In these
cases, forecasting accuracy is much more important in reducing daily cost due
to the risk of an overdraft. As expected, cost reductions for the data set 2 are
smaller but still significant due to less predictive accuracy.

A deeper insight on the different scenarios shows that changes in cost pa-
rameters have a reduced impact on cost savings. Moreover, changes in the
variability of cash flow data, studied here by introducing less (data set 3) or
more variance (data set 4), produced no major changes. However the effect of
random shocks in the cash flow data (data sets 5 and 6), reduced cost savings
due to the higher uncertainty of the cash flow data.

5.3 What if we improve predictive accuracy? Analyzing
potential cost savings

Our best-in-class forecasting models, i.e., radial basis functions and random
forests, are attempts to reduce uncertainty in predicting daily cash flow. They
represent two special cases in which improving predictive accuracy resulted in
increasing cost savings over a naive forecast. However, cash managers may be
interested in determining how much savings can be achieved by any extra effort
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Table 6: Average daily saving for different levels of risk and the most likely
scenario. RF=Random Forest; RBF=Radial Basis Function; u = shortage cost,
γ1 = variable transaction cost.

Data
set

Best-
in-class

Scenario Low Risk Medium Risk High Risk

1 RF Most likely 182 (64%) 1398 (72%) 2034 (54%)
1 RF Varying u 141 (54%) 1088 (71%) 1583 (54%)
1 RF Introducing γ1 183 (61%) 1399 (72%) 2035 (54%)
2 RBF Most likely 135 (51%) 479 (52%) 686 (44%)
2 RBF Varying u 105 (47%) 372 (51%) 534 (44%)
2 RBF Introducing γ1 135 (49%) 479 (51%) 687 (44%)
3 RF Most likely 180 (64%) 1386 (72%) 2017 (54%)
4 RF Most likely 182 (63%) 1412 (73%) 2083 (52%)
5 RF Most likely 58 (8%) 1219 (45%) 1798 (38%)
6 RBF Most likely 71 (15%) 355 (30%) 545 (28%)

in improving predictive accuracy. Since enhancing any forecasting model has
a cost in terms of both time and money, it is important to know if this cost
is offset by the savings obtained using a better forecasting. We can estimate
savings associated to predictive accuracy by obtaining a number of synthetic
predictions and evaluate the corresponding policy costs.

Daellenbach (1974) and da Costa Moraes and Nagano (2014) synthesized
cash flow data for simulation purposes from normal distributions. Here, from
a given cash flow time series (yt+h), a new time series (ŷt+h) is synthesized by
adding a random normal term of mean zero and a variable standard deviation
(σ) using the following equation:

ŷt+h = yt+h +N (0, σ). (6)

Increasing the value of σ, a set of time series with a decreasing degree of
similarity to the original time series can be obtained. This is equivalent to
generating a set of synthetic predictions with controlled predictive accuracy
that can be evaluated in terms of mean square error ratio ε(h) for different
prediction horizons using equation (5).

For illustration purposes, here we obtain synthetic predictions covering a
range from ε = 0 to values greater than 1. Here ε denotes the average of ε(h)
for prediction horizons up to 100 days on a test set formed by the last 35% of
the observations of data sets 1 and 2. Later, savings for each of these synthetic
forecasts are obtained following Algorithm 2 but using the synthetic forecasts
previously generated rather than estimating and predicting.

Results from this simulation for data sets 1 and 2 and three different levels
of risk are shown in Figures 4 and 5. As a reference, the vertical lines locate
savings achieved by the best-in-class forecaster for each of the examined levels
of risk. For example, using random forests for data Set 1, a value of ε = 0.68
(from Table 2) was obtained which produced savings of 54, 72 and 64% (from
Table 6) for the three levels of risk considered.

As expected, improving prediction accuracy, i.e., reducing ε, leads to an
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Figure 4: Savings for different predictive errors and levels of risk for data set
1 in the most likely scenario. S=Synthetic forecasts, RF=Random Forest.
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Figure 5: Savings for different predictive errors and levels of risk for data set 2
in the most likely scenario. S=Synthetic forecasts, RBF=Radial Basis Function.

important increase in cost savings up to 100% in the case of a perfect prediction.
Efforts in increasing predictive accuracy are notably rewarded. However, the
behavior is different depending on the level of risk chosen by the company.

1. Low risk: the effect of improving predictive accuracy tends to a stable
point where any further effort yields no additional saving. In spite of
the considerable percentage saved, it seems that improvement potential in
predictive accuracy is limited when the risk is low.

2. Medium risk: the effect of limited cost savings when improving predictive
accuracy is also present but to a lesser extent.

3. High risk: the behavior is almost linear in the considered ε interval.
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It is interesting to point out that the relationship is almost linear in most
of the range of the average error ε for each of the three levels of risk. This fact
should encourage practitioners to work hard to obtain a better prediction be-
cause they can expect a proportional reward in terms of cost savings. However,
in the case of our best-in-class forecasting model using random forests and data
set 1, an error ε of 0.68 (from Table 2) places the savings in the highest value
likely to be obtained for the low level of risk. Any effort in improving predictive
accuracy will be useless. This behavior is confirmed by the fact that a perfect
prediction was unable to achieve a 100% difference in cost savings.

Summarizing, we propose a new and more comprehensive methodology for
cash managers, as shown in Figure 6, based on the effect of predictive accuracy
on cash management cost using daily cash flow forecasts and a simple policy.
In order to allow different models to capture patterns, cash managers should
consider an additional previous step of feature engineering to obtain a series of
extra features. They can also adopt a wider modeling approach that allow them
to compare a set of forecasters in terms of forecasting accuracy. At this point,
cash managers can easily generate a number of synthetic predictions to cover a
wide range of different predictive accuracy by tuning a parameter. These syn-
thetic predictions, and those obtained using our best-in-class forecasters from
Table 4, are tested in their ability to reduce the cost of the policies by using
a simple policy. This step results in a graphical estimation on how much cost
savings can be achieved by improving predictive accuracy of our selected fore-
casters. If estimated savings are greater than the cost of improving the accuracy
of the forecasting models, a new modeling process is worth undertaking.

6 Conclusions and future work

From the above-described results, we derive two main findings. First, assessing
predictive accuracy is a must in the context of corporate cash management,
specially when employing daily forecasts as an input to a cash flow manage-
ment model. Indeed, we empirically find that cost savings are highly sensitive
to improvements on prediction accuracy when using a simple policy, and hence
major savings may stem from accurate predictions. Second, from a cost sensitive
perspective, cash managers may consider our methodology to decide whether
improving the predictive accuracy at hand is financially worthy. These two
findings, which we further dissect next, are meant to yield benefits for cash
managers.

On the impact of predictive accuracy on cost savings. Gormley and
Meade (2007) hypothesized that the more accurate the cash flow forecasting
accuracy, the larger the cost savings expected. Here, for the first time, we
have empirically confirmed such hypothesis. Furthermore, we have analyzed the
impact of predictive accuracy on average daily cost savings when considering a
variety of cost structures (of real-world bank finance conditions) and cash flow
policy parameters. From our analysis we have learned that:

• Predictive accuracy is strongly correlated with cost savings when using
daily forecasts in cash management models. Thus, cost savings were highly
sensitive to improvements on prediction accuracy when using a simple
policy and two real-world cash flow data sets.
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• The riskier the cash management policy, the higher the average daily cost
reduction in cash.

• The realistic cost structures considered in the most likely scenario have
little influence on cost savings obtained by the forecasting models.

What if predictive accuracy increases? Analyzing potential savings.
Cash managers may wonder if efforts on improving forecasting accuracy are
expected to be proportionally rewarded by cost savings. Along this direction,
we proposed a method for estimating the cost savings potentially delivered by
improving predictive accuracy. Independently of the predictive accuracy of the
forecaster available to a cash manager, our results help her estimate the cost
savings that she might expect. Moreover, even if the cash manager does not
count on any forecaster, she can estimate the cost savings that she currently
misses. Overall, we learned that different risk levels yield different estimation
results so that:

• When assuming low risk, cost savings are limited and further efforts in
enhancing predictive accuracy are expected to be useless, in terms of both
time and money, when a particular point in predictive accuracy is reached;
and

• The higher the risk a cash manager assumes, the higher the expected reward
when improving predictive accuracy.

The analysis of the relationship between predictive accuracy and cost savings
leads to confirm the importance of better forecasting models when predictions
are used as the main input to cash management models. Some additional intu-
ition can be derived in the sense that this behavior may be caused by a number
of reasons: (i) whenever it is possible to reduce uncertainty about the future,
better decisions can be made; (ii) improving predictive accuracy is closely linked
to discover patterns and an appropriate response to these patterns is necessar-
ily useful; (iii) chances are that cash management models using forecasts as the
main input do not work well with low quality forecasts. All of them highlight
again the utility of forecasts in cash management.

To end up, besides the above-mentioned benefits from the cash manager per-
spective, the task of building forecasting models helped us also learn that daily
seasonality influenced forecasting. However, future work is in place to search for
a more informative set of features in the corporate cash management problem.
In this sense, feature engineering is meant to play a key role to help improve
predictive accuracy and ultimately produce cost savings in cash management.
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