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Abstract. In this paper we address a number of fundamental questions around validation
of expert systems (ESs), an emerging field that still lacks of a comprehensive treatment in
the literature. The final aim is to get a conceptual framework for ES validation, what is a
difficult task because of the immaturity of the field. We analyze ES validation from four
points of view. First, we consider the meaning of validation in ESs, what raises some
terminological questions. We propose precise definitions for the terms verification,
validation, evaluation and testing, that are in compliance with their respective meanings in
software engineering. Second, we consider a number of validation targets, the elements or
processes on which some validation activity can be made. Third, we discuss briefly specific
techniques to achieve an effective validation for these targets. And fourth, we locate these
validation targets in an ES life-cycle.
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In this paper, we address a number of fundamental questions around the validation of
expert systems (ESs). The final aim is to get a conceptual framework for ES validation,
where the meaning and main components of ES validation are defined and understood in an
integrated way. This framework also consider those ES aspects that are suitable for some
kind of validation, as well as specific techniques to achieve validation in practice.
Developing a conceptual framework is a difficult task because of the immaturity of the
field. Different validation aspects are unevenly developed, appearing clearer those parts to
which more work has been devoted. Fundamental definitions such as, for instance, the
meaning of ES validation, are still not consolidated. Many validation aspects are today
elements for debate in the research community. Therefore, the work we present here reflects
the lacks and defects of the current state. Nevertheless, drawing the whole validation picture
is a useful exercise that, at least, will allow us to identify the most obscure parts.

We analyze ES validation from four points of view. First, we discuss the meaning of
validation in ES. This raises some terminological questions about the precise meaning of
terms like verification, validation, evaluation or testing, commonly used in the literature. We
propose precise definitions for these terms using the concepts of totally and partially
formalizable requirements. These definitions are in compliance with the established
meanings for these terms in software engineering, and they reflect our experience in
validating PNEUMON-IA, an actual ES devoted to pneumonia diagnosis [Verdaguer 89].
Second, we identify a number of validation targets as the elements and processes on which
some kind of validation can be performed. We consider the following validation targets:
user requirements, knowledge acquisition, expert system architecture, knowledge base
structure and contents, inference engine and expert system behavior. Third, we identify
specific techniques for each one of these validation targets, aiming for an effective
validation. We devote special attention to those aspects that are specific of ESs, although
there is a number of points in common with software engineering. And fourth, we locate
these validation targets in an ES life-cycle. Every step in the life-cycle has one or several
validation activities associated. Then, the whole validation process is the aggregation of all
these validation activities.

The structure of this paper reflects these four points of view. Section headings are
questions on the meaning, contents, methods and time of validation. Section 1 raises the
question What is Validation?, analyzing validation in ESs. This section contains a
terminological discussion about validation terms in ESs, considering the meaning of these
terms in software engineering. Section 2 addresses the question What Should be
Validated?, considering the previously mentioned validation targets. We analyze the
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relevance and impact of their validation in the knowledge engineering process. Section 3
investigates the question How to Validate?, considering how to perform validation on these
validation targets. Section 4 addresses the question When to Validate?, looking for the right
time in the ES life-cycle for validation activities. Finally, section 5 summarizes the paper.

1 What is Validation?
Validation is not a new topic in computer science. In the context of software engineering,
[Adrion et al, 82] define software validation as,

Determination of the correctness of a program with respect to
the user needs and requirements.

This is an open, non-constructive definition. In practice, no single validation method can
assure a complete validation. On the contrary, a large variety of validation methods for
conventional software exist with complemented effects.

Differences between ESs and conventional software, specially regarding the kind of
problems addressed and the type of programming languages used in both fields, have
caused that some authors consider ES validation as somehow different from conventional
software validation. We do not share this point of view. An ES is a piece of software that
performs some tasks aiming to satisfy the needs of potential users. These needs have to be
explicited to allow for an effective definition of the ES purposes. Therefore, the previous
definition for validation is perfectly applicable to ESs. From now on, we assume this
definition as the right one for ES validation.

The applicability of the conceptual definition does not imply the direct applicability of
many validation methods for conventional software to ESs. The existing differences
between both fields, mainly regarding the kind of problems considered and the type of
development techniques used, justify and demand the existence of specific validation
methods for ESs. However, the accumulated experience in conventional software validation
cannot be ignored in ES validation. This experience has to be applied considering the
essential issues to be solved (shared to a significant extent by both conventional software
and ESs) regardless of specific techniques employed that are usually bounded to the style
of the used programming languages. A study of conventional validation methods and its
potential application to ESs is found in [Rushby 88b].
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In the current state of ES validation, terms like validation, verification, testing or
evaluation are very frequently used. However, their exact definitions and the ways to
achieve them in practice are still unclear. In the following we make a tour on these terms,
trying to elucidate their meanings and relations. We consider validation as a global term,
that embodies all others terms as specific aspects.

1.1 Requirements and Specifications

According to the previous definition of validation in software engineering, a program
cannot be validated without a set of user requirements. These requirements can be clear or
ill-defined, they can be communicated by speech or by written means, or even they can be
implicit. But when somebody emits a judgement evaluating a program, these requirements
are involved. User requirements are usually expressed in natural language. To enforce their
understanding, user requirements are translated into a formal language, generating what is
called user requirement specifications, or simply specifications. A specification is a non-
ambiguous expression defining some kind of program characteristic or property. A
specification must be verifiable and testable with respect to the specified program.
Specifications can exist for all the software development steps.

Regarding ESs, user requirements play the same role that in software engineering1.
However, the complete translation of user requirements into specifications, theoretically
assumed in conventional software, does not hold for ESs. There are user requirements that,
at the current state of the ES technology, cannot be expressed in formal terms using an
specification language2. This conclusion, extracted from our own experience [Hoppe &
Meseguer, 91], is also shared by [Krause et al, 91] in the context of medical ESs. They
used the formal specification language Z to specify the intended behavior of a medical ES
using available medical protocols. They conclude that the protocol acts as a specification of
the default behavior, but an explicit representation of the circumstances in which this
behavior is valid, is missing. So, it seems that the ill-defined nature of ES tasks is the main
reason to prevent an accurate and complete specification of the intended ES.

                                                
1 However, a recent survey on the state-of-the-practice reveals a strong reluctance to record
written requirements for ESs [Hamilton et al, 91].
2 We stress that a specification must be verifiable and testable against the ES. Therefore, it should be
expressed in terms of actual elements of the ES design and implementation.
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1.1.1 Totally and Partially Formalizable Requirements

Although a complete translation of user requirements into specifications seems unfeasible,
a partial translation is reachable. This suggests us to divide the user requirements in two
classes: totally formalizable and partially formalizable3. A requirement is totally
formalizable if it can be completely translated into specifications. Conversely, a requirement
is partially formalizable if it cannot be completely translated into specifications. An example
of totally formalizable requirement is:

"The KB should be structurally correct"

The concept of structural correctness for KBs is well-defined, so this requirement can be
translated into the following specifications (assuming the rule-based paradigm):

1. The KB objects should be syntactically correct.
2. The KB should be contradiction-free.
3. The KB should not contain redundancies.
4. The KB should be cycle-free.
5. All the KB objects should be potentially usable.

These specifications are expressed in natural language for readability reasons, but they can
be clearly expressed in a formal language. Considering medical ESs, an example of
partially formalizable requirement is:

"The ES has to provide an acceptable diagnosis for all the typical cases"

In many medical domains there is not a sharp definition of what is an acceptable diagnosis
for a case. In addition, the concept of typicality is not well-defined and, in occasions, it is a
matter of personal preference. Due to the lack of a precise definition for these concepts, this
requirement cannot be completely translated into specifications. However, it can be partially
translated into specifications, which capture to a certain extent the meaning of the
requirement. For instance, in the context of pneumonia diagnosis, the previous requirement
about correct diagnosis for typical cases can generate the following specification:

                                                
3 These concepts correspond to formalizable and informal specifications introduced in
[Hoppe & Meseguer 91]. However, after reading an earlier version of [Laurent 92], I
realized that a specification is always formal, so the concept of informal specification was
somehow contradictory. I also realized that the insights underlying these concepts (and the
examples provided) were aiming to the user requirements. These are the reasons for this
terminological, but important, change.
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"If rusty sputum is present, the pneumococal etiology has to be considered"

that is expressed in formal terms saying that the ES cannot stop without having pursued the
pneumococal etiology as a goal. The translation is performed by human experts, who
interpret the requirement and provide some specifications. In occassions, these
specifications are tentative and they have to be confirmed or discarded by experimentation.
Nevertheless, specifications obtained from partially formalizable requirements are
completely formal. This is pointed out in [Laurent 92], who calls them pseudo-
specifications but stressing their formal nature.

1.1.2 Service and Competence Requirements

Rushby points out the necessity of requirements for ESs [Rushby 88a]. He divides ES
requirements into service and competence requirements. Service requirements consider the
operation of the ES as a software tool: input-output formats, processing rate, operational
conditions, and so on. Competence requirements are concerned with the definition of the
intended task for an ES, in the sense that it is a typical human task requiring "knowledge".
Competence requirements are further subdivided into desired and minimum requirements.
Desired competence requirements describe how well the ES is expected to perform.
Minimum competence requirements define how badly the ES is allowed to perform: they
state the threshold for ES acceptance. Rushby admits that desired competence requirements
can be vague or incomplete, because they are usually made in comparison with human
performance. However, he states that service requirements and minimum competence
requirements should be precisely defined, specially for safety critical applications.

Rushby classifies requirements guided by their role in defining the ES task. Our
classification of requirements (totally formalizable vs.  partially formalizable) is guided by a
more syntactical criterion: their complete translation into specifications. A clear parallelism
exists between both classifications. Service and minimum competence requirements are
totally formalizable requirements, since they generate "specifications that should be
traceable, verifiable and testable just like those of conventional software" [Rushby 88a].
Desired competence requirements can be vague or incomplete, so they fall into the class of
partially formalizable requirements, to an extent depending on the specific application.
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1.1.3 User Requirements at the Knowledge Level

Why do partially formalizable requirements exist?. Why are not all the requirements totally
formalizable?. One may think that is a purely technological matter, that the development of
better specification languages would solve. Although this point is important (specially for
practical reasons), we think on deeper causes to explain the nature of partially formalizable
requirements. These causes are intimately related with the question of knowledge and its
representation, addressed by Allen Newell in [Newell 82].

Newell differentiates between the knowledge level and the symbol level in AI systems. At
the knowledge level, a system is viewed as an idealized rational agent, who possesses
knowledge, goals and actions. This agent is not subject to computational limitations and it
behaves according to the principle of rationality:

If an agent has knowledge that one of its actions will lead
to one of its goals, then the agent will select that action.

At the symbol level, a system is viewed as a collection of of computational entities (facts,
rules, frames, etc) that interact according to some predetermined operations (matching,
assignement, etc.). The symbol level is the computational realization of the knowledge level.
The relation between knowledge and symbol levels is not univoque. On the contrary, a
radical incompleteness characterizes the knowledge level that cannot predict the system
behavior in many cases. Mapping a knowledge level description into an adequate symbol
representation is an open problem, currently considered by a number of cognitive
architectures [Chandrasekaran 87] [McDermott 88] [Steels 90].

The distintion bewteen knowledge and symbol level in ESs is very relevant to us. When
users express their requirements, specially the functional ones, they are usually considering
the ES at the knowledge level. An expert views the ES as another colleague and expresses
the requirements assuming that it possesses the background to understand them. However,
specifications are clearly at the symbol level. They deal with well-defined computational
objects such as facts, certainty degrees, pursued goals or termination conditions. In this
view, the difficulties to express user requirements into specifications are explained by the
following causes:

• The knowledge level is an approximation of the actual ES behavior in degree as
well as in scope. When user requirements at the knowledge level are translated
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into specifications at the symbol level, their approximate nature causes difficulties
in their complete translation.

• The knowledge level is incomplete since it does not determine completely the ES
behavior. A user requirement at the knowledge level can be compatible with many
possible and alternative specifications at the symbol level. In addition, Newell
affirms that knowledge level descriptions may be completed with precise
descriptions at the symbol level (mixed systems). These precise descriptions can
be seen as the requirements that are totally formalizable.

• The absence of precise and complete mappings between the knowledge and
symbol levels is another cause for the partial translation of user requirements into
specifications. The development of cognitive architectures at the knowledge level
can represent a significant step towards the accurate expression of user
requirements.

1.2 Verification

We define ES verification as the process of checking an ES against the specifications
generated by its formalizable requirements. The verification process produces accurate
responses about the satisfaction of each specification. Given that specifications completely
contain the meaning of totally formalizable requirements, the verification process allows for
a complete checking of them.

Usually, specifications establish conditions that should (or should not) hold for all the
possible ES executions. To test these specifications, verification has to be exhaustive, that is
to say, it has to analyze all the possible situations where a specification may be violated.
Frequently, specifications contain terms involving the dynamic execution of the ES, such as
termination, goal pursuing or fact deduction. In order to check accurately these
specifications, the verification process has to reproduce faithfully the execution conditions
of the specific ES, that is too say, verification has to consider the operational semantics of
KB objects [Evertsz 91]. Otherwise, specifications will not be totally checked and the
verification results may be questionable.

Totally formalizable requirements can be domain-dependent or domain-independent. An
example of domain-dependent requirement in pneumonia diagnosis is that the concepts of
typical bacterial pneumonia and atypical pneumonia cannot be considered both with a high
degree of certainty for the same patient [Meseguer 92]. This domain-dependent
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requirement is modeled as an integrity constraint and it is tested as a potential
inconsistency. An example of domain-independent requirement is the common requirement
about the structural correctness of a KB, that can be decomposed into (1) correct syntax,
(2) contradiction-free, (3) no redundant, (4) cycle-free and (5) without useless objects.
Some specifications from domain-independent requirements remain somehow implicit. For
instance, the trivial specification of correct syntax is often not explicited. A KB containing
objects with syntax errors can cause serious problems in the ES function (an ES crash or
an erratic behavior). Therefore, the decomposition of requirements into specifications
should be careful and detailed. Some work on ES specifications can be found in [Slage et
al, 90] [Batarekh et al, 91].

So far, verification has been mainly focused on checking properties coming from the
knowledge representation language used in the KB, corresponding to domain-independent
requirements. The reason for this predominance relies on the fact that knowledge
representation languages offer a higher level of formalization than the knowledge coded
using them. In consequence, extracting formal properties of a representation language is
more direct than obtaining formal properties of the involved knowledge. Properties of the
representation language can only assure some kind of formal correctness in the knowledge
expression, but they cannot deal with the knowledge organization and semantics. To check
properties more related to knowledge, some extra knowledge with respect to the KB
contents is usually required. The reason for this extra knowledge relies on the fact that the
KB usually contains enough knowledge to achieve correct conclusions, but this knowledge
is not enough to check the correctness of these conclusions. For instance, if we want to
check the following property regarding pneumonias,

When ecthyma-gangrenosum is present, the main symptoms and signs supporting 
atypical  pneumonias should not be considered.

we need to describe what are the main symptoms and signs4 for atypical pneumonias. This
information is not explicitely recorded in the KB, since a classification of symptom
importance is not contained in it. This information is not explicitely recorded in the KB
because it is not needed for deduction. The KB has been constructed only considering
deduction, without including support for verification. This necessity of specific knowledge
for verification, and in general for validation, has to be considered at early stages in ES
development in order to collect it using knowledge acquisition techniques.

                                                
4 A symptom is what the patient feels (headache, sickness, etc) while a sign is what the
physician objectively obtains from the patient state (temperature, number of leukocytes,
etc).
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1.3 Evaluation

We define ES evaluation as the process of checking an ES against its partially formalizable
requirements. This definition is close to the interpretative validation concept given in
[Laurent 92]. Given that no complete translation of partially formalizable requirements into
specifications is achieved, the evaluation process always contains a subjective element of
interpretation.

In ES evaluation we can differentiate three steps: (i) requirement analysis, (ii)
specification checking and (iii) result interpretation. The requirement analysis step consists
in expressing the partially formalizable requirements into specifications. This step can be
tentative or experimental in many cases, given the vagueness and imprecision of the
requirements. The specification checking step considers the satisfaction of the
specifications for the ES, in the same way they are considered in verification. The result
interpretation step consists in, from the specification checking results, assessing to which
extent the original requirements are satisfied. The subjective element of interpretation is
present in steps (i) and (iii).

An example may help to understand these steps. Let us consider the following partially
formalizable requirement for ESs in medical diagnosis:

"The ES has to provide an acceptable diagnosis for all the typical cases"

The first step, requirements analysis, has to specify what is understood by acceptable
diagnosis and by typical cases. A possible interpretation of acceptable diagnosis is the
ability to explain all the important symptoms and signs encountered in the patient. To
define typical case, a subset of all possible combinations of the considered symptoms and
signs has to be specified. Assuming these definitions as specifications, the second step
checks them in the ES. This can be made either (i) analyzing the KB, inferring the ES
function for the typical cases and showing for which typical cases all the important
symptoms and signs are explained, or (ii) selecting a sample of typical cases and executing
the ES on them. The third step interprets the ES results in terms of the original
requirement. Those typical cases for which no acceptable diagnosis has been obtained, are
studied to assess (a) the importance of the non explained symptoms, and (b) their degree of
typicality. If specification checking has been made by test sample, the degree of sample
representativity has also to be considered.

So far, evaluation has been focused almost exclusively on assessing ES performance
using testing methods. It is known that high performance is not synonymous of user
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acceptability for ESs [Buchanan & Shortliffe, 84]. Therefore, other ES characteristics have
to be evaluated to achieve a global ES validation. In this sense, the development of metrics
assessing ES characteristics numerically can be of significant help. ES characteristics can
be quantitative or qualitative, while metrics are always quantitative, so metric results have to
be interpreted in the context of the specific ES in order to obtain their real meaning. No
one-to-one relation exists between characteristics and metrics, for each characteristic several
metrics can be considered.

In the three step process for ES evaluation described above, the use of metrics to assess
user requirements is limited to step (ii). Step (i) considers the expression of requirements
in terms of metrics, while step (iii) interprets metric results. A variety of ES metrics is
needed to assess ES characteristics, since according to [Gasching et al, 83], complex
objects like ESs cannot be evaluated by a single number. The final goal of ES metrics is to
summarize information to allow for an effective checking of the different types of user
requirements, ranging from well-defined structural properties to other aspects of imprecise
definition like utility or understandability.

1.4 Testing

We define ES testing as the process of examinating ES behavior by its execution on sample
cases. According to this definition, ES testing has the same meaning that conventional
program testing [Adrion et al, 82]. In practice, ES testing is a very important technique to
evaluate ES correctness. Testing has been used as a fundamental criterion for formal
acceptance of ESs [Buchanan & Shortliffe 84] [McDermott 81] [Bachant & McDermott
84].

A central issue in testing, shared for both conventional software and ESs, is the selection
of the test set. Random, structural and functional approaches have been developed for
conventional software. ES random testing can be used in ESs to check robustness, although
it seems to be of little value to check correctness, since a random input will probably be
meaningless in the ES domain. ES structural testing is performed using test-case
generators. ES functional testing relies completely on the selection of test cases by human
experts. Historical files on the domain of the ES task are usually taken as source of
potential test cases. The quality of the test set depends largely on the extension of these
files and on the accuracy of the recorded data.

Specific issues of ES testing are: (i) comparing the ES performance against human
expert competence and (ii) judging the adequacy of the deduction path followed, as well as
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the correctness of the ES output. To assess the ES performance, the presence of human
experts as evaluators is needed. This raises new issues, since human experts often disagree
and can exhibit problems like prejudice, parochialism and inconsistence. To prevent
prejudice in human evaluators, Turing tests have been successfully used [Buchanan &
Shortliffe 84]. To measure the consistency degree among several experts some statistical
approaches have been proposed. Considering the adequacy of the deduction path followed
by the ES, this aspect has been traditionally evaluated in relation to its explanation
capability. This aspect has great importance for final ES acceptance, so it has to be
considered in isolation..

1.5 The Global Picture

The validation definition given at the beginning of this section establishes that validation
has to be determined with respect to the user requirements. We have classified user
requirements into totally formalizable and  partially formalizable, depending on their total or
partial translation into specifications. Verification is the process of checking an ES against
its totally formalizable requirements, while evaluation considers ES compliance with respect
to its partially formalizable requirements. Combining these definitions, validation appears
composed of two parts: verification and evaluation (also called objective and interpretative
validation in [Laurent 92]). This separation is induced by the existence of two types of
requirements, differentiated by a syntactical criterion. In this way, properties that can be
objectively checked (by verification) are differentiated from the other aspects that require
subjective assessment (by evaluation)5. With respect to testing, it is currently the most
important technique for assessing ES performance.

In practice, the difference between totally and partially formalizable requirements, or
what is the same, between verification and evaluation processes is not always totally
definite. With the exception of domain-independent requirements, that are always perfectly
defined in formal terms since they are originated by properties of the knowledge
representation language, a few user requirements are totally formalizable. Some
requirements are of a clear formalizable nature, but some experimentation is required to
obtain the right specifications. For instance, the domain-dependent, totally formalizable
requirement explained in section 1.2,

                                                
5 Other authors, like [O'Keefe et al, 87] and [Grogono et al, 92], assign different meanings
to these terms. They consider evaluation as the most global term, that includes validation as
checking the correctness of ES behavior. These terminological differences are due to the
early development stage of the field.
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"Typical bacterial pneumonia and atypical pneumonia cannot be considered with high 
evidence for the same patient"

generates four alternative specifications for a MILORD-based ES,

1. Val (bact) ≤ quite-possible and Val (atip) ≤ quite-possible
2. Val (bact) ≤ very-possible and Val (atip) ≤ quite-possible
3. Val (bact) ≤ quite-possible and Val (atip) ≤ very-possible
4. Val (bact) ≤ very-possible and Val (atip) ≤ very-possible

where the facts bact and atip represent the concepts of typical bacterial pneumonia and
atypical pneumonia respectively, and the Val function obtains the certainty value associated
to the fact passed as parameter. These specifications are not independent, since some are
included in others. Then, what is the right specification set for the previous requirement?.
This problem occurred in the verification of PNEUMON-IA. We tested the four
specifications, computing the situations in which these specifications were violated. From
these situations, we realized that the specification (1) was too restrictive while (4) was too
loose. Specifications (2) and (3) reflected properly the desired behavior, so we selected
them as the right specification set for the mentioned requirement. This example shows that
boundaries between requirements in practice are not as crisp as they can be conceived in
theory. Some interpretation is almost always required when checking requirements.

In the mid-term future it seems reasonable that partially formalizable requirements will
evolve into a more formalizable ones. This is based on the short history of ES verification.
Early verifiers saw ESs as classical logical systems, where only logical issues were tested.
Currently, verifiers consider ESs as complex software programs that have to be analyzed
taking into account the operational semantics of the knowledge representation language,
which is only partially based on logic. Verification issues do not only consider properties
of the knowledge representation, but also include properties of knowledge. This evolution
will continue in the future, allowing for a more accurate and exhaustive checking of
requirements.

Finally, we can view ES validation into the wider framework of software quality
assurance (SQA). SQA is concerned not only with assuring the compliance of a program
with the user requirements at the present, but also with those aspects that influence how
well the software will continue to satisfy the user needs in the future [Rushby 88b].
Software quality is analyzed in [Boehm et al, 78]. A hierarchy of software attributes is
proposed in [Adrion et al, 82], including the concepts of reliability, adequacy, testability,
understandability, measurability, usability, efficiency, transportability and maintainability.
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Very little work has been made on these topics considering ESs [Barrett 90]. It seems
reasonable to think that these topics will be addressed in the future for ESs, as a result of
the consolidation of ES technology.

1.6 Relation with Software Engineering

Previous definitions for validation, verification, testing and evaluation are in compliance
with the essential meaning for these terms in software engineering. Definitions of validation
and testing are the same for ESs and for conventional software. The definition of
verification for conventional software as "the demonstration of the consistency,
completeness and correctness of the software at each stage and between each stage of the
development life cycle" [Adrion et al, 82], is based on the notion of specification, that
determines the correct pattern at each stage. This definition fits pretty well the one we give
for ES verification as the checking the compliance of an ES against the specifications
coming from its formalizable requirements. The definition of evaluation in software
engineering has always an aspect of subjective assessment. This aspect fits the subjective
interpretation of the satisfaction of partially formalizable requirements, involved in the
definition of evaluation for ESs.

Regarding validation methods, a major difference exists between software engineering
and ESs. In software engineering it is assumed, at least theoretically, that validation can be
obtained by verification of successive software development stages [Adrion et al, 82]. This
approach does not hold for ESs, because of the impossibility of a complete translation of
user requirements into specifications [Hoppe & Meseguer 91].

In summary, previous definitions are in compliance with corresponding terms in
software engineering, capturing their essential meanings. The stated difference about the
complete achievement of validation by verification, is caused by the type of user
requirements for ESs, but this difference is not fundamental. In this sense, the previous
definitions fit pretty well in a general framework of software validation, where different
kinds of software coexist with a common understanding of the kernel issues.

2 What Should be Validated?
The practical application of ES validation can be seen from two points of view:
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1. An ES is composed of several parts (KB, IE, etc.). ES validation consists in the
validation of ES components plus the validation the relationships among these
components.

2. An ES is the result of a knowledge engineering process with several phases. A
set of intermediate results are produced along these phases. The validation of
an ES consists in the validation of each phase, by validating the intermediate
results produced.

Both approaches are complementary and non-exclusive. Approach (1) is effective in the
sense that decomposes the validation of a complex object into the validation of its parts.
Approach (2) includes the idea of validation by construction. Validating intermediate results
demands the existence of requirements for the knowledge engineering phases. These
requirements would be originated from the decomposition of high-level user requirements.
Given the early development stage of user requirements in ESs, this decomposition is only
partial. In addition, the kind of products generated at each phase is not yet consolidated, as
a result of the evolution of knowledge engineering techniques. Nevertheless, validation
cannot be delayed until the final ES stage. The cost of correcting an error escalates as the
development advances6, so correcting an error at the very end of the development can be
very expensive. Therefore, checking a number of properties enforcing validation on these
intermediate results is almost mandatory, in order to assure the effective validation of the
final system.

With these ideas in mind, we identifiy the following set of processes and ES parts on
which validation has to be present: user requirements, knowledge acquisition, ES
architecture, KB structure and contents, inference engine and ES behavior. This list does
not aim to be an exhaustive enumeration of all the potential validation aspects, but a set of
validation targets common to any ES. Regarding the different procedural elements
composing the ES, all of them can be validated using software engineering techniques and
they are not analyzed here. As an exception, we consider the inference engine because of its
key role in the ES function. In the following, we discuss each one of these validation
targets.

2.1 User Requirements

                                                
6 Just as it happens in software engineering.
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Given that ES validation is performed against user requirements, it seems quite reasonable
to validate them prior to any use, assessing their internal consistency and completeness.
Service and competence requirements have to be clearly differentiated, as well as minimum
and desirable competence requirements. Totally formalizable requirements have to be
completely decomposed into specifications, while for partially formalizable requirements
this decomposition is only partial and in some cases tentative. The subjective aspects of
partially formalizable requirements have to be clearly identified.

2.2 Knowledge Acquisition

Knowledge acquisition  (KA) is defined as the elicitation and analysis of data on expertise
with the aim of building an ES [Breuker & Wielinga 87]. KA activities are developed
during the initial stages of ES development, aiming to obtain a conceptual picture of the
task to be performed by the ES. This picture has to be detailed and complete, since it will be
the basis for ES implementation. The elusive nature of human expertise causes many
difficulties to capture it, to the extent that KA has been considered as a bottleneck for
knowledge engineering (for an analysis of human expertise see [Gaines 87]). Many
different KA techniques exists, all of them sharing an intense interaction with a human
expert in order to extract his/her expertise. Among these techniques, we can mention
focussed interviews, structured interviews, instrospection, self-report, expert-user dialoges
and reviews. See [Hart 86] for an overview of these techniques. A number of tools
supporting automated KA exist, see [Buchanan et al, 83] [Anjewierden 87] for further
details.

Some authors consider knowledge engineering as a modelling activity. In this view, an
ES is not a container filled with extracted knowledge, but a model that behaves in an
specific way analogous to a system in the real world. To build this model we have to set a
mapping from the data extracted from the expert into a given representation formalism. But
in addition to this transformation, the assessment of data relevance and data structuration
has to be made by abstraction [Breuker & Wielinga 87]. The knowledge acquisition
process is very related to abstraction, since it is a fundamental method to conceptualize and
structure complex domains. In this view, an important result of knowledge acquisition is a
conceptual model of the intended task for the ES, expressed in some language.

KA is at the basis of knowledge engineering. KA results have a determinant impact in
the further stages of ES development. In addition, the conceptual model of the ES task will
be used for validation purposes on the implemented ES. Therefore, validation of KA
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appears as a very important aspect in the global set of validation activities. Validation of KA
has two main parts: assuring the quality of KA techniques used in the knowledge
engineering process, and checking the adequacy and completeness of the conceptual model
conceived. Adequacy is concerned with the correction, grain-size description, homogeneity
and integrity of the conceptual model. Completeness considers to which extent the
conceptual model captures the whole intended task.

A related point is the acquisition of knowledge for validation, mentioned in section 1.2.
It is increasingly apparent that verification of knowledge properties demands more
knowledge than the minimum required to perform correct deductions. This extra
knowledge has to be obtained in the KA phase, requesting the expert for justifications or
causal explanation of his/her behavior. The knowledge for validation has to be included in
the conceptual model of the ES, completing and enhancing the conceptual model required
for pure deduction.

2.3 Expert System Architecture

An ES is a complex piece of software that contains different parts such as the knowledge
base, the inference engine, the user-interface, explanation capabilities, input-output facilities,
and others that are application-dependent. ES validation requires the validation of each part
in isolation plus the validation of the interrelations among these parts. This problem exists
in software engineering when a complex program composed of different modules is
validated. Except the KB, all the mentioned ES parts are conventional procedures and their
relations can be validated using software engineering techniques. In the following, we will
concentrate on the validation of the KB architecture.

A previous step to the validation of KB architecture is the evaluation of the
representation capabilities offered by the knowledge representation language with respect to
the problem to be solved. If the language does not provide facilities to represent the
different aspects of the domain knowledge, the resulting KB is unlikely to be adequate. As
an example of this kind of inadequacy, consider a problem dealing with uncertain or
imprecise information and a representation language without uncertainty management.

A KB is no longer a bunch of rules without structure. On the contrary, a KB has an
internal structure induced by the characteristics of the problem domain. Different types of
knowledge are expressed by different elements of the representation. The variety of KB
objects (facts, goals, rules, rule sets, metarules and others) and its internal organization are
the actual expression of the KB architecture. The KB has to be designed before rule
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coding, to assure that its organization is adequate for the problem to be solved and not the
result of an unordered addition of KB objects. Assuring the adequacy of the KB
architecture is a main concern in the validation of the overall ES architecture. The
conceptual model of the ES task obtained during the knowledge acquisition phase acts as
the basic support for the validation of the KB architecture.

2.4 Knowledge Base Structure and Contents

The KB is a central part of the ES It contains the knowledge of the system coded in some
representation language (frequently production rules). The KB is formed by a set of
declarations that are interpreted by a fixed procedure, called inference engine, that carries
out the operational semantics of the representation language. The KB plays a fundamental
role in the ES function since all the actions performed by the system have their origin in the
interpretation of the KB contents. Therefore, the validation of KB is a essential step in the
global ES validation.

Regarding KB validation, two main aspects exist: validation of KB structure and
validation of KB contents. Validation of KB structure is concerned with checking a set of
properties of the knowledge representation language on the KB objects. These properties
have a double aim. First, to guarantee that no ES malfunctions will exist during the
interpretation process performed by the inference engine. And second, to detect those KB
objects that can appear as anomalous, although they do not cause any malfunction. So far,
validation of KB structure is the most developed subfield of ES validation, with a
significant a number of techniques available.

Validation of KB contents considers the adequacy of the KB objects with respect to the
knowledge they are supposed to represent. Adequacy includes correctness, consistency and
completeness, and it requires checking knowledge properties. Validation of KB contents
can be two-fold. First, validation of each single KB object, in the sense that it is a proper
representation of a piece of knowledge. This validation is relatively easy to perform, since it
implies the analysis of simple elements (typically condition-action pairs). Second,
validation of those sets of KB objects that can interact in a ES execution, producing a
global effect. The number of these sets is very high (consider for instance the potential
number of rule chains in a KB of some hundreds of rules). For this reason, this second
aspect of validation is quite difficult in practice.

Validation of KB contents cannot be performed in a complete form without a conceptual
model of the knowledge involved in the KB. This conceptual model acts as a framework
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that supports, integrates and gives sense to the different validation activities that can be
performed regarding the KB contents. Without this model, different aspects can be
validated in isolation but a global validation of KB contents will not be reached. The role of
models in ES validation is analyzed in [Bellman 90]. She mentions that ES task models act
as the framework supporting ES design and implementation, so they should be used to
support ES validation. Several models can be used for different aspects of the ES task (they
are called minimodels). In this sense [Rushby 88b] points out that models bring internal
coherence to collections of rules. He considers the explicit construction and scrutiny of
models as an essential aspect for trustworthy ESs.

2.5 Inference Engine

The inference engine (IE) is the procedure that interprets the KB objects and executes the
actions stated in them according to their operational semantics. Most of the effort in ES
validation has been put on the declarative part, i.e. the KB, while the IE was usually
assumed correct by default. However, the role of the IE is so important in the ES function
that an ES cannot be considered validated without a prior validation of its IE.

Validation of the IE aims at checking that it implements correctly the operational
semantics of its knowledge representation language. To perform IE validation, a precise and
formal definition of the operational semantics of the considered knowledge representation
language is required. This formal definition acts as the specification for the desired
behavior of the IE. However, most of the knowledge representation languages do not have a
formal definition for their operational semantics. This represents a serious drawback to
validate an IE since, without a formal definition, IE validation can only be made by informal
means. The absence of formal validation increases the probability of errors in the IE code.
In addition, many IEs allows the user to program some IE aspects such as the conflict-set
resolution strategy. This means that the user can modify the operational semantics of KB
objects. If this occurs, the IE has to be revalidated as well as those KB objects that have
been created assuming a different sematics.

The absence of formal definitions for the operational semantics of knowledge
representation languages has other consequences for ES validation. Automatic verifiers
analyze KB objects considering their operational semantics, in order to predict the ES
behavior in a number of  situations. If this semantics is not well-defined, the simulation
intended by the verifier will be only approximate. This may cause that erroneous situations
will be missed, at expenses of the verifier accuracy.
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2.6 Expert System Behavior

Validation of the ES behavior consists in assessing to which extent the ES fulfils the user
requirements for the intended task. While in previous sections, validation was focused on
specific ES parts, now validation considers the ES as a whole. User requirements are again
the key point for a true validation. User requirements are clearly application-dependent but
they commonly refer to operation conditions, performance level, user interaction,
explanation capabilities and acceptance criteria.

Operation conditions establish the requirements for a fully operational ES. Basic
hardware and software for the ES, loading time, maximum requirements of time and
memory for an execution, etc. are examples of these requirements. For safety-critical
applications the operation conditions have to be carefully detailed and exhaustively checked,
since a failure in the ES operation may lead to situations very expensive to recover (and this
may be caused by a simple syntax error).

The performance level of an ES plays an important role in user requirements, since the
ES is expected to perform at a human expert competence level. An accurate assessment of
human expert competence is a difficult task that requires statistical measures and consensus
functions among experts' opinions. For this reason, performance evaluation is a complex
task always requiring human assistance. Performance evaluation can also include the
assessment of a lower performance bound, corresponding to the minimal competence
requirements described in section 1.1.2.

User interaction involves all the ways in which the user can interact with and use the ES.
The communication with the ES is performed through the user interface, that has to be
easy-to-use and adaptable to the operational environment. An important point is the quality
of ES questions and answers, that should be precise and prevent possible
misunderstandings. The ES execution can admit several options: providing data manually
or from a file, storing the dialog for later examination, recording the fired rules for archival
purposes, etc. A flexible set of execution options can enhance the ES usability. The
explanation capability is an aspect of user interaction of particular importance in ESs.
Users will not gain confidence in the system without a clear explanation of its reasoning
line. This fact conveys a great relevance to the explanation quality.

Acceptance criteria are a number of conditions that the ES must satisfy. In the selection
of acceptance criteria, we have to consider that no technique provides a complete validation.
On the contrary, partial validation evidence is obtained from a variety of different
techniques with complemented effects. Therefore, the acceptance criteria have to involve a
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representative combination of validation techniques focusing on different ES parts. The
critical conditions for the ES function have also to be present in this selection.

3 How to Validate?
A set of techniques for ES validation have been developed in the last years. This set is far
from being complete, since there are many validation aspects without an appropriate
answer. However, these techniques can validate significant portions of current ESs and they
can be of great help for knowledge engineers. Validation methods developed for software
engineering can be imported into knowledge engineering, after their adaptation to ES
peculiarities. AI techniques, and specially the ones coming from machine learning like KB
refinement, can also be of great help for ES validation. In the following, the validation
aspects considered in section 2 are revisited, identifying some of the available techniques
that are suitable for them.

3.1 User Requirements

No specific technique has been developed to validate user requirements for ESs. This
problem exists in software engineering, so it seems reasonable to adapt software
engineering techniques to the ES case. Reviews involving end-users, human experts and
knowledge engineers can be the basic element for validation of these requirements.

3.2 Knowledge Acquisition

Little work has been devoted to develop validation techniques for KA. The work of
[Benbasat & Dhaliwal, 89] provides an initial framework for KA validation. They define
validation of KA as the degree of homomorphism between the representation system, i.e.
the ES, and the system that it is supposed to represent, i.e. the expert. They differentiate
three stages in the development of a KB: conceptual KB, elicited KB and implemented KB.
They consider four types of validation: conceptual, elicitation, implementation and
representational. Conceptual validation considers the quality of the modelling process that
has generated the conceptual KB from the human expert. Elicitation validation addresses
the completeness and correctness of the process of translating the conceptual KB into the
elicited KB. Implementation validation considers the quality of the process that transforms
the elicited KB into the implemented KB. Representational validation aims at matching the
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characteristics of the implemented ES with the human expert. For each validation type, they
give a number of tests to assess different aspects with respect to the intended
homomorphism. Regarding conceptual and elicitation validation, they suggest as specific
validation techniques different forms of KB inspections and structured walkthroughs,
involving source experts, independent experts, knowledge engineers and final users.

The ES development methodology determines, to a great extent, the style of the KA
process and the kind of validation we can perform on it. Broadly speaking, we can
differentiate two types of ES development methodologies: bottom-up and top-down. A
bottom-up methodology develops an implemented system as soon as some domain data are
structured and understood. Rapid prototyping is the paradigm of bottom-up
methodologies. In this approach, the conceptual structuration and abstraction of the data
extracted from the expert is relatively low and a global conceptual model is missing. KA
validation is limited to assuring the quality of KA techniques, such as expert interviews, and
an adequate implementation of the recorded knowledge. This second aspect is not easy to
fulfil, given that available techniques such as KB inspections are of difficult applicability
when a significant amount of knowledge is involved.

Top-down methodologies, like KADS methodology [Breuker & Wielinga 87], include
the development of a conceptual model of the intended task prior to any implementation.
This conceptual model is expressed in a modelling language, that provides a vocabulary in
which the expertise can be described in a coherent way. In this approach, validation can be
performed not only assuring the quality of expert interviews, but also and what is more
important, on the conceptual model. Getting a true validation of the conceptual model would
mean an step of immense value in knowledge engineering. In this case, the most ellusive
validation issues, those involving deep knowledge aspects that are not properly captured by
its representation, would be solved. Some preliminary results on validation of acquired
knowledge using specific tools, as well as on validation of conceptual models can be found
in [Shadbolt 91].

3.3 Expert System Architecture

As stated in section 2.3, validation of ES architecture can be done for all the ES
components (except the KB) by using standard techniques of software engineering.
Validating the internal KB architecture involves experts and knowledge engineers. Experts
have to evaluate how well the KB design fits the overall structure of the problem domain.
Knowledge engineers act as interfaces between experts and specific constructs of the KB.
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The conceptual model of the ES task is an important element to support this kind of
validation. This model acts as a reference point for both experts and knowledge engineers.
Without a conceptual model, differences of vocabulary and points of view between experts
and knowledge engineers may cause a superficial validation of the KB architecture. In this
case, undetected errors will appear later in the ES development, with a higher correction
cost.

The expressive capacity of KB objects has a significant impact in this kind of validation.
Advanced knowledge architectures, like generic tasks [Chandrasekaran 87] or component
of expertise [Steels 90], provide high level constructs that are closer to the conceptual
model expression and make easier its scrutiny and validation. On the other hand,
modularity features in the knowledge representation language facilitate a correct KB design
and allow to define some hierarchical relationships among KB objects that can be exploited
for validation purposes [Sierra et al, 91].

3.4 Knowledge Base Structure and Contents

Validation of KB structure is performed by checking those requirements related with the
knowledge representation language used. These requirements are usually formalizable and
domain-independent, so validation of the KB structure is totally achieved by verification.
Validating the KB structure demands exhaustive checking, only reachable by automatic
verifiers. A significant number of verifiers is currently available for different ES models, to
the extent that this is the most developed subfield of ES validation. A verifier of the KB
structure has to analyze KB objects considering their operational semantics [Evertsz 91].

Validation of KB contents implies checking knowledge properties, to assess the
knowledge  correctness, consistency and completeness. The set of knowledge properties to
be tested has to convey a significant evidence about the adequacy of the KB contents.
Selection of the knowledge properties has to be supported by the conceptual model of the
intended ES task. Otherwise, only isolated knowledge properties will be tested without
achieving an integrated revision of the encoded knowledge. The existence of a conceptual
model is specially relevant when checking the KB completeness, in the sense that all the
knowledge required for the intended task is contained in the KB. In the elicitation of the
knowledge properties to be tested, new aspects of the knowledge contained in the KB are
usually required. These aspects have not been explicited because they are not required for
deduction, but they are needed for validation purposes. These new aspects have to be
encoded in auxiliary representations (like integrity constraints). Techniques used in
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automatic verifiers can be adapted to check those knowledge properties that assess the
validity degree of KB contents.

Validation of individual KB objects can be made by inspection of the KB using experts
that are independent from ES developers. It provides evidence on the correctness of single
KB objects, but does not give any proof of the correctness of the KB as a whole. Validation
of sets of interacting KB objects always requires computer-supported tools, since manual
checking is unfeasible due to the large number of sets involved. Inconsistency is a good
example of this kind of validation, that has been extensibly considered in the literature.
Inconsistency is a serious error that demands important computational efforts for effective
checking. On the other hand, procedures for checking inconsistency are relatively simple.
Integrity constraints declaring those facts that are incompatible are the only extra
knowledge required for inconsistency checking. Facilities for inconsistency checking are
currently available in most of the existing automatic verifiers.

Validation of KB contents can be obtained by means of ES testing. Validation through
testing is indirect, partial and incomplete. Validation is indirect because it can only be
induced from the results of ES executions. Validation is partial because there is no
guarantee that all the KB components have been used in the testing executions. Validation
is incomplete because no specific knowledge properties are checked in ES executions,
except for the functionality of some KB objects in some test cases. In spite of these
drawbacks, testing is the most frequently used method to assess the validity of KB
contents. This is due to the following causes: (i) testing is much easier and direct than
using complex verifiers for knowledge properties (verifiers that have to be built specifically
for a shell), (ii) conceptual models supporting the validation of KB contents are
infrequently built, and (iii) developers have an strong inclination to validate KB contents by
ES execution. This inclination is reinforced by the usual lack of written requirements for
the ES, so the only way to check the correctness of its constituting parts is by comparing
ES outputs with the opinion of human experts.

Validation of KB contents can be made using KB refinement techniques. KB refinement
aims at improving the KB contents from a set of cases with known solutions. When some
cases are treated incorrectly by the ES, the KB is modified to achieve a correct treatment in
all cases. It is assumed that only minor KB changes are required. KB refinement is
founded on ES testing, so it shares the testing drawbacks. However, automatic refinement
tools able to detect errors and to suggest substantiated changes in the KB, represent a
significant help for the practical assessment of KB validity.
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3.5 Inference Engine

An IE is a conventional interpreter of a knowledge representation language. It can be
validated using standard techniques of software engineering. Knowledge representation
languages do not often provide a formal definition of their operational semantics (see
section 2.5). This is an important difficulty to achieve a true IE validation. Facilities to link
user programs to the IE also difficult its validation.

As any other interpreter, the IE has to be defined in terms of a set of elementary
operations that actually implement its functionality. Interpreters of standard programming
languages are defined using memory cells, stacks, assignments, increments, conditionals
and branchings. Elementary operations for an IE can be condition satisfaction, logical
operators, truth value assignment and others. No consolidated set of elementary operations
to deal with knowledge representation languages exists. This lack is an extra difficulty
since, prior to any IE validation, the set of elementary operations has to be defined.
Methods and techniques used to validate interpreters of standard programming languages
could be adapted for IE validation.

3.6 Expert System Behavior

Validation of ES behavior is usually made by testing, although in case of critical
requirements other techniques such as exhaustive verification can be used. The testing
process has to allow for an effective checking of user requirements. Simulated test cases
can be used to check specific conditions, while real test cases are needed to assess ES
performance. Test set composition and comparison with human behavior are two of the key
issues in ES testing.

Two testing techniques have an special relevance in ESs, Turing tests and field tests. A
Turing test consists in the evaluation of the ES output mixed with recommendations of
human experts for a set of given cases. A set of independent experts acts as evaluators
without knowing which is the system and who are the humans. This test is very suitable for
performance evaluation. A field test consists in the regular use of the ES in its target
working environment. ES errors and users complains are recorded and solved. The ES is
considered tested when user complains have ceased. This test is suitable for assessing
aspects of the user interaction, overall utility, and regular performance. Both types of testing
require important amounts of human effort.



- 26 -

4 When to Validate?
Paraphrasing [Adrion et al, 82], knowledge engineering is an exercise in problem solving.
As with any problem-solving activity, determination of the validity of the solution is part of
the process. Therefore, validation has to be explicitely included in knowledge engineering,
that will not be considered finished until the produced ES has been validated.

Validation cannot be delayed until the final phases of ES development. At this stage, ES
errors could be very expensive to correct. As we have stated in section 2, the cost of
correction of a hidden error escalates as the development advances. Therefore, early
validation is always recommended. A number of validation activities can be performed
during the ES development. The position of the validation activities in the ES life-cycle is
discussed in the following.

4.1 Validation in the Life-Cycle

We propose an ES life-cycle composed of the following steps: requirements, knowledge
acquisition, design, implementation and maintenance. The first four steps fit exactly with
the first four steps of the development cycles proposed by [Buchanan et al, 83] or [Miller
89]. We add a fifth step, maintenance, that includes all the operations made on the ES after
its release. Maintenance operations can be frequent in some applications (it has been said

Life-cycle step Step Products Validation Activity

Requirements Service/Competence Validation of User Requirements
Totally/Partially Formalizable
Specifications

Knowledge Acquisition Conceptual Model Validation of Knowledge
Acquisition

Design ES architecture Validation of ES architecture

Implementation Operational ES Validation of KB Struct & Contents
Validation of Procedural Parts
Validation of ES Behavior

Maintenance New operational ES Any of the previous
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Figure 1. Proposed ES life-cycle and corresponding validation activities.

that a KB is never complete because new knowledge is always ready to be added7).
Therefore, this step is needed for a comprehensive treatment of the different stages in the
ES life-cycle. No specific step devoted to testing or evaluation exists; validation activities
are included in each development step. The whole process is represented in figure 1.

We want to stress the importance of validation activities in the ES life-cycle in a two-fold
way. First, the products originated in each development step are validated by specific
activities. This enhances the quality of intermediate products and increases the validity of
the final ES. Second, the presence of validation in each step reinforces the design for
validation. If knowledge engineers are aware that validation is a part of their job, they will
acquire knowledge for validation and they will include facilities for validation in the design
and implementation phases. The final product should be valid and this has to be kept in
mind throughout the ES development.

We notice that the validation of an ES is more that the validation of its KB. If in the
implementation step procedural parts are developed, they should be verified following
standard techniques of software engineering. In particular, this holds for the inference
engine that should be validated, at least informally, if it is not certified. Changes in the
maintenance phase can affect to any previous development step. To validate these changes,
the validation activities corresponding to the affected steps should be repeated.

The proposed life-cycle does not imply necessarily a waterfall or rapid prototyping
methodology. It can be used to develop a prototype, that can be later refined and expanded
to achieve a final system, like [Miller 89]. In this case, all the life-cycle steps have to be
repeated (requirements, knowledge acquisition, etc.), although the implementation step will
not start from scratch but from the previously developed prototype.

5 Concluding Remarks
This paper contains several ideas about the meaning of validation for ESs and on the forms
to achieve it in practice. Some of these ideas are supported by the experience, others are

                                                
7  We share this opinion. After the release of PNEUMON-IA, a new etiological diagnosis
called Chlamidia Pneumoniae was identified. To include this new knowledge, we have
reorganized an existing module and we have created a new one.
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proposals to improve the current state of validation. In the following, the main ideas
exposed in this chapter are summarized:

• Validation Terminology: we define validation in terms of user requirements, just
like in software engineering. User requirements for ESs are totally or partially
formalizable, depending on their complete or partial decomposition in
specifications. Validation is composed of two main parts, verification and
evaluation, depending on the type of user requirements respectively checked.
Verification aims at objectively checking ES properties, while evaluation considers
those aspects that require subjective assessment. Testing is viewed as the main
technique to assess ES performance. These definitions are in compliance with the
corresponding ones in software engineering, forming a general framework of
software validation.

• Complete Validation: KB validation is not synonymous for ES validation. To
achieve a complete validation, all the ES parts have to be validated. Procedural
parts can be validated using standard software engineering techniques. Special
emphasis has to be devoted to the inference engine, because of its central role in
the ES function. To validate declarative parts specific techniques for ESs are
required.

• Validation throughout the ES life-cycle: an ES life-cycle is proposed, including
maintenance as a separate step. Validation, as an element of knowledge
engineering, has to be present in all the steps of the ES development. . Different
validation activities can be performed at each step. This presence in the whole life
cycle enforces validation by construction, improving the quality of the intermediate
products. In addition, it stresses the design and implementation for validation.

• Knowledge Validation: all the knowledge extracted from the expert has to be
validated. To effectively perform this validation, the knowledge has to be organized
forming a conceptual model. This model has to contain all the dependencies and
relations among the intended task elements, as well as the heuristics and processes
used by the expert to perform this task. The accuracy and completeness of this
model is a crucial point, since it acts as the supporting framework to validate the
ES implementation. In order to validate knowledge properties, some extra
knowledge is required. This extra knowledge is not used for deduction, it is just
for validation. It is acquired and represented in the usual ways, and it is also
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subject to validation. Early validation activities in the ES life-cycle enforce the
acquisition of this kind of knowledge.
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