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Abstract

This article approaches the formalization of inference in Case-based Reasoning
(CBR) systems. CBR systems infer solutions of new problems on the basis of a
precedent case that is, to some extent, similar to the current problem. Using the
logics developed for similarity-based inference we characterize CBR systems defining
what we call the Precedent-based Plausible Reasoning (PPR) model. This model
is based on the graded consequence relations named approximation entailment and
proximity entailment. A modal interpretation is provided for the precedent-based
inference where the plausibility is given by the graded possibility operator <.
The PPR model shows that both knowledge-intensive CBR systems and nearest
neighbor algorithms share a common core formalism and that their difference is on
whether or not (respectively) they use a general theory in addition to the precedent
cases.

1 Introduction

Case-based reasoning (CBR) systems provide an interesting approach to in-
tegrate problem solving and learning in a variety of domains, and there is
nowadays an increasing number of fielded applications and specialized soft-
ware products [1]. However, no formal models exist for the basic inference
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step performed in CBR: namely the inferences regarding a current problem
that are based upon the similarity assessed between the current problem and
a previously solved problem-—what we will call the precedent case. Theoreti-
cal and empirical work has focused on the properties of specific measures for
assessing similarity, on algorithms for learning to tune similarity measures,
and on empirical comparison of different similarity measures empirically on a
variety of domains. However, there is a lack of a formal model of the logical
warranty that a precedent case and a similarity measure may offer to endorse
inferences made upon a new problem case. In this paper we develop one such

a model, called PPR for Precedent-based Plausible Reasoning.

1.1 Background

There are several approaches (like CBR systems and approximate reasoning
systems) that share the following assumption.

Analogical Assumption Whenever a description D is close to a description
Dy we can assume that what we can infer for Dj is close to being true for

Dy.

A direct way to characterize CBR systems is saying that they performs in-
tradomain analogy!. That is to say, the basic assumption underlying CBR
is that if our current problem C' is similar to a precedent case P; then the
solution of C' is similar to the (known) solution of P,—or, alternatively, that
it is plausible to assume that the solution of C' is the solution of F;. More
formally:

Schema of Analogy If D(P,) is a description of a precedent case P, and
S(PF;) is the solution of P;, then if the description D(C') of a current problem
C is similar to D(P;) we can infer that S(C'), the solution of C, is similar
(or close) to S(P;):

D(F),S(F)
D(C) ~ D(P,)
SO NS(PZ) analogy

(€)
(€)

We will see that, in the PPR model, a precedent case will be modeled not as a

conjunction D(P;) A S(F;) but as a certain kind of conditional D(F;) = S(F;).

On the other hand, several approaches to approximate reasoning have ad-
dressed other inference rules based on the notion of similarity [7]. Graded

! Interdomain analogy is performed among cases pertaining to different domains—
e. g. the analogy between electric circuits and hydraulic circuits.



consequence relations [5,6] have been proposed to model generalized modus
ponens inference patterns like the following :

“if A extrapolatively entails B, and we observe A’, then, to some extent,
it is plausible to conclude B whenever A’ is close enough to A”,

The term extrapolative entailment has to be understood as indicating that not
only B follows from A but also propositions semantically close to B can be
considered as approximate consequences of propositions semantically close to
A. This kind of patterns has been the focus of research in the field of fuzzy
logic, where, in general, the statement “if A extrapolatively entails B” has
been modeled as a fuzzy rule whereas the facts A, B and A’ are modeled
as fuzzy sets (see for instance [18]). However, terms like “approximate” or
“ close”, although fuzzy, denote notions of resemblance or proximity among
propositions which may not be necessarily fuzzy. One way of proceeding is to
equip the set of interpretations or possible worlds 2 with a fuzzy similarity
relation S, i.e. a reflexive, symmetric and t-norm transitive fuzzy relation
([17]). This kind of approach was introduced by Ruspini ([16]) who proposed
a similarity-based semantics for fuzzy logic. Given a similarity relation & on
the set ) of interpretations of a boolean language £, Ruspini proposed two
measures, the implication and consistency measures, to account for the degree
with which a proposition B is an approximate consequence of, or is consistent
with, another proposition A, respectively. Namely,

[S(B | A) = [nfwﬂ:Asupwz':BS(wlva)
CS(B | A) = Supw1|=A5upw2|:BS(w17w2)

where |= denotes classical (crisp) entailment. This framework has been recently
extended in [11] and [9] and compared to the possibilistic approach in [8] and
[10]. See also [13] for another approach to similarity-based reasoning.

1.2 Proposal

We intend to provide a similarity-based semantics for CBR inference based
on the proposals developed for fuzzy logic and approximate reasoning. The
formal model we propose, called PPR for Precedent-based Plausible Reason-
ing, focuses on the core aspects of CBR systems, namely inference warranted
by similarity to a precedent case. However, PPR is not intended as a formal
model for the whole “CBR cycle” present in different CBR systems. The whole
CBR cycle has been described in [1] as composed of four processes:

(i) RETRIEVE the most similar case or cases
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Fig. 1. The CBR cycle as described by [1].

(ii) REUSE the information and knowledge in that case to solve the problem

(iii) REVISE the proposed solution

(iv) RETAIN the parts of this experience likely to be useful for future problem
solving

In figure 1, this cycle—called the R* model—is illustrated. Clearly similarity-
based inference is involved in the RETRIEVE process, and is not necessarily
involved in the REVISE and RETAIN processes. However, as we will show, the
domain (or background) knowledge involved in the REUSE process will also be

part of the PPR formal model.

As indicated in Fig. 1, general knowledge usually plays a part in this cycle,
by supporting the CBR processes. This support may range from very weak
(or none) to very strong, depending on the type of CBR method. By general
knowledge we mean here general domain-dependent knowledge, as opposed to
specific knowledge embodied by cases. For example, in diagnosing a patient
by retrieving and reusing the case of a previous patient, an anatomical model
together with causal relationships between pathological states may constitute
the general knowledge used by a CBR system. A set of rules may play the
same role.

The PPR model can be embedded in a wider model of CBR systems by means
of biases. Biases are design decisions of a CBR system, usually based on knowl-
edge about the application domain of the system. Biases express constraints
imposed—or simplifications assumed-—on the basic similarity-based inference
model. Examples of this biases are: whether the CBR system is able to select
one precedent or multiple precedents, whether the CBR system should infer a



unique outcome or may deal with multiple plausible outcomes, etc. [14].

In summary, the intended interpretation of CBR inference in the PPR model
is that of a plausible inference based on precedent cases. Indeed, the plausible
inference will have a graded form, modeled in a graded modal logic framework,
where the degree of plausibility is based on the degree of similarity between
the current case and the precedent case.

The structure of the paper is as follows. First the models of similarity-based
inference will be presented. Then, we will apply these formal models to CBR
inference. We will show that our model allows to formally distinguish full-
fledged CBR systems, that use precedents plus general domain knowledge,
from CBR systems that use only precedent cases—so-called instance-based
or nearest-neighbour algorithms. The paper closes with a discussion of the
approach presented.

2 Models of similarity-based inference

The main goal of this section is twofold: to model analogical inference patterns
like the ones presented in the introduction and to model what we understand
by “close to” and “extrapolatively entails” as relations between classical (i.e.
non-fuzzy) propositions. Both relations will be modeled through fuzzy simi-
larity relations on the set of interpretations or possible worlds. Namely, if £
is a classical propositional language (built upon a finite set of propositional
variables), € is its corresponding (finite) set of interpretations or possible
worlds, and @ is a t-norm?, then the intended modeling is built through a
®@-similarity relation on €2, i.e. a mapping S :  x Q — [0, 1] satisfying the
separating (S(w,w’) = 1 iff w = w'), symmetric (S(w,w’) = S(w',w)) and
@-transitive (S(w,w’) @ S(w',w”) < S(w,w”)) properties. In CBR systems
this similarity is usually given with respect to every property or characteristic
defining the cases. The issue of aggregating these similarities to obtain a global
similarity is out of the scope of this paper?.

In the rest of this section we will introduce two kinds of similarity-based con-
sequence relations necessary for the PPR model of CBR, namely approzimate
entailment and proximity entailment (see [5,6] for further details). The first
one intends to model the relation “to be close to” while the second one pro-

2 A t-norm @ is a binary operation in [0,1] which is associative, commutative, non—
decreasing in both variables, and having 1 and 0 as neutral and absorbent elements
respectively.

3You can find in [11] a study about the relation between a similarity in a product
space and its projections in the case where the characteristics are equally relevant.



vides a logical account for an “extrapolative” conditional relationship. The
approximate entailment will be used to model how close (or similar) is a cur-
rent problem to a precedent case in CBR. The proximity entailment will be
used to model to which extent the solution of a precedent case is a plausible
solution for a current problem. The last subsection presents an interpretation
of both entailments in a common modal framework which allows to describe
inference in CBR systems as deduction in this logical setting.

2.1 Approzimate entailment

Having a similarity relation & on 2 allows us to associate to any classical
proposition p a fuzzy set p* representing the approximation of p. This fuzzy
set has the characteristic function jie(w) = Sup,=p,S(w, w’) defined on the
set of interpretations W. The a-cuts of this fuzzy set,

[Ple = {w | ppr(w) 2 a}

represent a nested family of approximations of the proposition p, i.e. [p*],
represents the set of worlds which are similar (or close) to some p—world at
least to the degree a. Notice that if w belongs to the set [p] of worlds that make
p true, then p,«(w) = 1. From now on we will assume that a similarity S is
given. Then it is natural to define that p a—approximately entails ¢ whenever
the set of p-worlds is in the a—approximation of ¢.

Definition 1 A proposition p approximately entails a proposition ¢ with
degree o, written p E2 q, if and only if each p-world belongs to the «-
approzimation of q, i.c. p =% ¢ iF 7] C [¢']e.

In the following we will omit the subscript S in the =% notation when there
is no ambiguity. When o > 0, p =% ¢ means that when p is true, ¢ is close to
being true, or in other words, p entails a proposition approximately equivalent
to g. The meaning of this inference is made clear in Figure 2. The condition
of this entailment relation can be also expressed using Ruspini’s implication
measure [16] as:

p " qiff Is(q | p) = Min,ppMaz,e,S(w,w') > a

The main properties that the approximate entailment satisfies are the follow-

ing [5] :

! coincides with the classical consequence relation ().
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Fig. 2. Approximate entailment p =< ¢.

— @-Transitivity: if p =% r and r =7 ¢ then p =% ¢ where @ is the t-norm
for which the underlying similarity relation is transitive.
~ Reflexivity: for any a, p E“ p

Right weakening: if ¢ = r and p E® ¢ then p E® r

Left strengthening: if p = r and r % ¢ then p = ¢ (monotonicity)
Left OR: pVgE*riff p E*r and ¢ E® r

Right OR: If r has a single model, r =¥ pV ¢ iff r E* por r E® ¢
Consistency preservation: if p # L then p =% L only when a = 0.

A natural question about the similarity-based entailments is how to deal with
some domain knowledge which is available under the form of a set K of
formulas—or, equivalently, understood as a subset of worlds E = [K] (called
evidential set in [16]). Several extensions of the above approximate entailment
can be envisaged (see [5]). A natural option is just to take the set K as a
restriction on the set of p-worlds, and thus considering the extension ¢ of
the approximate entailment, defined as follows:

pERq it KApEq

In other words, we have that p % ¢ iff Is(¢|K A p) > a. This amounts to
expressing that [¢] must be stretched to the degree o (at least) in order to
encompass the models of K which are models of p, that is [K] N [p] C [¢]a-

Although the approximate entailment =9 verifies properties like Reflexivity,
Right Weakening or Left Strengthening as =% does, it does not satisfy the
previous transitivity property. Only the following restricted form of transivity
holds: if p =% r and r |=5 ¢ then p =577 ¢, provided that r = K.

2.2 Proximity entailment

Now we turn our attention to the modeling of the extrapolative relationship
“p proximity entails ¢” appearing in the inference pattern introduced in sec-



tion 1.1 and that will play a major role in modeling the relationship between
descriptions and solutions of precedent cases in next sections. As already
mentioned, the intended meaning in such relations is the following: given a
certain context under the form of a proposition K, p implies ¢ in the clas-
sical sense, and moreover, if p is close to being true then ¢ is close to being
true as well. In other words, the neighborhood of the models of p should
lie in the neighborhood of the models of g. Using the notion of approxima-
tion introduced in last section, this can be formally expressed by means of
the inequality fi,«(w) < pgr(w), for any model w of K, i.e. [K] N p* C ¢
in the sense of Zadeh’s fuzzy set inclusion. We call this consequence rela-
tion prozimity entailment and will be denoted as p E,-q. Obviously, p Eq
iff for any w € K, Is(plw) < Is(qw), or equivalently, for any w € K,
Mazx e,y S(w,w') < Maz,e,S(w,w').

Notice that f,«(w) < prgr(w) f prpr(w)@— pgx(w) = 1, where @— denotes
the residuated implication corresponding to the t-norm @, i.e. 2@ — y =
sup{c € [0,1] | x ® ¢ < y}, for all x,y € [0, 1]. Thus, using @—>, the notion
of proximity entailment can be graded as well.

Definition 2 The a-prozimity entailment p Ej-q holds iff [K] C [p*®@ —
q"la, where [p*@— ¢"la = {w € Q| ppr (W) D—> pg=(w) > a}

The rationale for this definition is to model graded rules stating “the more p,
the more ¢” and they are very close to the so-called gradual rules in fuzzy logic
[4]. In terms of measures, this entailment relation is related to the conditional
implication measure Js x(¢lp) = Min,exIs(plw)®— Is(qlw), introduced
in [10], in the sense that:

p Exq iff Jsx(qlp) > a

It is worth noticing that only in the case that K" = T'rue, the proximity ( Ej%)
and the approximate (=) collapse (see [6]).

It is also interesting to remark that the entailment relation 'E% is ®-transitive,
namely:

If p Efer and r 'Eiq then p 'E%,@ﬁq

Moreover, the set of relations { E% }aeo] is also nested, verifying p = iff

classically K A p = ¢ and 'E?( being the universal relation. Finally, Ej}- also
satisfies the Left-OR property, i.e. pVr E%q iff p Ejq and r Ej-q.



2.3  Modal interpretation of similarity-based inference

So far, we have described two graded consequence relations separately. Now
we show how both can be combined in order to model inference in CBR
systems. As it is shown in [6], the previous definitions of both approximate
and proximity entailments allow us to formulate the following sound inference
pattern:

B o
p 'EKlqv P’ |:K2 p 1
;L_o®p ( )
P |:K1 A 4
This provides, in the framework of similarity-based inference, a sound logical
account of the following extrapolative syllogism:

“If p prozimity entails g, given some extrapolative knowledge K, and if
p’ is close to p given a domain knowledge K5, then p' is also close to ¢ in
the presence of both K7 and K,”.

All these notions easily admit a natural interpretation in a common modal
framework. Each similarity relation & on a set of possible worlds W induces
a family of nested accessibility relations { R }aejo] such that

(w,w') € R, iff S(w,w') > a.

Modal logics are specially tailored to account for relations on the set of inter-
pretations or possible worlds. If we enlarge the language by introducing, for
every «, a pair of dual modal operators (&,, O, ), we can consider a Similarity
Kripke model as a structure M = (W, S, || ||) where:

(i) W is a non empty set of possible worlds,
(ii) S is a ®-similarity relation on W, for some t-norm @,
(iii) || || is a function that given an atomic formula F' return the set | F|| C W
where F'is considered to be true.

Let us define then the satisfaction of modal formulas as follows: let w be a

world in a model M = (W, S, || ||) then:
(M,w) E O A ff IA|w) > a.

where I}(A | w) = supp,uwyeaS(w, w') is a free adaptation of the implication
measure when the second variable is not a proposition but a world. Notice
that, if W is finite, then (M, w) | <, A if there exists a world w’ such that
(w,w') € R, and (M, w') | A.



Now, it is clear that the approximate entailment has a nice interpretation
inside this modal framework. Namely, given a ®-similarity & on the set of
interpretations {2 of the propositional language L, if p and ¢ are non-modal
formulas, then we have that

p EL qiff M Ep— Cug,
pESk qift Mo = K — (p— Oup),

where M = (2, S, ]| ||). Since in M, worlds are interpretations we will use
henceforth the simpler notation M, = (2, S).

Concerning the prozimity entailment, it is easy to check that Js x(q | p) > «
holds iff, for any 3 € [0,1], Is(p | w) > B implies Is(q | w) > § @ a. Hence,
if the range G C [0,1] of the similarity relation § is finite, we are able to
capture the proximity entailment in our modal framework as well. Indeed, the
following relationship holds:

pEsxqifft MelE K = (N Opp = Cugpq)
BeG

Obviously, we get into troubles when (' is no longer finite. Then, in order
to capture proximity entailments, we are led to introduce in our framework
new conditional operators (binary modalities) =, with the following seman-
tics: a formula A =, B is true in a world w of a similarity Kripke model
M = (WS, ||) if the conditional implication of B given A, taking w as
extrapolative knowledge, is at least a. Formally:

(M,w) |E A=, Biff IZY(A|w)e=IZ(B|w)>a

In this way, we capture the proximity entailment in the sense that the following
equivalence holds:

p Esxqiff Fm, K = (p=aq)

Using this modal formalism, the extrapolative principle mentioned at the end
of last subsection can be formalized as the following sound rule in M:

Ki = (A=, B), K;,— (A = CgA) . .
([{1 A [(2) - (A, - <>a®ﬁB). Analogical Extrapolation

3 Models of Case-Based Reasoning

We will see in this section how the approximate and the proximity entailments
can characterize precedent-based inference used in CBR systems. In order



to do so we begin by establishing the language used in the PPR model to
represent precedent cases.

Since we will understand cases just as a collection of ground instances of
some predicates, possibly negated, we don’t need a full language of predicate
calculus, actually our language will be very simple. We start out from:

(i) a set of sorts of variables; a type is a tuple of sorts
(ii) a set of object constants, each one having its sort,
(iii) a finite set of predicate symbols ¥ = {Ay,..., A}, each one having a
type, and
(iv) two connectives: = (negation) and A (conjunction).

Predicate symbols stand for the different attributes used to describe cases in
a certain domain. We assume that each predicate symbol A; has associated
a natural number n; > 1 denoting its arity. Further, predicate symbols are
classified in two disjoint subsets O and Z. The set O are called outcomes or
solutions, while the set Z are called inputs or data.

The atomic formulas will be of the form A;(cy, ..., ¢,,), where ¢; are object con-
stants, and as usual, literals will be either atomic formulas or their negation.
Then formulas are built in the usual way from the atomic formulas and the
connectives = and A. We will refer to this restricted language as £. Actually, £
is a simple propositional language since we do not deal with object variables.
This simplifies the semantical notion of interpretation. Namely, the set © of
interpretations of £ is just the set of evaluations of the predicate instances
taken as propositional variables.

Definition 3 A precedent P is a pair (C,5) where C is a conjunction of
literals of predicates belonging to T and S is a literal of a predicate belonging
to O

In the framework of case-based reasoning, each precedent { P, = (C;, S;)} can
be conceived as an extrapolative conditional relation C; = S, i.e. given a
situation which can be described, at some extent, by C; we may infer that
S; is a plausible solution at some extent as well. Moreover, the closer is the
situation to C;, the more plausible is that S5; is a solution for that situation.
When we have a new situation described by some conjunction of literals C,
as i1s common in CBR literature, the task is to infer some plausible solution S
taking into account the restrictions given by the precedents.

In practice, it is only available the similarity relation &7 on the input space,
i.e. in the set of interpretations €1y of the sublanguage L7 generated from
predicates of Z, while the similarity relation Sp on the output space, i.e. in
the set of interpretations (1o of the sublanguage Lo generated from predicates
of O, is unknown. Therefore, given the similarity &7, we will consider similarity



Kripke structures M, = (Q,8) where ) is the cartesian product Q7 x Qo and
the similarity & on () is the so-called product similarity S = S5 x Sp, for some
similarity Sp, and it is defined as:

S((wr,wo), (wi,wg)) = min(Si((wy, wi), So(we. wo)
Then it is easy to show the following inequality:

Is;(p |l q) =1s(p|q)
for any propositions p,q € L7.

Our next task is to characterize inference performed a CBR system according

to the PPR model.
Definition 4 A PPR system is a structure (B,Sy, K), where

(i) B={P = (C;,S)} iz1,..n s a case base of precedents,
(ii) St is a similarity on the set of interpretations Qp of our sublanguage L1
and
(iii) K is a set of L—formulas standing for the general knowledge the PPR
system has about the application domain.

To characterize the inference in a PPR system (B,S, K), using the modal
approach introduced in section 2.3, we need first of all to extend our language
L with modalities <, and =, as we did in section 2.3. Given a PPR system
P = (B,Sr1, K), let us denote by Cp the class of Kripke structures M = (2, S)

such that § is a product similarity whose first component is Sj.

Then given current description problem C'; a PPR system (B, Sy, K') provides
us with two basic information components:

(i) for each precedent P, = (C;,S;) € B we can compute, by means of the
similarity Sy, the implication degree a; = Is, x(C; | C'), which measure
how close is the current problem description C' to any precedent descrip-
tion C, given the general knowledge K. Taking into account the above
inequality, Is x(C; | C) > «; and thus we can assure that the formulas

K — (C— <,0))

are valid in the class Cp.
(ii) the case base of precedents B is given an extrapolative interpretation, i.e.
B gives raise to a base of extrapolative rules B* = {C; =3, S; | (C},5;) €



B}, for some suitable degrees 3;*. Hence, the formulas
are also valid in the class Cp.

Therefore, applying the analogical extrapolation inference rule (see end of last
section) we can derive the formulas

(KAB*) = (C— $u085)
which will automatically be sound in the class Cp, for each 1 =1...n.

We can summarize the whole inference process by the expression

{K = (C = 00,0} imton U{K, B, C}F Ouep,Si (2)

where - means deduction using only analogical extrapolation (taking K; = B*
and Ky = K) and modus ponens as inference rules. This provides the logical
grounds for the next definition of plausible inference in the PPR model.

Definition 5 Given a PPR system P = (B, Sy, K) and a current problem C,
let a; =1s,(C; | KANC),i=1...n, and let B* = {C; =45 5; | (C;,S;) € B}
the extrapolative interpretation of the case base of precedents B. Then we say
that a solution S; is inferred to be plausible at least at degree 6; = o; @ [3;.

This notion of plausibility of a solution for a current case can be used to rank
the solutions according to their maximum degree of plausibility. Notice that
some precedents can share the same solution.

Definition 6 Given a PPR system P = (B,S1, K), together with some ex-
trapolative interpretation of the precedents B* as above, let us define, for any
solution S in B the plausibility index as

pl(S) = max{d | {K — (C = Cu,C) bizrn U{K, B, C} = O ST

Then we define the preorder <¢ induced by a current problem C' on the set
Sol(B) of solutions of the case base of precedents B as follows: S; <¢ S; iff

pl(Si) < pl(S;))

Notice that our representation of precedent cases Py = (Cj, Sg) in terms of
extrapolative rules does not assume a priori that the relation becomes a crisp
implication when the current case matches perfectly with €, —i. e. that the
set of precedents in the case base B is a set of problems with well known

4 Note that in most CBR systems it is usual to model a case as a proximity entail-
ment with degree 1.



solutions. Regarding the formal model of §2, granting this assumption would
mean that the proximity entailment Ej. has always (a = 1). This assumption
is very usual because almost all CBR systems assume the precedents involve
no imprecision. The ARC system [15] is an exception, since it worked with
cases the solution of which was a set of clinical diagnosis with a plausibility
degree . In this sense it is interesting to remark that the PPR model is a
general one and allows to work either with precise or imprecise precedents, i.e.
it is possible to incorporate a degree in the precedents without changes in the
theory supporting the PPR model.

3.1  Instance-based learning

There is a family of techniques implemented in CBR systems that have only
casuistic knowledge—i. e. they do not possess general knowledge about the
domain they deal with, only a case base of precedents. These systems perform
inferences warranted only by the case base and the similarity relation used.
The k-nearest neighbor algorithms and the instance-based learning algorithm
[12] pertain to this class of CBR systems since all the knowledge they use is
casuistic—it is the knowledge embodied by the similarity used and set of cases
considered. We will call these approaches purely casuistic PPR systems, and
we will denote them by PPR? = (B, S, 0).

The lack of domain knowledge in PPRT amounts to say that K does not
exists and thus the expression 2 of the inference process is now given by:

{(C = Curli) Yim1.n U{B™, O} E Ourgp, S

where o = I5,(C; | O).

Definition 7 For a PPRT system (B, S;,0) plus some extrapolative inter-
pretation of the precedents B*, the plausibility index for any solutions S in C
is

pl(S) = ma:z;{5 | {(C — OaiCi)}i:L,,n U {B*, C} F <>55}

and the preorder <c induced by a current problem C on the set of solutions
of the case base of precedents B is as before: S; <¢ S, iff pl(S;) < pl(5;)

That is to say, the PPR model conceives BCR inference in two steps. First, the
similarity between the current problem C' and a precedent (Y, is interpreted as
C =2 O iff [C] C [Cf]a, which means that when the current problem C' is true
then the current precedent (Y is close to being true. A visual representation
is given in Figure 2 where the sphere of current precedent [C}] is enlarged to
an a-degree [Cf], such that it encompasses the [C] sphere.



Second, the similarity over cases in B is carried over to the space of solutions
by means of the the extrapolative interpretation B*, and finally yielding a
partial order of plausibility over the solutions in O.

3.2  CBR Inference with General Domain Knowledge

Purely casuistic CBR systems assume that the only represented knowledge
is a specific collection of cases (in some language) with their solutions—plus
a similarity relation. However, this assumption is quite strict and most CBR
systems have also general knowledge about the domain of application [1]. The
general knowledge KA in CBR systems can take many forms and be represented
in a number of languages. However, for our purposes we can characterize K
as the ability of the CBR system to infer new propositions about a current
problem C' given the initial true propositions about C'. That is to say, a case
C (whether a precedent already solved or a problem to be solved) can be
characterized as C' = C°UCP where C© is a set of initially given propositions
about C, and CP is a set of propositions such that K A C° = CP—i. e, a
set derived from K and C©. In other words, cases are such that given some
initially give propositions C'© then the rest of the propositions about C' cannot
have just any truth value—they are restricted to those established by K.

Regarding the PPR model, this amounts to say that K in a knowledge-
intensive CBR system imposes some restrictions on the possible worlds we
have to consider—mnamely, those that obey the restrictions imposed by K.

The main difference of general PPR systems with respect to PPR? systems
is that now K plays a role in the PPR model. Namely, that a knowledge-
intensive CBR system assumes the restrictions imposed by K on the possible
worlds to be considered.

3.3  Querall Inference in CBR Systems

So far, we have dealt with the basic form of inference in a PPR system.
Since a CBR system has a number n of precedents in the case base B, some
overall mechanism has to be provided regarding which elementary inferences
are actually performed and how they are aggregated into a global inference. A
first overall mechanism is simply performing all possible elementary inferences
and take the maximum o for each 5;. This exhaustive strategy is precisely the
one portrayed in Definition 6 where the preorder over the solutions S € Sol(B)
is induced by the plausibility index pl(S). Other overall inference strategies
may use t-conorms other than maximum. Since max is the smaller t-conorm,



these overall strategies are aggregating the evidence from different precedents
into the overall plausibility degree.

On the other hand, the most usual overall strategy taken by CBR systems is
to take only one possible outcome by selecting the result S; with a maximum
a (a “minimum distance” criterion as is usually called). In fact, since there
can be more than one solution with the same plausibility degree, this strategy
yields a set of solutions {S;}, where S; is a maximal element with respect to

the preorder (Sol(B), <¢).

Another common strategy is that of k-nearest neighbour methods where the
case base is restricted to the k precedents closer to the current problem. That
is to say, the CBR system selects the k precedents with higher « (according
to <¢ ), takes the set Solp(B) C Sol(B) of solutions associated with them,
and builds a preorder (Sol,(B), <¢).

There are a handful of other options for control regimes for inference in CBR
systems but they can be seen as different restrictions upon the basic inference
model of precedent-based plausible inference.

4 Discussion and Future Work

In this paper we have introduced PPR (Precedent-based Plausible Reason-
ing), a formal model for the similarity-based inference process that character-
izes CBR systems. The PPR model is based on the notions of approximate
entailment and proximity entailment. These notions are used, respectively, to
model the similarity between a current problem and a precedent case and to
model the implication relation between a precedent and its associate solution.
Furthermore, a modal interpretation of CBR inference in terms of a-plausible
possibility has been presented.

We have also shown that for the particular case of instance-based learning (i.
e. for inference based only on precedents and a similarity relation but without
general domain knowledge), what we call purely casuistic systems, modeled
by PPRZ, are just a special case of PPR systems: they all share the same
underlying inference principle, and the difference is whether or not that in-
ference is improved by having general domain knowledge K. As a corollary, a
clarification of the relationship of nearest neighbor and instance-based algo-
rithms with CBR systems is possible in the PPR model. It is also interesting
to notice that our model is general enough to encompass both crisp precedents
and uncertain precedents

We have seen that CBR inference is based on a problem-centered preference



ordering induced upon a set of cases. A similarity relation is the most common
way to induce such a preference ordering, but it is not essential. Since a simi-
larity relation can induce a preference ordering (and the converse is not true),
and since the graded entailment relations are based on the preference ordering,
it seems interesting to work directly in a formal model based on preference
orderings. In fact, there are CBR systems that work directly with preferences
and do not need explicit similarities. Examples of such systems are some CBR
languages and application we have developed ([2,3]) that work with partial
orders of preferences. In this approach, since the order is not total, instead
of a numeric plausibility degree we obtain an ordinal plausibility degree in
inference. Although the formal model for CBR with partial preferential orders
is yet to be developed we think it will be based in the same formal apparatus
used here.

The representation of precedent cases as extrapolative conditionals from case
description propositions to the solution proposition is also interesting. This
means we are considering precedent cases as instantiated rules and the simi-
larity provides a mechanism to perform a “partial matching” of a current case
against that rule. This view clarifies the role of lazy learning in CBR systems
and the nature of CBR systems as Machine Learning systems. In eager learn-
ing methods like induction, a set of general rules are generated from a set of
cases—independently of the future problems to solve. Then new problems are
solved by ezxact matching against those induced rules. Lazy learning methods
delay generalization until meeting with a new problem. In CBR systems a
new kind of generalization is performed: from a precedent case P, = (C;, 5;),
the set of possible worlds [C;] is enlarged by means of a similarity until it
encompasses the set of possible worlds [C'] corresponding to the current prob-
lem. The smaller the sphere, the closer the current case is to that precedent,
and the more plausible is that 5; is a solution for C'. In summary, since the
generalization (that corresponds to the sphere) is delayed until the current
problem case is encountered, CBR systems perform a form of lazy learning
that does not need to construct a representation of the generalization. It is
also worth to note that up to now lazy learning has been considered a feature
of PPR? systems, while our model shows that any CBR system, even with
complex inference patterns derived from domain knowledge, is indeed a lazy
learner.
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