
Implementing Inequality and Nondeterministic

Specifications with Bi-rewriting Systems⋆

Jordi Levy and Jaume Agust́ı

Institut d’Investigació en Intel·ligència Artificial, CSIC,
Camı́ Sta. Bàrbara s/n, 17300 Blanes, Girona, Spain.

E-mail: levy@ceab.es and agusti@ceab.es

Abstract. Rewriting with non-symmetric relations can be considered
as a computational model of many specification languages based on non-
symmetric relations. For instance, Logics of Inequalities, Ordered Al-
gebras, Rewriting Logic, Order-Sorted Algebras, Subset Logic, Unified
Algebras, taxonomies, subtypes, Refinement Calculus, all them use some
kind of non-symmetric relation on expressions. We have developed an op-
erational semantics for these inequality specifications named bi-rewriting
systems. In this paper we show the applicability of bi-rewriting systems
to Unified Algebras and nondeterministic specifications. In the first case,
we give a canonical bi-rewriting system implementing the basic theory
of these algebras. In the second case, nondeterministic specifications are
viewed as inclusion specifications, thus bi-rewriting is a sound, although
not always complete deduction method. We show how a specification has
to be completed in order to have both soundness and completeness.

1 Introduction

Term rewriting systems TRS have been usually associated with equational logic
[DJ90]. Overcoming this tendency it has been shown recently [Mes90, Mes92]
that the logic implicit in TRS is a generalization of equational logic, named
preorder logic POL, or rewriting logic, which is addressed to unify a wide variety
of models of concurrency. Following the new trend, we proposed in [LA93] an
operative method based on rewriting techniques to automatize the deduction in
the preorder logic. The inference rules defining this logic are quite similar to the
ones defining the equational logic, but they do not include the symmetry rule:

t ⊆ t
Reflexivity

s ⊆ t t ⊆ v
s ⊆ v

Transitivity

s1 ⊆ t1 . . . sn ⊆ tn
f(s1, . . . , sn) ⊆ f(t1, . . . , tn)

Monotonicity
s ⊆ t

σ(s) ⊆ σ(t)
Substitution

⋆ This work has been partially supported by the project TESEU (TIC 91-430) funded
by the CICYT.

An inclusion theory or specification I is defined by a finite set of inclusions t ⊆ u,
where t and u are first order terms T (Σ,X) over a finite signature Σ = ∪n≥0Σ

n

of function symbols and a denumerable set of variables X .
The idea of applying rewriting techniques to the deduction of inclusions be-

tween terms like t ⊆ u is very simple. We compute by repeatedly replacing both
1) subterms of t by bigger terms using the axioms and 2) subterms of u by smaller
terms using the same axioms, until we find a path of the bi-directional search
connecting t and u. To use inclusion axioms as rewrite rules we must orient them
in one, the other or both directions, which produces a pair of rewriting system:
one R⊆ with rules oriented like t−−→⊆ u and the other R⊇ with rules like u−−→⊇ t.
The pair 〈R⊆, R⊇〉 is a bi-rewriting system.

In [LA93] we started to study the theory of bi-rewriting systems, their prop-
erties and the completion process in order to ensure the termination and com-
pleteness of the bi-directional search proof procedure. These depend on two
properties, the termination of both rewriting relations −−→

R⊆
and −−→

R⊇
, and the

commutation of them ←−−
R⊇

◦−−→
R⊆
⊆ −−→∗

R⊆
◦←−−∗

R⊇
. The first property is usually proved

using the standard methods based on simplification orderings. The second one
requires a new definition:

Definition 1. Let α1−−→
⊆

β1 in R
⊆

and α2−−→
⊇

β2 in R
⊇

be two rewriting rules
(with distinct variables) and p a position in α1, then

1. if α1|p is a non-variable subterm and ρ is the most general unifier of α1|p
and α2 then ρ(α1[β2]p) ⊆ ρ(β1) is a (standard) critical pair,

2. if α1|p = x is a repeated variable in α1, F a term, q an occurrence in F ,
and α2−−→

∗

R⊆
β2 is not satisfied, then ρ(α1[F [β2]q]p) ⊆ ρ(β1) is an (extended)

critical pair where ρ only substitutes x by F [α2]q.

The same for critical pairs between R
⊇

and R
⊆
.

In [LA93] we proved the following theorem.

Theorem 2. Given a bi-rewriting system 〈R
⊆
, R

⊇
〉, if R

⊆
and R

⊇
are both ter-

minating then the bi-rewriting system commutes iff all the critical pairs are con-
fluent.

The same result was extended to bi-rewriting modulo a set of nonorientable
inclusions, like it is done in the equational case when we rewrite in equivalence
classes. The Knuth-Bendix completion process for bi-rewriting systems has some
problems (the set of extended critical pairs is in general infinite) which are the
object of current work [Lev93].

In this paper we apply the bi-rewriting technique to the automatic deduction
in inclusion specifications. In section 2 we complete the basic inclusion theory
of Unified Algebras, that is the theory of distributive lattices, and we give a
canonical bi-rewriting system for it. This example shows the problems arising
from the use of extended critical pairs.

Section 3 has more theoretical interest. It has been shown that bi-rewriting
is a sound and complete deduction technique for the preorder logic. The class of
models of this logic are the preorder algebras. However, the models usually used
in nondeterministic specifications are multialgebras. We study which conditions
a specification I has to satisfy in order to be equivalent both classes of models.
If this conditions are not satisfied, we propose a completion method for I. This
completion introduces new rules t−−→⊆ u, leaving the rules t−−→⊇ u which define the
computation unchanged.

2 Implementing the Inequality Specification of

Distributive Lattices

The commutativity of a bi-rewriting system requires the confluence of all the
standard and extended critical pairs. The confluence of a standard critical pair,
like l ⊆ r, can be assured adding to the system the rule l−−→⊆ r or r−−→⊇ l when
it is not confluent. The same solution does not apply to the extended critical
pair case because they involve inclusion schemes. The confluence of an inclusion
scheme may require the addition of more than one rule and the search of the
rules to add is not automatizable. Our approach to the problem is to orient
the inclusion scheme in a rule scheme, and to study the new rule schemes that
can be generated from it. The generation of critical pairs between rule schemes
has not been solved yet. Nevertheless, in the following example we show that
some particular rule instances of rule schemes may make confluent the original
inclusion scheme (the extended critical pair). The rules added are sound because
they are instances of rule schemes generated from extended critical pairs.

The example we present is the inequality specification of distributive lattices.
This specification is the base for many other specifications or specification lan-
guages like the Unified Algebras [Mos89]. The presentation of the distributive
lattice theory may be given by the following set of inclusions:

X ∪X ⊆ X X ∩X ⊇ X
X ∪ Y ⊇ X X ∩ Y ⊆ X
X ∪ Y ⊇ Y X ∩ Y ⊆ Y
X ∩ (Y ∪ Z) ⊆ (X ∩ Y) ∪ (X ∩ Z)

The orientation of all these inclusions to the right results in a terminat-
ing bi-rewriting system where all standard critical pairs are confluent. However,
the presence of the two non-left-linear rules X ∪ X−−→⊆ X and X ∩ X−−→⊇ X
makes necessary the consideration of the extended critical pairs. If we only
take into account, in a first step, all those extended critical pairs of the form
〈σ(α1[β2]p), σ(β1)〉, which correspond to the particular case where the position q
in F is the most external one q = λ, then we can generate the following sequence
of new rules:

q1 Y ∪ (X ∪ Y)−−→⊆ X ∪ Y
q2 Y ∪X−−→⊆ X ∪ Y

q3 (X ∪ Y) ∪ Y−−→⊆ X ∪ Y
q4 (X ∪ Y) ∪ (Y ∪ Z)−−→⊆ X ∪ (Y ∪ Z)
q5 (X ∪ Y) ∪ Z−−→⊆ X ∪ (Y ∪ Z)

and the equivalent ones for ∩. The rules q2 and q5 are non-orientable and subsume
the rest of rules. They make necessary the use of the bi-rewriting modulo a set
of inclusions technique. These rules are symmetric –they are really equations–,
therefore we can apply the standard commutative-associative closure definition
[PS81]. We obtain then the following set of rules.

R
⊆

=



























r1 X ∪X−−→⊆ X
rext
1 X ∪X ∪ Y−−→⊆ X ∪ Y

r2 X ∩ Y−−→⊆ X
r3 X ∩ (Y ∪ Z)−−→⊆ (X ∩ Y) ∪ (X ∩ Z)

rext
3 X ∩ (Y ∪ Z) ∩ T−−→⊆

(

(X ∩ Y) ∪ (X ∩ Z)
)

∩ T

R
⊇

=







r4 X ∩X−−→⊇ X
rext
4 X ∩X ∩ Y−−→⊇ X ∩ Y

r5 X ∪ Y−−→⊇ X

I =















r6 Y ∪X−−→⊆ X ∪ Y
r7 (X ∪ Y) ∪ Z−−→⊆ X ∪ (Y ∪ Z)
r8 Y ∩X−−→⊆ X ∩ Y
r9 (X ∩ Y) ∩ Z−−→⊆ X ∩ (Y ∩ Z)

In a second step we have to consider also those rules needed to make confluent
the rest of extended critical pairs.

F [X] ∪ F [X ∪ Y] ⊆ F [X ∪ Y]
F [X ∩ Y] ⊆ F [X] ∩ F [X ∩ Y]

First, we will study the second extended critical pair. If we orient it to the
left, we obtain the rule scheme F [X]∩F [X ∩ Y]−−→⊇ F [X ∩ Y]. This rule scheme
generates a standard critical pair with the rule X ∩ Y−−→⊆ Y , which is made
confluent adding the rule scheme F [X]∩ F [Y]−−→⊇ F [X ∩ Y]. The overlapping of
the context F [] of this rule scheme with the left part of the rule X ∩ Y−−→⊆ Y
generates infinite many rule schemes F [X1, . . . ,Xn] ∩ F [Y1, . . . , Yn]−−→⊇ F [X1 ∩
Y1, . . . ,Xn ∩ Yn] for n ≥ 1. The following (normal) rules subsume these rule
schemes.

r10 X ∩ (Y ∪ Z)−−→⊇ (X ∩ Y) ∪ (X ∩ Z)

r
(f)
11 f(X1, . . . ,Xn) ∩ f(Y1, . . . , Yn)−−→⊇ f(X1 ∩ Y1, . . . ,Xn ∩ Yn) ∀f ∈ Σn

Notice that r
(f)
11 is really a set of rules, one for each n-ary symbol f ∈ Σn, and

that r10 subsumes the instantiation of r
(f)
11 for the symbol ∪ ∈ Σ2.

The dual solution is not applicable to F [X]∪ F [X ∪ Y] ⊆ F [X ∪ Y] because
X ∪ (Y ∩ Z)−−→⊆ (X ∪ Y) ∩ (X ∪ Z) and the distributive rule r3 would lead

to the non-termination of the system. This problem can be avoided using the
alternative set of rules:

r
(f)
12 f(X1, . . . ,Xn) ∪ f(Y1, . . . , Yn)−−→⊆ f(X1 ∪ Y1, . . . ,Xn ∪ Yn)

r
(f)
13

(

X ∩ f(Y1, . . . , Yn)
)

∪
(

X ∩ f(Z1, . . . , Zn)
)

−−→⊆

−−→⊆ X ∩ f(Y1 ∪ Z1, . . . , Yn ∪ Zn)
They do not subsume F [X]∪F [Y]−−→⊆ F [X ∪Y], but are particular instances

of this rule schema. The last rule r13 is non-left-linear and generates a new
extended critical pair which becomes confluent if we add the following rule.

r
(f)
14

(

X ∩ f(Y1, . . . , Yn)
)

∪
(

Z ∩ f(V1, . . . , Vn)
)

−−→⊆

−−→⊆ (X ∪ Z) ∩ f(Y1 ∪ V1, . . . , Yn ∪ Vn)

Rules r
(f)
14 and r1 subsume r

(f)
13 .

Let’s prove now that rules r12 and r14 makes confluent the extended

critical pair F [X] ∪ F [X ∪ Y] ⊆ F [X ∪ Y]. Rules r
(f)
12 and r

(f)
14 subsume

F [X]∪ F [Y]−−→⊆ F [X ∪ Y] when the schema2 F [] can be expressed as a compo-
sition F [] = F1[. . . Fn[] . . .] of schemas, where each one of this schemes satisfies
Fi[] = f(. . . , , . . .), or Fi[] = E1 ∩ f(. . . , , . . .) ∩E2 for any symbol f different
from ∩, and any expressions E1, E2. It can be proved that any scheme F [] can
be expressed as F [] = G[E1∩ ∩E2] where the schema G[] satisfies the previous
condition and E1, E2 are two common expressions. This property allows to trans-
late the inclusion schema (the extended critical pair) F [X]∪F [X∪Y] ⊆ F [X∪Y]
into

G[X ∩H] ∪G[(X ∪ Y) ∩H] ⊆ G[(X ∪ Y) ∩H]

where G[] can be rewritten using F [X]∪F [Y]−−→⊆ F [X ∪Y]. We prove then that
this extended critical pair is bi-confluent using the following proof.

G[X ∩H] ∪G[(X ∪ Y) ∩H] −−→⊆ G
[

(X ∩H) ∪
(

(X ∪ Y) ∩H
)]

−−→⊆ G[(X ∩H) ∪ (X ∩H) ∪ (Y ∩H)]
−−→⊆ G[(X ∩H) ∪ (Y ∩H)]←−−⊆ G[(X ∪ Y) ∩H]

A commutative and terminating bi-rewriting system for the distributive lat-
tice theory is given by rules r1 . . . r12, r14 and their corresponding ∪ and ∩
associative-commutative extensions.

3 Implementing Nondeterministic Specifications

It is well known that term rewriting techniques can be used to test the equiv-
alence of terms in a equational logic specification E. The method consists in
finding the normal form of both sides of the tested equality and checking if
they are equal. The method is sound and complete for ground terms if the set

2 As usual, an schema is an expression with a hole in it, a selected position, denoted by
an underscore “ ”. The schema composition F []◦G[] is defined by the substitution
of this selected position by the other schema, noted F [G[]].

of ground normal forms is (isomorphic to) the initial model of the specifica-
tion; and for terms with variables if the set of normal forms is isomorphic to
T (Σ,X)/E [DJ90]. It is also well known that the confluence and termination
of the rewriting system resulting from orienting the equations is a sufficient
condition for this completeness result.

Term rewriting techniques have also been proposed as the implementation
language of nondeterministic specifications [Kap86a, Hus92]. In all these ap-
proaches the signature includes a nondeterministic choice operator —noted by ↑
in [Kap86a, Kap88], by or(,) in [Hus91, Hus92], or by ∪ in our work— which
makes nondeterministic computation lose the symmetry property. Otherwise, the
rules X ∪Y−→X and X ∪Y−→Y proposed for the choice operator would allow
to prove the equivalence of any two terms. Therefore, the confluence property
makes no sense, and a nondeterministic specification is presented in general as
a set of (non symmetric) inclusions.

The models proposed for these specifications are based on Σ-multialgebras
[Hes88, Nip86], which capture the essence of nondeterminism better than the
Σ-algebras used in equational specifications.

Definition 3. A Σ-multialgebra A is a tuple 〈SA,FA〉 where SA is a non empty
carrier set, and FA is a set of set-valued functions fA : SA× n. . . ×SA → P+(SA)
for each f ∈ Σn function symbol of the signature.

Models are defined as follows.

Definition 4. Given a specification I over a signature Σ, a Σ-multialgebra A
is said to be a model of I, noted A ∈ MAlg(I), if the interpretation function
IA[] : (X → SA)→ T (Σ,X)→ P+(SA) defined inductively by

IA
ρ [x] = {ρ(x)} for any x ∈ X

IA
ρ [f(t1, . . . , tn)] =

⋃

{fA(v1, . . . , vn) | vi ∈ IA
ρ [ti]} for any f ∈ Σn

satisfies IA
ρ [t] ⊆ IA

ρ [u] for any axiom t ⊆ u in the specification I, and any

valuation function ρ : X → SA.
An inclusion t ⊆ u is valid in a Σ-multialgebra model A, noted A |= t ⊆ u,

if for any valuation ρ we have IA
ρ [t] ⊆ IA

ρ [u].

3.1 Using Bi-rewriting Systems to Verify Specifications

Bi-rewriting systems introduced in [LA93] automatize the deduction in the Par-
tial Order Logic POL (also for the rewriting logic of Meseguer [Mes92]). The
models of this logic are preorder algebras, defined as follows.

Definition 5. A Σ-preorder algebra A is a triplet 〈SA,⊆A,FA〉 where SA is a
carrier set, ⊆A is a preorder relation and FA is a set of monotonic functions
fA : SA× n. . . ×SA → SA for each symbol f ∈ Σn.

Definition 6. Given a specification I over Σ a Σ-preorder algebra A is said to
be a model of I, noted A ∈ POAlg(I), if the interpretation function IA[] : (X →
SA)→ T (Σ,X)→ SA defined inductively by

IA
ρ [x] = ρ(x) for any x ∈ X

IA
ρ [f(t1, . . . , tn)] = fA(IA

ρ [t1], . . . , I
A
ρ [tn]) for any f ∈ Σn

satisfies Iρ[t] ⊆A Iρ[u] for any axiom t ⊆ u in the specification I and any
valuation ρ : X → SA.

A soundness and completeness theorem, similar to the Birkhoff theorem, can
be stated for this logic.

Lemma7. For any specification I and any pair of terms t and u we have
POAlg(I) |= t ⊆ u iff I ⊢

POL
t ⊆ u.

Commutative and terminating bi-rewriting systems automatize the deduc-
tion in ⊢

POL
. They are a sound and complete method w.r.t. the semantics of

specifications based on preorder algebras. However, POAlg(I) |= t ⊆ u and
MAlg(I) |= t ⊆ u are not equivalent (the implication does not hold in none of
both directions) as the following counter-example shows.

Example 1. A counter-example to MAlg(I) |= t ⊆ u ⇒ POAlg(I) |= t ⊆ u is
given by the following additivity axiom which is sound in multialgebra models,
but not in preorder algebra models.

f(X ∪ Y) ⊆ f(X) ∪ f(Y)
Aditivity

The counter-example to POAlg(I) |= t ⊆ u ⇒ MAlg(I) |= t ⊆ u is not so
evident, and causes more problems. The following substitution rule is sound in
preorder models, but not in multialgebra models, in the presence of repeated
variables.

t ⊆ u
σ(t) ⊆ σ(u)

Substitution

For instance, the deduction

f(X,X) ⊆ g(X) , X ⊆ X ∪ Y , Y ⊆ X ∪ Y ⊢
POL

f(X,Y) ⊆ g(X ∪ Y)

is correct in POL. However, it is not sound in a multialgebra model. The multi-
algebra A = 〈SA,FA〉 defined by:

SA = {a, b}
fA(x, y) = if x = y then {a} else {b}
gA(x, y) = {a}
x ∪A y = {x, y}

is a model of I = {f(X,X) ⊆ g(X),X ⊆ X ∪ Y, Y ⊆ X ∪ Y }, however
IA
ρ [f(X,Y)] 6⊆ IA

ρ [g(X ∪ Y)] for ρ = [a← X, b← Y].

We understand variables in a specification denoting terms and being univer-
sally quantified. Therefore, we think that the substitution rule has to be sound
in any specification model. Multialgebra models may satisfy this requirement if
we modify the definition of interpretation and model:

Definition 8. A Σ-multialgebra A is said to be a strong model of a specification
I, noted A ∈ MAlg(I), if the interpretation function IA[] : (X → P+(SA)) →
T (Σ,X)→ P+(SA) defined inductively by

IA
ρ [x] = ρ(x) for any x ∈ X

IA
ρ [f(t1, . . . , tn)] =

⋃

{fA(v1, . . . , vn) | vi ∈ IA
ρ [ti]} for any f ∈ Σn

satisfies Iρ[t] ⊆ Iρ[u] for any axiom t ⊆ u in the specification I, and any valuation
ρ : X → P+(SA).

Notice that the valuation function ρ ranges over sets and not only over values.

Lemma 9. For any specification I we have MAlg(I) ⊆MAlg(I).

Using this smaller class of models the preorder logic entailment ⊢
POL

becomes
sound.

Theorem 10. If POAlg(I) |= t ⊆ u holds, then MAlg(I) |= t ⊆ u also holds.
Therefore, bi-rewriting is a sound deduction method.

Proof. It is sufficient to prove that

∀A ∈MAlg .∃B ∈ POAlg . (∀ρ . IA
ρ [t] ⊆ IA

ρ [u])⇔ (∀ρ′ . IB
ρ′ [t] ⊆B IB

ρ′ [u])

Notice that we use one implication direction to prove A ∈ MAlg(I) ⇒ B ∈
POAlg(I), and the opposite direction to prove B |= t ⊆ u⇒ A |= t ⊆ u.

Any Σ-multialgebra A has a Σ-preorder algebra B naturally associated. This
preorder algebra B is defined by

SB def

= P+(SA)

fB(s1, . . . , sn)
def

=
⋃

{fA(v1, . . . , vn) | vi ∈ si} for any f ∈ Σn

The carrier SB is a power set, and the set inclusion relation ⊆ used in the
multialgebra model A, and the partial order relation ⊆B used in the preorder
model B are equal. We can prove by structural induction on the term t that
IA
ρ [t] = IB

ρ [t].

IB
ρ [x] = ρ(x) = IA

ρ [x]
IB
ρ [f(t1 . . . tn)] = fB(IB

ρ [t1] . . . I
B
ρ [tn]) =

⋃

{fA(v1 . . . vn) | vi ∈ IB
ρ [ti]}

=
⋃

{fA(v1 . . . vn) | vi ∈ IA
ρ [ti]} = IA

ρ [f(t1 . . . tn)]

Then the initial double implication becomes a tautology.

In the following we will study which conditions I has to satisfy in order to
be POAlg(I) |= t ⊆ u and MAlg(I) |= t ⊆ u equivalent.

Theorem 11. If the specification I satisfies:

1. I contains the union theory as a subtheory:
I ⊢

POL
X ∪X ⊆ X, X ⊆ X ∪ Y, Y ⊆ X ∪ Y .

2. I ⊢
POL

t = ∪{u ∈ Atomic(I) | I ⊢
POL

u ⊆ t}, for any term t, where

Atomic(I)
def

= {u ∈ T (Σ,X) | if I ⊢
POL

v ⊆ u then v = u}.
3. I ⊢

POL
f(. . . t∪u . . .) ⊆ f(. . . t . . .)∪f(. . . u . . .) for any n-ary symbol f ∈ Σn.

4. If t ∈ Atomic(I) and I ⊢
POL

t ⊆ u ∪ u′ then either I ⊢
POL

t ⊆ u or I ⊢
POL

t ⊆ u′.

Then, whenever MAlg(I) |= t ⊆ u holds, then POAlg(I) |= t ⊆ u also holds.
Therefore, bi-rewriting is a complete deduction method for these specifications.

Proof. It is sufficient to prove that

∀B ∈ POAlg .∃A ∈MAlg . (∀ρ . IA
ρ [t] ⊆ IA

ρ [u])⇔ (∀ρ′ . IB
ρ′ [t] ⊆B IB

ρ′ [u])

We can also associate a multialgebra A to each preorder algebra B as follows.

SA def

= Atomic(SB)

fA(v1, . . . , vn)
def

= {s ∈ SA | s ⊆B fB(v1, . . . , vn)} for any f ∈ Σn

where for any preorder S, we define Atomic(S)
def

= {s ∈ S | s′ ⊆ s⇒ s = s′}.3

Notice that in this case ⊆ is the set inclusion in P+(SB), and ⊆B is a preorder
relation on SB , and they are different relations.

Case ∀ρ′ .∃ρ . IA
ρ [t] ⊆ IA

ρ [u]⇒ IB
ρ′ [t] ⊆B IB

ρ′ [u].

The conditions of the theorem can be translated directly to properties of the
preorder algebra B:

v ∪B v ⊆B v v1 ⊆B v1 ∪
B v2 v2 ⊆B v1 ∪

B v2

fB(. . . v1 ∪
B v2 . . .) ⊆B fB(. . . v1 . . .) ∪B fB(. . . v2 . . .)

v = ∪B{v′ ∈ Atomic(SB) | v′ ⊆B v}
v ∈ Atomic(SB) ∧ v ⊆ v1 ∪ v2 ⇒ v ⊆ v1 ∨ v ⊆ v2

If we define ρ(x)
def

= {s ∈ SA | s ⊆B ρ′(x)} then using the properties below
we can prove by structural induction on the term t that

IB
ρ′ [t] = ∪BIA

ρ [t]

where, as usual ∪B{v1, . . . , vn} = v1 ∪
B · · · ∪B vn for any v1 . . . vn ∈ SB.

Then the monotonicity of ∪B proves that IA
ρ [t] ⊆ IA

ρ [u] implies IB
ρ′ [t] ⊆ IB

ρ′ [u].

3 Notice that for the free algebra of terms T (Σ,X)/I this definition and the previous
one becomes equivalent.

Case ∀ρ .∃ρ′ . IB
ρ′ [t] ⊆B IB

ρ′ [u]⇒ IA
ρ [t] ⊆ IA

ρ [u].
The last two conditions of the theorem prove that if t ∈ Atomic(I) and
I ⊢

POL
t ⊆ f(u1, . . . , un) then there exist v1, . . . , vn ∈ Atomic(I) such that

I ⊢
POL

t ⊆ f(v1, . . . , vn) for any f ∈ Σn.
If we define ρ′(x) = ∪Bρ(x) then we can prove

IA
ρ [t] = {s ∈ SA | s ⊆B IB

ρ′ [t]}

for any term t by structural induction.
Then IB

ρ′ [t] ⊆B IB
ρ′ [u] implies IA

ρ [t] ⊆ IA
ρ [u].

The conditions of the previous theorem are usually satisfied in any nondeter-
ministic specification I. We will find the same conditions in the next subsection
where we try to prove the existence and initiality of a model based on sets of
normal forms.

3.2 Characterizing Terms by Sets of Normal Forms

In nondeterministic computations terms can not be characterized by a unique
normal form, but we will try to characterize them by its set of normal forms. In
this case, a method to test inclusions of terms in a nondeterministic specification
would consist in searching the set of normal forms of each side of the inclusion,
and checking if one set is included in the other one. We will prove that the
soundness and completeness of this nondeterministic computation method relies
on the existence and initiality of a model of set of normal forms –like in the
equational case with the normal form model–. The main goal of this section
is to give the conditions for the existence and for the initially of this model –
like it is characterized in the equational case by the confluence and termination
properties–.

First we will present the formal definition of the set of normal forms model,
SNF-model for short, and later we will study the nondeterministic computation
method, NDC-method for short.

Nondeterministic computation is based on the computation of normal forms
only using the rewriting system R

⊇
. As we will see, the other rewriting system

R
⊆

does not play a computational role, but its rules may be understood as
semantic constraints on the class of models of the specification. The example at
the end of the section shows this clearly. Adding new rules to R⊆ we can prove
a soundness and completeness result for the nondeterministic computation and
the bi-rewriting methods w.r.t. the models of the new specification.

Given a rewriting system R⊇, we will denote the set of its R⊇-normal forms
by NF⊇ and the set of R⊇-normal forms of a term t by NF⊇[t].

The set of normal forms multialgebra, SNF-multialgebra for short, is defined
as follows.

Definition 12. Given a rewriting system R⊇, the SNF-multialgebra SNF =

〈SSNF ,FSNF 〉 is defined by the carrier set SSNF def

= NF⊇, and the set of func-
tions fSNF : NF⊇× n. . . ×NF⊇ → P+(NF⊇) defined by fSNF (t1, . . . , tn) =
NF⊇[f(t1, . . . , tn)] for each functional symbol f ∈ Σn of the signature.

Notice that the SNF-multialgebra is defined syntactically using R⊇, and in-
dependently of I. The rewriting rules of R⊇ come from the orientation of some
of the axioms of I. However, this fact is not enough to prove that the SNF-
multialgebra is a multialgebra model of I.

Lemma13. Given a specification I and a rewriting system R⊇, if the following
conditions hold.

1. For any inclusion t ⊆ u in I, and any substitution ρ : X → NF⊇, we have
NF⊇[ρ(t)] ⊆ NF⊇[ρ(u)].

2. If t ∈ NF⊇[f(. . . , u, . . .)], then there exists u′ ∈ NF⊇[u] such that t ∈
NF⊇[f(. . . , u′, . . .)].

then the SNF-multialgebra is a multialgebra model of I, SNF ∈ MAlg(I), and
the interpretation function is ISNF

ρ [t] = NF⊇[ρ(t)].
Additionally, if the following condition also holds

3. NF⊇[t ∪ u] ⊆ NF⊇[t] ∪NF⊇[u],

then the SNF-multialgebra is a strong multialgebra model of I, SNF ∈MAlg(I),
and ISNF

ρ [t] = NF⊇[ρ′(t)], where for any x ∈ X , ρ′(x) = ∪ρ(x).

Proof. First we prove
that ISNF

ρ [t] = NF⊇[ρ(t)] are equal. That is, NF⊇[ρ(t)] satisfies the inductive

definition of multialgebra interpretation function: 1) ISNF
ρ [x] = ρ(x) for any vari-

able x ∈ X . As far as ρ maps variables to normal forms, NF⊇[ρ(x)] = {ρ(x)}.
2) ISNF

ρ [f(t1, . . . , tn)] =
⋃

{fSNF (v1, . . . , vn) | vi ∈ ISNF
ρ [ti]}, which is equivalent

to NF⊇[f(ρ(t1), . . . , ρ(tn))] =
⋃

{NF⊇[f(v1, . . . , vn)] | vi ∈ NF⊇[ρ(ti)]}. The
inclusion ⊇ is always satisfied and it can be proved using the monotonicity of f .
The inclusion ⊆ is proved by the second condition of the lemma.

Second the first condition of the lemma and ISNF
ρ [t] = NF⊇[ρ(t)] prove that

ISNF
ρ [t] ⊆ ISNF

ρ [u] for any inclusion t ⊆ u of I, and any substitution ρ.
The proof of the second part of the lemma is quite similar. In this case we

need the third condition to prove ISNF
ρ [t] = ρ(x) = NF⊇[∪ρ(x)] = NF⊇[ρ′(x)].

As we have seen in the previous subsection we can associate a preorder alge-
bra to the SNF-multialgebra, and this preorder algebra will be a preorder model
of I if the SNF-multialgebra is a strong multialgebra model of I.

Lemma14. If the following conditions are satisfied:

1. If I ⊢
POL

t ⊆ u then NF⊇[t] ⊆ NF⊇[u].
2. If t ∈ NF⊇[f(. . . , u, . . .)], then there exists u′ ∈ NF⊇[u] such that t ∈

NF⊇[f(. . . , u′, . . .)].
3. NF⊇[t ∪ u] ⊆ NF⊇[t] ∪NF⊇[u],

then, the SNF-preorder algebra defined by the carrier set SSNF def

= P+(NF⊇)

and the set of functions fSNF (s1 . . . sn)
def

= ∪{NF⊇[f(v1 . . . vn)] | vi ∈ si} is a
preorder model of I.

If in addition

4. If NF⊇[t] ⊆ NF⊇[u] then I ⊢
POL

t ⊆ u.

then the SNF-preorder model is initial in POAlg(I), and the associated SNF-
multialgebra is initial in MAlg(I).

Moreover, MAlg(I) |= t ⊆ u and POAlg(I) |= t ⊆ u are equivalent.

Proof. The proof of the first part of the lemma is a consequence of the previous
lemma. The proof for the initiality of the model relies on the completeness of
⊢

POL
w.r.t. the class of models POAlg. The initiality of the model SNF w.r.t.

the class POAlg(I), and the fact that its associated multialgebra is a strong
multialgebra model of I proves the last equivalence.

The conditions of this lemma reproduce the condition of theorem 11. Before
reducing the four conditions of this lemma to syntactic conditions more easily
provable, we will discuss its meaning.

The first condition NF⊇[t1] ⊇ NF⊇[t2] ⇒ I ⊢
POL

t1 ⊇ t2 expresses the
soundness of the NDC-method with respect to the specification. However, the
user usually only gives the rewriting rules R⊇, leaving the specification incom-
plete –as we will see in the examples–. This specification must be completed in
order to verify this condition. Hence, we prefer to name this condition complete-
ness of the specification with respect to the NDC-method.

The forth condition I ⊢
POL

t1 ⊇ t2 ⇒ NF⊇[t1] ⊇ NF⊇[t2] expresses the
completeness of the method with respect to the specification. This condition is
very easily satisfied. As it is noticed by Hussmann [Hus92] the more difficult
point working with nondeterministic specifications is the soundness property of
the method (or soundness of the Birkhoff theorem). Kaplan gives the theorem
(theorem 2.3 in [Kap86a]) MODR |= M = N iff {NF (M)} = {NF (N)}, al-
though he does not use multialgebra models, and the theorem is stated in terms
of equality, instead of inclusions.

The second property t2 ∈ NF⊇[f(. . . , t1, . . .)] ⇒ ∃t3 ∈ NF⊇[t1] . t2 ∈
NF⊇[f(. . . , t3, . . .)] is named additivity property. It is related with the use of
multialgebra models. The functions in these models (from values to sets) can
be extended point wise to set arguments (from sets to sets) by the additive
property of the functions, obtaining a preorder model. It means that the inter-
pretation mapping I has to be defined inductively by additivity. As we will see,
to ensure this property we will require the additivity property for all the func-
tions in the signature. This condition is also required by Hussmann [Hus92]. In
fact, it becomes his det-additive property by translating t2 ∈ NF⊇[f(t1)] into
f(t1)−→t2 ∧ det(t2).

To reduce these four properties to syntactic ones, easier to prove, we need
the following lemma.

Lemma 15. Given a specification I containing at least the union axioms, if the
orientation and completion of its axioms result in a commutative and terminating
bi-rewriting system 〈R

⊆
, R

⊇
〉, then

1. If NF⊇ ⊆ NF⊆, then I ⊢
POL

t1 ⊇ t2 implies NF⊇(t1) ⊇ NF⊇(t2).

2. If I ⊢
POL

t ⊆
⋃

{t′ | t−−→
R⊇

t′} for any term t 6∈ NF⊇, then NF⊇(t1) ⊇ NF⊇(t2)

implies I ⊢
POL

t1 ⊇ t2.
3. If in addition the additive property f(. . . ,X ∪ Y, . . .) = f(. . . ,X, . . .) ∪

f(. . . , Y, . . .) for any function symbol f ∈ Σ holds in the specification I, and
the bi-rewriting system satisfies NF⊇[t1 ∪ t2] = NF⊇[t1] ∪ NF⊇[t2] for any
pair of terms t1 and t2, then t2 ∈ NF⊇[f(t1)] implies ∃t3 ∈ NF⊇[t1] . t2 ∈
NF⊇[f(t3)].

Proof. 1. Let I ⊢
POL

t1 ⊇ t2 hold, the commutation and termination properties
of 〈R

⊆
, R

⊇
〉 prove t1−−→

∗

⊇
◦←−−∗

⊇
t2. Let t ∈ NF⊇[t2] hold, we have then t2−−→

∗

⊇
t.

The commutation and termination properties prove again t1−−→
∗

⊇
◦←−−∗

⊇
t. How-

ever t ∈ NF⊇, thus, t ∈ NF⊆ by hypothesis, and we have t1−−→
∗

⊇
t and there-

fore t ∈ NF⊇[t1].
2. The termination property and I ⊢

POL
t ⊆

⋃

{t′ | t−−→⊇ t′} allow to prove by

noetherian induction I ⊢
POL

t ⊆
⋃

NF⊇[t]. The union axioms prove I ⊢
POL

t ⊇
⋃

NF⊇[t] and I ⊢
POL

⋃

NF⊇[t1] ⊇
⋃

NF⊇[t2] if NF⊇[t1] ⊇ NF⊇[t2].
Therefore, we have by transitivity I ⊢

POL
t1 ⊇ t2.

3. Using the conditions of the previous point we proved t1 =
⋃

NF⊇[t1];
and by the additional conditions of this point we have f(

⋃

NF⊇[t1]) =
⋃

t3∈NF⊇[t1]
f(t3) and NF⊇[

⋃

t3∈NF⊇[t1]
f(t3)] =

⋃

t3∈NF⊇[t1]
NF⊇[f(t3)].

Therefore, if t2 belongs to this union of sets, then it belongs to one of them,
that is, there exists a term t3 ∈ NF⊇[t1] such that t2 ∈ NF⊇[f(t3)].

Inspired in this SNF-model we can define a new method for checking in-
clusions. We name this method nondeterministic computation method, NDC-
method for short, and we define it as follows.

Definition 16. Given a rewriting system R⊇ and two terms t and u, the NDC-
method is defined by NDC(t, u) = true if, and only if, NF⊇[t] ⊆ NF⊇[u].

Lemma17. If the conditions I ⊢
POL

t ⊆ u and NF⊇[t] ⊆ NF⊇[u] are equiv-
alent, the the NDC-method is sound and complete w.r.t. the class of models
POAlg(I).

The following theorem is the main result of this section, and summarizes the
results of all the previous lemmas.

Theorem 18. Given a nondeterministic specification I, and a bi-rewriting sys-
tem 〈R

⊆
, R

⊇
〉 resulting from the orientation of its axioms, if the following con-

ditions are satisfied

1. the bi-rewriting system is commutative and terminating,
2. the axioms defining the union operator can be deduced from I,
3. NF⊇ ⊆ NF⊆,
4. I ⊢

POL
t ⊆

⋃

{t′ | t−−→⊇ t′} holds for any term t 6∈ NF⊇,
5. I ⊢

POL
f(. . . ,X∪Y, . . .) = f(. . . ,X, . . .)∪f(. . . , Y, . . .) for any symbol f ∈ Σ

6. NF⊇[t1 ∪ t2] = NF⊇[t1] ∪NF⊇[t2] for any terms t1 and t2,

then the following sentences are equivalent:

POAlg(I) |= t ⊆ u I ⊢
POL

t ⊆ u t−−→∗
R⊆

◦←−−∗
R⊇

u

MAlg(I) |= t ⊆ u NF⊇[t] ⊆ NF⊇[u]

Although these conditions could seem very strange, they hold (or may hold)
in most of the nondeterministic specifications. As we will see in the next example,
when they do not hold is due to the incompleteness of the specification, the lack of
inclusions in R

⊆
without computational meaning, and not to the incompleteness

of the rewriting rules R
⊇

used to compute. In these cases it is necessary to add
new axioms to the specification, which of course, reduce the number of models,
and make the NDC-method and the bi-rewriting method sound and complete.

The same kind of specification completion method has been studied by Huss-
mann [Hus92].

3.3 An Example of Nondeterministic Specification

To show this specification completion method we will use the classical nondeter-
ministic specification of a nondeterministic automata, in this case an automata
to recognize the patterns (0∪ 1)∗0(0∪ 1)∗ and (0∪ 1)∗1(0∪ 1)∗. A first attempt
to get a specification is:

0, 1

0, 1

ǫ

ǫ

1

0

6

6
Q

Q
QQk

�
�

��+

Q
Q

QQs

�
�

��3

s2

s1

s0

X ∪ Y ⊇ X X ∪ Y ⊇ Y
trans(s0, 0) ⊇ s1 trans(s0, 1) ⊇ s2

trans(s1,X) ⊇ s1 trans(s1,X) ⊇ trans(s0,X)
trans(s2,X) ⊇ s2 trans(s2,X) ⊇ trans(s0,X)
prog(X,nill) ⊇ X
prog(X, cons(Y,Z)) ⊇ prog(trans(X,Y), Z)

where all inclusions can be oriented to the right, obtaining a commutative bi-
rewriting system (where R

⊆
= ∅). However, it it easy to see that trans(s1,X)

can be reduced by −−→⊇ to s1 or to trans(s0,X), and I ⊢
POL

trans(s1,X) ⊆
s1∪trans(s0,X) does not hold. Therefore the condition I ⊢

POL
t ⊆

⋃

{t′ | t−−→⊇ t′}
does not hold for all reducible terms t. This problem can be avoided adding the
axiom trans(s1,X) ⊆ s1 ∪ trans(s0,X) to the specification. The same happens
with X ∪X that can be reduced only to X but X ∪X ⊆ X does not hold; and
so on. The additivity condition makes necessary to introduce trans(X ∪Y,Z) ⊆
trans(X,Z) ∪ trans(Y,Z) and the same for the second argument and for prog.

If we complete the specification in this way we obtain:

X ∪ Y ⊇ X
X ⊇ X ∪X
trans(s0, 0) ⊇ s1

trans(s1,X) = s1 ∪ trans(s0,X)
prog(X,nill) = X
prog(X, cons(Y,Z)) = prog(trans(X,Y), Z)
trans(X,Z) ∪ trans(Y,Z) ⊇ trans(X ∪ Y,Z)
trans(Z,X) ∪ trans(Z, Y) ⊇ trans(Z,X ∪ Y)
prog(X,Z) ∪ prog(Y,Z) ⊇ prog(X ∪ Y,Z)
prog(Z,X) ∪ prog(Z, Y) ⊇ prog(Z,X ∪ Y)

X ∪ Y ⊇ Y

trans(s0, 1) ⊇ s2

trans(s2,X) = s2 ∪ trans(s0,X)

which can be oriented to obtain the bi-rewriting system

R
⊇

=



























































X ∪ Y −−→
⊇

X

X ∪ Y −−→
⊇

Y

trans(s0, 0)−−→
⊇

s1

trans(s0, 1)−−→
⊇

s2

trans(s1, X)−−→
⊇

s1

trans(s1, X)−−→
⊇

trans(s0, X)

trans(s2, X)−−→
⊇

s2

trans(s2, X)−−→
⊇

trans(s0, X)

prog(X, nill)−−→
⊇

X

prog(X, cons(Y, Z))−−→
⊇

prog(trans(X, Y), Z)

R
⊆

=























X ∪ X−−→
⊆

X

trans(X ∪ Y, Z)−−→
⊆

trans(X, Z) ∪ trans(Y, Z)

trans(Z, X ∪ Y)−−→
⊆

trans(Z, X) ∪ trans(Z, Y)

prog(X ∪ Y, Z)−−→
⊆

prog(X, Z) ∪ prog(Y, Z)

prog(Z, X ∪ Y)−−→
⊆

prog(Z, X) ∪ prog(Z, Y)

modulo the associative and commutative axioms for the union.
This new bi-rewriting system satisfies all the restrictions of the theorem 18.
The process described in this example, where a specification is completed –

leaving the computational rewriting system −−→⊇ unchanged– corresponds to the
selection of a maximally deterministic model described by Hussmann in [Hus92].

4 Conclusions

We have shown that bi-rewriting systems are a natural computational model
of inequality specifications. The main results of standard rewriting have been
extended to bi-rewriting. However the completion is still an open problem. We
have approached the problem by solving the completion of the inequality specifi-
cation of distributive lattices. The operational semantics of Unified Algebras can
be based on this specification. We have also shown the usefulness of bi-rewriting
systems to relate the mathematical and the operational semantics of nondeter-
ministic specifications. Finally, we have given the conditions for the soundness
and completeness of a normal form computation procedure and the bi-rewriting
method, used to automatice the deduction in nondeterministic specifications. We
have also given the conditions for the existence and initiality of a model based
on sets of normal forms.

References

[DJ90] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. V. Leeuwen, ed-
itor, Handbook of Theoretical Computer Science. Elsevier Science Publishers,
1990.

[Hes88] W. H. Hesselink. A mathematical approach to nondeterminism in data types.
ACM Trans. Programming Languages and Systems, 10:87–117, 1988.

[Hue80] G. Huet. Confluent reductions: Abstract properties and applications to term
rewriting systems. Journal of the ACM, 27(4):797–821, 1980.

[Hus91] H. Hussmann. Nondeterministic Algebraic Specifications. PhD thesis, In-
stitut für Informatik, Technische Universität München, München, Germany,
1991.

[Hus92] H. Hussmann. Nondeterministic algebraic specifications and nonconfluent
term rewriting. Journal of Logic Programming, 12:237–255, 1992.

[JK86] J.-P. Jouannaud and H. Kirchner. Completion on a set of rules modulo a set
of equations. SIAM J. computing, 15(1):1155–1194, 1986.

[Kap86a] S. Kaplan. Rewriting with a nondeterministic choice operator: from algebra
to proofs. In Proc. 1986 European Symp. on Programming, volume 213 of
Lecture Notes in Computer Science, pages 351–374. Springer, 1986.

[Kap86b] S. Kaplan. Simplifying conditional term rewriting systems: Unification, ter-
mination and confluence. Technical Report 316, Laboratoire de Recherche
en Informatique, Universite de Paris-Sud, Orsay, France, 1986.

[Kap88] S. Kaplan. Rewriting with a nondeterministic choice operator. J. of Theo-

retical Computer Science, 56:37–57, 1988.
[LA93] J. Levy and J. Agust́ı. Bi-rewriting, a term rewriting technique for mono-

tonic order relations. In RTA’93, volume 690 of Lecture Notes in Computer
Science, pages 17–31, Montreal, Canada, 1993. Springer-Verlag.

[Lev93] J. Levy. Second-order bi-rewriting systems. Technical report, Institut d’In-
vestigació en Intel·ligència Artificial, CSIC, 1993.

[Mes90] J. Meseguer. Rewriting as a unified model of concurrency. In Concur’90,
Lecture Notes in Computer Science, Amsterdam, The Netherlands, 1990.
Springer-Verlag.

[Mes92] J. Meseguer. Conditional rewriting logic as a unified model of concurrency.
J. of Theoretical Computer Science, 96:73–155, 1992.

[Mos89] P. D. Mosses. Unified algebras and institutions. In Principles of Program-

ming Languages Conference, pages 304–312. ACM Press, 1989.
[Nip86] T. Nipkow. Nondeterministic data types: Models and implementations. Acta

Informatica, 22:629–661, 1986.
[PS81] G. E. Peterson and M. E. Stickel. Complete sets of reductions for some equa-

tional theories. Journal of the ACM, 28(2):233–264, 1981.

