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This paper explains the inference and reection capabilities of NOOS, an object-centered

representation language designed to integrate problem solving and learning. Problem solving

and learning in NOOS are modelled by means of concepts, tasks, methods and metalevels.

Metalevels allow NOOS to reason own problem solving. Using metalevels, NOOS

can reason about preferences in order to make decisions about sets of alternatives present

in domain knowledge and problem solving knowledge. Reection in NOOS is provided by

inference processes that involve metalevels. Basic reective capabilities include reasoning

about alternative methods to solve a task, reasoning about what is known by the system

itself, and reasoning about the existence of solutions. A formal model of NOOS inference

using Descriptive Dynamic Logic is also presented.

To appear in (1996)

In the development of knowledge-based systems (KBS) an important issue is the degree to which

di�erent knowledge components can be described, reused and combined. The knowledge-level

analysis of expert systems and the knowledge modelling frameworks developed for the design

and construction of KBS are techniques for describing and reusing KBS components. These

knowledge modelling frameworks like KADS [20] or components of expertise [17] are based on the

task/method decomposition principle and the analysis of knowledge requirements for methods.

Our goal in developing NOOS is to have a language that supports description, reuse, and dynamic

combination of components resulting from knowledge modelling analysis in a domain. NOOS is

a reective object-centered representation language that represents uniformly domain knowledge,

problem solving methods, and learning methods. This uniform representation is possible because

of the reective capabilities of NOOS. Moreover, reection in NOOS allows a exible and uniform

combination and selection of the di�erent components. Reection is a powerful principle that

allows to organize in a simple and clear way the di�erent types of knowledge involved in KBS

design and implementation. Several forms of metalevel reasoning can be performed in NOOS in

a clear and simple way, for instance implementing a metalevel method that dynamically selects a

domain-speci�c method after analyzing the available information.

The main focus of this paper is to present the reective capabilities of the NOOS language, so

we present �rst some notions about the language and later a formalization. An example of using

NOOS is also presented, but the reader may be interested in other more detailed applications of

NOOS for case-based reasoning (CBR) systems [2], integrating induction and CBR [6], and the

support NOOS gives for knowledge modelling [3].
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2 The NOOS approach

generate-and-test
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2.1 The NOOS Model

2.2 The NOOS Language

domain knowledge
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\owner of a car"

problem solving knowledge

tasks

methods

methods

metalevel knowledge

about

metalevel concepts metalevel relations metalevel tasks metalevel methods

preferences

entity descrip-

tions feature descriptions

The next section introduces the basic capabilities of NOOS language. In section 3 we will

present a formal description of the inference process in NOOS using Descriptive Dynamic Logic

(DDL), a logical framework to describe reective architectures [16]. Section 4 takes a knowledge

modelling analysis of diagnosis tasks and shows how it can be implemented in NOOS. Finally,

section 5 discusses related work and our future work.

Knowledge-based problem solving is characterized by the intensive use of highly domain spe-

ci�c elements of knowledge. The purpose of knowledge modelling approaches is to describe this

knowledge and how it is being used in a particular problem in an implementation independent

way. Di�erent knowledge modelling approaches have proposed di�erent categories of knowledge

elements and di�erent abstractions to describe them.

In this section we will present the reective object-centered language NOOS. First we will

present the knowledge categories of our model in order to show the framework and motivations of

design decisions in the NOOS language. Then we will describe the NOOS language and how the

components of model are mapped to the NOOS language, and �nally we will explain the inference

process in NOOS.

The �rst category in our model is . The domain knowledge category speci�es a

set of and a set of among them relevants for a given application. For instance,

in the application of diagnosing car malfunctions, domain knowledge will be speci�ed as a set of

concepts capturing knowledge about individuals like cars or abstractions like malfunctions. An

example of a relation from cars to persons is the .

Another category in our model is . Problems to be solved in a do-

main are modelled as . For instance, following the previous example, the main task in the

cars domain is to diagnose car malfunctions. In our approach model the ways to solve

problems. Methods can be elementary or can be decomposed in subtasks. These new (sub)tasks

can be achieved by corresponding methods in the same way. For a given task there may be multi-

ple alternative methods (alternative ways to solve the task). For instance, a

method is decomposed into the and subtasks and there are several possible meth-

ods to achieve each subtask (see section 4). This recursive decomposition of task into subtasks

by means of a method is called the task/method decomposition. A relation can be described

extensionally or intensionally. An intensional description of a relation can be modelled by means

of . For instance, the age of a given person could be unknown but it is known that will

be exactly the di�erence in years between the current date and the person's birthday.

The last category in our model is . Metalevel (or reective) knowledge

is knowledge domain knowledge and problem solving knowledge. More speci�cally, met-

alevel knowledge can have models about concepts, relations, tasks, and methods. These models

are formed by , , , and .

Moreover, metalevel knowledge also includes to model decision making about sets of

alternatives present in domain knowledge and problem solving knowledge. For instance, metalevel

knowledge models criteria for preferring some methods over other methods for a task in a speci�c

situation. An example of metalevel task is to choose a method for a given task. An example of

metalevel method is one that {for a speci�c situation{ searches possible methods for a task, selects

some methods as suitable alternatives, and �nally sorts them using a set of preferences.

NOOS is an object-centered representation language where the basic elements are

embodying a collection of characterizing that entity. All the components
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entity descriptions

constituent name body name

body

Feature descriptions

constituent

entity descriptions

car

Ibiza-car Peters-Car

car-model full

car

car Ibiza-car Peters-car

Peters-car

owner

gas-gauge-reading empty-level? price car

model Ibiza-car owner complaint gas-level-in-tank

Peters-car

complaint Peters-car does-not-start

(define Car

(owner (define (person)))

(gas-level-in-tank level)

(gas-gauge-reading (>> gas-level-in-tank))

((empty-level? (define (Identity?)

(item1 empty)

(item2 (>> gas-level-in-tank)))))

(model car-model)

(price (>> price model)))

(define (Car Ibiza-car)

(model Ibiza))

(define (Ibiza-Car Peters-car)

(owner Peter)

(complaint does-not-start)

(gas-level-in-tank full))

Figure 1: De�nition of the entity and de�nition by re�nement of two

new entities: and . For brevity, the de�nitions of some

entities like or are not included. Syntax is summarized in

�gure 2

of the NOOS model are mapped into the language as entity or feature descriptions. This means

that with a small set of computational elements we capture all the elements of the model.

The basic elements of the NOOS language are . Entity descriptions have

three parts: , and . The entity is a symbol that denotes the entity;

the name is optional and when it is not given an anonymous entity is described. The is a set

of feature descriptions related to the entity. are pairs of feature names and

feature values. The symbol, that is optional, indicates that the entity is a re�nement

of the entity denoted by this constituent symbol. Concepts, as de�ned by the NOOS model,

are mapped to the NOOS language as . For example, concepts like cars or

malfunctions are mapped to entity descriptions (see Figure 1).

The notion of re�nement is introduced as a methodology to de�ne entity descriptions in the

NOOS language. The main idea behind the re�nement is that several concepts of the model

share many features and tasks. Usually, some concepts are specializations of other more general

concepts. A new entity description de�ned as a re�nement of another entity description includes

all the feature descriptions de�ned in the constituent body not rede�ned in the new body. For

instance, the entity can be de�ned with the common knowledge about cars (�gure 1 shows this

example and �gure 2 describes the NOOS syntax). Then speci�c models of cars can be de�ned

by re�nements of car, and including speci�c information of each car by re�nement from models of

cars. All the features de�ned in and not rede�ned in are included in

entity description.

Relations are mapped to feature descriptions. Speci�cally, the body of a given entity de-

scription de�nes the set of features related to this entity. For instance, in Figure 1 ,

, and features are de�ned in the entity description,

feature is de�ned in and �nally , and

features are de�ned in description.

There are three ways to de�ne feature values in an entity description. A �rst way to de�ne

a feature value is to refer to other entities by their name. For instance, a feature value for the

feature in can be de�ned as a reference to entity (see

Figure 1). A feature can refer to an entity or to a set of entities. Thus, features are interpreted
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2.2.1 Methods

>> ?>> !>> *>>

owner car

person

Identity?

item1 item2 identity?

empty-level? car empty-level?

true gas-level-in-tank empty false identity?

eq

gas-gauge-reading Car gas-level-in-tank

entity-name

constituent entity-name

constituent

constituent entity-name

feature-name entity-ref

feature-name

feature-name

entity-name

feature-name entity-name

query-methods

reference

entity-description ::= named-description

named-ref-description

metalevel-description

named-description ::= feature-description*

named-ref-description ::= feature-description*

anonymous-description ::= feature-description*

metalevel-description ::= +

feature-description*

feature-description ::= +

query-description

entity-ref

entity-ref ::= anonymous-description

query-description ::= op * [ ]

op ::=

Figure 2: This �gure shows a subset of NOOS syntax used for the de�nition of entity descriptions

in BNF notation. Remark that in feature-description double parenthesis are used to de�ne a

method. Bold words are prede�ned terminal symbols that are part of the language, italic words

are used-de�ned identi�ers and ::=, , + and * are part of the BNF formalism.

as functions over sets of entities. The second way to de�ne a feature value is describing a new

entity-description. For instance, the feature value of can be de�ned as a re�nement of

the entity . (see Figure 1). The third way to de�ne feature values is by means of method

descriptions.

Methods are also mapped to the language as entity descriptions. The subtasks of a method are

mapped to the language as features. Thus, the set of features de�ned in a method description is

interpreted as the subtask decomposition of that method. This subtask decomposition of methods

allows to de�ne (sub)methods for each subtask in a uniform way. The NOOS language provides a

set of built-in methods. New methods can be de�ned from other existing methods by re�nement.

New methods can also be constructed as combinations of existing methods.

Examples of NOOS built-in methods are arithmetic operations, set operations, logic operations,

operations for comparing entities and other basic constructs such as conditional or sequencing.

For each built-in method a set of built-in features is de�ned. For instance, built-in

method is a comparison method that expects the �rst element to compare as the feature value of

its feature and the second element in . In Figure 1 the built-in method

is used to describe the feature value of . The feature value will

be when is and otherwise ( method works like

predicate of Lisp).

An important subset of built-in methods are . These methods establish a corre-

spondence between two feature values of some entities. For instance, in our car diagnosis domain

the feature value of is de�ned by a to the
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2.2.2 Metalevels

path

Metalevels entity descriptions

(define (conditional Causal-Explanation)

(cause )

(effect )

(condition (>> cause))

(result (>> effect)))

(define (Causal-explanation C1)

(car)

((cause (define (Identity?)

(item1 low-voltage)

(item2 (>> battery-voltage car)))))

(effect low-battery-malfunction))

(define (decomposition-method Generate&Test)

((generate generate-method-1))

((test test-method-2)))

causal-explanation C1

causal-explanation Generate&Test

decomposition-method

gas-gauge-reading

gas-level-in-tank

(>> feature of entity) feature entity

(>> feature)

car Ibiza-car

Peters-car

price car price model car

(>> price model) price car

causal-explanation conditional

condition result conditional

effect cause

causal-explanation C1

C1 low-battery-malfunction

battery-voltage car low-voltage

decomposition-method Decomposition-method

generate&test generate-method-1 test-method-2

Figure 3: De�nition of entity methods , as a re�ne-

ment of , and method as a re�nement of

.

feature value. The meaning of this reference is that feature value is con-

strained to be the same as feature value (see Figure 1).

NOOS language provides a special syntax for the description of references by means of query-

methods. There are two ways to de�ne references: absolute references and relative references. An

absolute reference is where and stand for the name

of some feature and the name of an entity. A relative reference is a reference where the entity

reference is omitted , in this case the entity implicitly referred to is the root entity

in the lexical scope of the de�nition. For instance, in Figure 1 the roots are , and

.

A reference to another feature value of some entity can be established indirectly by means

of intermediate feature references. This composition of feature references is called . For

instance, the of a given can be established as the of the of this , writing

in the feature of (see Figure 1).

As we have shown methods are de�ned in NOOS language by re�nement. In order to il-

lustrate the de�nition of methods in the NOOS language we will introduce an example: a

method is de�ned as a re�nement of the built-in method

where and features (the built-in features de�ned for ) are de�ned

as a reference to and feature values respectively. Next, concrete causal explana-

tions can be de�ned through re�nements of { e.g. causal explanation in

Figure 3. Causal explanation justi�es the conclusion of having a

when the feature value of a given is equal to .

Another example of de�nition of a method is the de�nition of a generate and test method

for the diagnosis of car malfunctions. This method is de�ned from a built-in method named

. allows the de�nition of a sequential chaining of

subtasks (relative to the writing order) and returns the result value of the last subtask. In Figure 3

method is de�ned using references to and

methods de�ned elsewhere. Section 4 shows a more detailed generate and test method for diagnosis.

in the NOOS model are also mapped to in the NOOS language.
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1

1

referent

similar

(referent)

referent meta Car Car

The expression is reference to the base-level entity that is the referent of the metalevel where it

occurs. In this case, of of refers to .

meta

Car

empty-level?

diagnosis

select-car-explanations

diagnosis

select-car-explanations

diagnosis

generate-and-test

generate

test

(define (Metalevel (meta of Car))

; these are methods for empty-level? features of car

(empty-level? gas-gauge-reading-explanation

gas-level-in-tank-explanation)

; this is a metalevel method that computes methods for diagnosis

((diagnosis (define (select-car-explanations)

(current-complaint (>> complaint of (referent)))))) ; see footnote

A metalevel description is just an entity description plus a metalevel relation with a (base-level)

entity (called entity of the metalevel entity). The features de�ned in the body of a

metalevel entity description have a corresponding feature in the base-level with the same name

(and vice versa). Since metalevels are de�ned in the same way that concepts and methods, feature

values of metalevel features can be de�ned by reference to other entities or metalevels, de�ning a

path or de�ning a (metalevel) method.

The de�nition of feature values in metalevels by means of references allows to de�ne directly a

set of alternative methods for a given feature. Moreover, a partial order among this set of methods

can be de�ned. This partial order will be interpreted as a preference ordering over the alternative

methods. This process will be explained in section 2.3. Metalevel feature values can be de�ned

with a path, allowing a metalevel entity to refer to some methods described in another entity. The

last way to de�ne a metalevel feature value is by means of a (metalevel) method. A metalevel

method computes a set of ordered methods for that metalevel feature. This metalevel method

can take into account the information given in the current problem. We have shown elsewhere

that case-based reasoning methods [2] and inheritance [14] can be de�ned as metalevel methods

in NOOS. Another example of metalevel methods given in [3] shows the use of a generate and

test strategy for selecting (from a set of possible hypotheses) causal methods used in previous

problems, according to the knowledge available in the current problem.

The de�nition of metalevel entities is always a re�nement of the entity. For instance,

the following example de�nes a metalevel entity that has as referent the entity and has two

feature descriptions.

In the metalevel feature a set of two alternative methods are given. In the

metalevel feature a metalevel method that infers a set of alternatives methods is

de�ned. Speci�cally, is a metalevel method that according to the

current complaint information of a car will provide a set of partially ordered explanation methods

for the feature.

Case-based reasoning methods are implemented in NOOS by means of metalevel methods that

retrieve methods for a feature (e.g. diagnosis) from other entities (cases or previously

solved problems). An example of CBR method is de�ning method

as a retrieval method. This method can examine the previous car problems and retrieve those

that have in common with current problem at least the same complaint. Then, it selects the

explanation methods that were successfully used in the task of those cases as the best

possible explanations for the current diagnosis problem [2].

Since metalevels and methods are also de�ned by means of entity descriptions, this uniformity

has two main consequences for the expressive power of NOOS. First, since a metalevel is also an

entity, a metalevel can also have its own metalevel. Thus, virtually in�nite towers of metalevels

are allowed. Second, since methods are entity descriptions with a set of features interpreted as

subtasks, the metalevel feature description of a subtask allows to de�ne multiple methods to

achieve that subtask. In the example below, a metalevel for the method is

de�ned. In the subtask two di�erent methods for generating hypotheses are given. The

subtask also has two methods for testing the generated hypothesis.
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De�nition 1 (Maximal solution)

2.3.1 Metalevel Inference

(>> diagnosis of Peters-car)

<infer-value 33> <infer-value 33>

Peters-car

>> !>> ?>> *>>

true false

(>>

diagnosis of Peters-car)

(define (Metalevel (meta of Generate&Test))

(generate generate-hypothesis-method-1

generate-hypothesis-method-2)

(test test-method-1 test-method-2))

(noos-eval (reify (>> diagnosis of Peters-car)))

query expression engaged

impasse

Given the set of achieved subtasks , that form the

task decomposition of a main task , given the set of partial orders over the alternative

methods for these subtasks, and given the set of methods engaged respectively to

these subtasks, a solution of is if there is no other combination of methods ,

(where at least one ) that achieves a solution for .

Infer-value Known-value Exists-value All-values

op Infer-

value

Known-value

Exists-value

Exists-value

All-values

noos-eval

Inference in NOOS is on demand. Thus, inference starts when a user asks to solve a speci�c task

by means of that engages such a task. When a task is its corresponding

method is evaluated. A method is decomposed into subtasks; when it is evaluated its subtasks are

consequently engaged. Thus, the inference in NOOS can be viewed as a chaining process along

the tree of task/method decompositions. This chaining ends when a task has a constant value. A

task is achieved when its corresponding method is successful, and a method is successful when all

its subtasks are achieved.

A query expression is interpreted in two steps: �rst it is rei�ed as a method and then this

method is evaluated. For instance, the query expression is rei-

�ed into the query-method and then is evaluated, eventu-

ally producing the solution for diagnosis.

When no method is speci�ed for a given task, an occurs and the control of the inference

is passed to the corresponding task at the metalevel. The task at the metalevel has to infer a

partially ordered set of alternative methods for the current task by means of a metalevel method.

This partial order is interpreted as a preference order in the selection of a method for the task that

originated the impasse. At the end of the inference of an achieved overall task, the combination

of all successful methods in its tree of task/method decomposition will be maximal with respect

to the preference orders inferred by the metalevels tasks involved. Formally,

maximal

=

The de�nition just given is indeterministic when the maximal is not unique, and corresponds to

the formalization developed in section 3.5. The interpreter of NOOS uses backtracking to search

for a method combination such that is maximal with respect to the preferences involved.

He have introduced the notion of query-methods in section 2.2.1 . In fact, NOOS provides four

kinds of query-methods: , , and . They correspond

to the de�nition in �gure 2, namely , , and respectively. The semantics of

method corresponds to the examples showed in the previous section: feature value equality.

The rest three query-methods provides a set of basic metalevel inference capabilities about feature

values of entities. The method establishes a feature value equality only when the

feature value is already known (without engaging inference). is a query-method that

determines whether there is any inferrable value for a given feature of an entity. The result of

is if there is at least one method successful in achieving that task, and

otherwise. is a query-method that determines the set of all inferrable values for a given

feature of an entity { the set of results of all methods successful in achieving that task.

In NOOS the process of method evaluation can be rei�ed also in the language. Method

evaluation is rei�ed by means of the method. For instance, the query expression

has a meaning that is equivalent to
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3 Noos Formalization

De�nition 2

De�nition 3

j j J

j ;j j ;j J

j ;j

L

j j ;j

S S

L L

3.1 Descriptive Dynamic Logic

noos-eval method

reify

true false

MLA L; ; S; T

L L

L j j

S

T

S T

RKB

MLA;U;M ;M ;B;M ;M U M

M B

M M

(define (noos-eval)

(method (reify (>> diagnosis of Peters-car))))

(define (noos-eval)

(method (define (Infer-value)

(feature 'diagnosis)

(domain Peters-car))))

Noos-eval

Known-eval Exists-eval All-eval Noos-eval method evaluation process

Known-eval

Exists-eval

All-eval

A Multi-Language Logical Architecture is a 4-tuple , where:

A Reective Knowledge-Based System RKB for a given MLA is a 7-tuple

where: is a set of unit identi�ers. assigns a language to

each unit identi�er. assigns a set of inference rules to each unit identi�er. is a mapping

that assigns a set of directed bridge rules to pairs of di�erent units in accordance with the allowed

topologies in RLA. assigns a concrete signature for the language of each unit identi�er.

assigns a set of formulas (initial local theory) to each unit identi�er.

In turn, this query expression is rei�ed into method with a feature whose

value is the query-method corresponding to the rei�cation of the original query expression

The operator constructs a query-method from a query expression. So the former ex-

pression is equivalent to

In order to provide a set of metalevel inference capabilities about method evaluation, four

evaluation-methods are de�ned corresponding to the four existing query-methods: ,

, and . performs the pre-

viously explained. The rest of three evaluation-methods are built on top of this basic method

evaluation process. succeeds only when the result of the method evaluation is already

known, and returns that value. determines whether it is possible to evaluate success-

fully the method; the result will be if it is possible and otherwise. Finally,

returns the set of results of all the successful evaluations of the method.

We will describe formally the inference in our system using Descriptive Dynamic Logic [16]. De-

scriptive Dynamic Logic (DDL) is a propositional dynamic logic (PDL) [9] to describe architectures

to build reective knowledge-based systems with complex reasoning patterns developed also at our

Institute.

In general, a reective architecture allows to build reective knowledge-bases (RKB) as a set of

units with initial local theories in possibly di�erent languages. Each unit is also allowed to have

its own intra-unit deductive system. Moreover, the whole RKB is equipped with an additional set

of inference rules, called bridge rules, to specify the information ow among the di�erent units of

the RKB. For a full description of DDL see [16]. Here we only present some basic de�nitions of

DDL used later:

= ( � )

1. = is a set of logical languages.

2. � = � is a set of (instances of) inference rules between pairs of languages, i.e

� 2 . In particular, when = , � denotes a set of inference rules of

the corresponding language; otherwise it denotes a set of bridge rules between two di�erent

languages.

3. is a �nite set of symbols for unit identi�ers.

4. is the set of possible topologies. Each topology is determined by a set of directed links

between symbols from , i.e is a subset of 2 .

=

( )
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3.2 Noos Unit Languages

De�nition 4

De�nition 5

De�nition 6
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The set of atomic formulas of DDL will be de�ned as the set of \quoted" formulas

from the languages in MLA, indexed by the unit identi�ers in .

The set of atomic programs of DDL is de�ned as the union of intra-unit inference

rules and the inter-unit rules

The DDL semantics, following the PDL semantics, is de�ned relative to a structure

of the form , where is a set of states, a mapping assigning to

each formula the set of states in which is true, and a mapping which assigns

to each program a set of pairs representing transitions between states.

concept languages method languages metalevel languages

�

� = : ( )

�

� �

� = � �

= ( ) : � 2

: � 2

( )

Formally, every NOOS entity is represented as a DDL unit. There are three kinds of unit languages:

, and . Concept languages pertain to units

representing concepts (called concept units). Method languages pertain to units representing

methods (called method units) and are an extension of concept languages. Metalevel languages

pertain to units representing metalevels (called metalevel units) and are also an extension of

concept languages. The signature � of the language of a concept unit is de�ned as

� = � �

where � is a set of symbols of entities, � is a set of symbols of features, and are

empty set, true and false symbols respectively.

The set of terms � of the language of a concept unit is formed according to the following

rules:

� �

�

� : �

� is a pre-order de�ned on : �

The set of formulas � of a given concept unit contains formulas describing the feature values

pertaining to each feature and formulas describing the method pertaining to each feature.

� � � : = �

= # �

The language of a metalevel unit is a concept unit language extended with formulas describing

the set of formulas about features contained in its referent unit. Thus, a metalevel unit contains

formulas describing for each feature in the referent unit the method and value (referent) pertaining

to the feature.

� � : ( ) =

� � : ( ) =

The set of formulas � of a given method unit contains also formulas with feature values

and feature methods like concept units. Moreover, � contains a set of formulas describing the

result of the method evaluation
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De�nition 7

De�nition 8

3.3.1 Intra-Unit Inference Rules

t result m

:
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f ; c ; t c :f

:
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m ; t result m

:

t
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f

:

S

m S

method f
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feature
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f

domain

:

c c

c :f

:

s

c :f

:

s

result m

:

s

s

Every entity is considered equivalent to the singleton set that contains this entity.

A set of entities is considered equivalent to a partially ordered set with the same

entities and no ordering among them.

� : ( ) = �

As we have shown, query-methods are a special kind of methods that provide metalevel capa-

bilities of reasoning about feature values of entities. Query-methods are also represented as DDL

units. Their languages are method languages enriched with formulas containing the feature values

of features in other entities. Thus, the set of formulas � of a given query-method unit is

enriched by

� � � : = �

Another special kind of methods are eval-methods. Their languages are method languages

enriched with formulas containing the evaluation results of other methods.

� � : ( ) =

There are two notational equivalences that will simplify the de�nition of the NOOS inference rules:

Only methods and metalevel units have intra-unit inference rules. Inference rules in metalevel

units select one method from a set of alternative methods; latter reection rules will reect this

selected method to its referent unit. The inference rule for method selection is:

=

=

( ) =

Inference rules in methods code the built-in de�nition of the evaluation of the method. There is

one inference rule for each type of built-in method provided by NOOS. For instance, the inference

rule for an add-method is de�ned as

=

1 =

2 =

\ = + "

( ) =

where a new formula ( ) = is added with the result of the sum of the feature values given

in 1 and 2.

A more interesting inference rule is the inference rule for query-methods that allows to reason

about feature values of other units. The inference rule for a query-method is de�ned as

=

=

=

=

=

( ) =

where is a partial order over the new resulting set that translate the existing order in

this way:
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m
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result m
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t

result m

:
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= ( ) ( )

and represents the closure of relation .

Another important inference rule is the rule for eval-methods that allows to reason about

method evaluations. The inference rule for an Eval-method is de�ned as

=

=

( ) =

( ) =

( ) =

where is a partial order de�ned as in the previous query-method rule.

There are four kinds of inter-unit inference rules: , ,

, and . specify the representation that a metalevel unit has

about its corresponding base-level unit. specify the changes that a metalevel unit

may perform upon its corresponding base-level unit. add to an unit the result

of the evaluation of one of its methods. Finally, specify how formulas may be

transported from a unit to another one.

Rei�cation rules add to the metalevel unit the set formulas about the feature values

known in the unit

=

=

( ) =

Reection rules add to the base-level unit a formula about the feature method selected

by the metalevel unit

=

( ) =

= #

Reduction rules add to an unit the formula for feature with the result of the evaluation

of one method unit .

=

( ) =

=

Translation rules add from an unit to a query-method unit the formula for the

feature (section 3.5 illustrates their use in query-method evaluation).

=

=

=

Translation rules add from a method unit to a method unit a formula with the

evaluation result of

=

( ) =

( ) =
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3.5 Programs
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The concatenation of programs is expressed by `;' in PDL syntax. ` ?' denotes the program that evaluates

whether a given formula is true. and [ ] are interpreted as the usual modal operators.
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The set of possible topologies in NOOS is formed by three kinds of relations among units:

, and . The set of reference relations of an

entity with other entities is determined by the set of formulas = contained in . The

set of feature method relations of an entity with other method entities is determined by

the set of formulas = # contained in . Metalevel relations are by explicit relations in

NOOS programs. Metalevel relations are exclusive relations: one unit can be the metalevel of only

another unit (called ), one unit can only have one metalevel unit, and cycles are forbidden.

Thus, a metalevel entity can be the referent of another (meta)metalevel entity.

The set � of programs for a unit is de�ned as the set of query programs of the features

de�ned in � :

� =

where is de�ned as follows

= ( ?); ( = # )?; ;

The query program for a feature of unit is de�ned as the sequential concatenation

of three programs: i) the metalevel inference program , ii) the evaluation program of the

method , and iii) the inference rule that adds a new formula with the result of the method

evaluation. The indeterministic union ? expresses the possibility to skip the metalevel

inference step when there is a method de�ned in the unit .

The metalevel inference program starts with a rei�cation inference rule , then engages

the query program for a feature at the metalevel unit , selects one of the methods obtained

in the previous step ( ), and reects down this selected method to the referent unit ( ).

= ; ; ;

Evaluations of methods in NOOS are also formalized as DDL programs:

= ; ; ;

The evaluation program of a method is composed by the sequence of query programs

to their subtasks ( ) followed by the program of the intra-unit inference rule of (that

combines the partial results of subtasks into a �nal result). For instance, the evaluation program

of an add method is the sequence of query programs to compute the operands and the

intra-unit rule that combines them.

= ; ;

Query-methods have also their own evaluation programs. The evaluation program of a query-

method is the rei�cation of inference in NOOS. A query-method involves the subtask

(that computes the feature name of the query), the subtask (that computes the entity

or set of entities to which the query is addressed), and �nally that query is performed to all

entities . We use as a shorthand of . The �rst query-method is :

= ; ; ( ; )
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where

= (( = ) ( = ))?; ; ; ; ;

The evaluation program of an method �rst engages the computation of the

name of a feature ( ), next computes the entity or entities to which the query is

addressed ( ), and �nally the query is performed to all entities ( ) and the results

are combined by .

The evaluation program of a method is analogous to the previous evalu-

ation program except that no inference is engaged:

= ; ; ( ; )

where

= (( = ) ( = ))?; ; ;

Notice that the program is composed only by translation rules. Thus, the evaluation of

methods will be completed only when all feature values have been already inferred.

The evaluation program of an method checks whether any solution to a

query exists, and returns a boolean accordingly:

= if ? then else

where and are just intra-unit inference rules assigning and respectively.

Finally, evaluation program of method determines the set of all inferrable values:

= ; ; ( ; )

and

= (( = ) ( = ))?; ( ; ) ; ; ( ; )

where represents the closure of program { that is, this program will lead to a state in

which no di�erent state is reachable by another application of program . Speci�cally, a closure

( ; ) gathers all possible values of query program .

Query methods deal with the methods of a speci�c task and determine which of the 4 kinds

of inference is engaged by that task. In order to deal with a speci�c method entity, NOOS uses 4

kinds of eval-methods.

The evaluation program of an eval-method involves the subtask that engages in

the computation of the methods to be evaluated. Next, the evaluation programs of these methods

are performed. The �rst eval-method is :

= ; ( ; )

where

= ( = )?; ; ; ; ;

The evaluation program of an eval-method �rst engages the computation of the methods

to be evaluated ( ), next performs the evaluation programs of these methods ( ), and

�nally the results are combined ( ).
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4 An example for diagnosis tasks
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Figure 4: General scheme for diagnosis task.

The evaluation program of a method is analogous to the previous evaluation

program except that no inference is engaged:

= ; ( ; )

where

= ( = )?; ; ;

The evaluation program of an method checks whether any solution to evaluation

exists, and returns a boolean accordingly:

= if ? then else

Finally, the evaluation program of a method infers all the possible values:

= ; ( ; )

where

= ( = )?; ( ; ) ; ; ( ; )

The purpose of this section is to show the NOOS computational support using reection to knowl-

edge modelling. We will use as example the knowledge modelling analysis of diagnosis tasks

performed by R. Benjamins [7]. The original analysis was intended for the knowledge modelling

framework KADS [19] developed as a methodology for knowledge acquisition.

Diagnosis task can be decomposed in three general subtasks: ,

and (The general scheme for diagnosis task is showed in

Figure 4).

The �rst task may identify the complaint using one of several alternative

methods (see �gure 5). The easiest method is directly asking the user, but classi�cation methods

or comparison methods could also be used.

The next two subtasks of diagnosis are and .

As shown in �gure 5, there are several alternative methods for these tasks. Essentially,

these methods are di�erent because they use knowledge of di�erent kinds of models we may

have of a system, like behavior models, associations models and causal dependency mod-

els. For instance, in order to achieve the task two di�erent meth-

ods { namely and
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prediction-based-filtering

choose-diagnosis-method

choose-diagnosis-method

choose-diagnosis-method model-of-method

model-of-method

model-of-method method

principle

requirements

problem

Figure 5: A browser of partial task/method decomposition for general diagnosis method. Tasks

are painted with thin boxes and methods are painted with thick boxes

{ can be used (see Fig 5). The �rst of them requires a device-model of the domain

while method requires a domain with empirical associa-

tions. method decomposes successively the generate-

hypothesis task in three new subtasks: , and

. Notice that multiple alternative methods to perform a task can

be de�ned, each method is a NOOS entity that de�nes its speci�c subtasks and each of those

subtasks may also have successively multiple alternative methods.

Another kind of knowledge that can be useful is that which Benjamins [7] called the suitability

criteria: \A suitability criterion represents the applicability of a method. It is a requirement

reecting features of a method, that are relevant for determining the method appropriateness".

This is a kind of strategic knowledge that can be represented at the metalevel in the NOOS

language. A metalevel method can be used in order to infer which of the alternative methods for

a given task is more appropriate to a speci�c problem description, based on knowledge about the

method suitabilities and the particular information available at a given problem.

In the present example we will design a metalevel method for diagnosis task that chooses among

the di�erent alternative methods available for diagnosis: . First of all,

metalevel method has to have some knowledge the diagnosis

methods. In order to represent this, will work upon

entities. A holds the relevant information to characterize a method (i.e. is a

the method). Speci�cally, a holds a method in the feature

and in other features holds information about the on which this method is based

(e.g. model-based or empirical), and the that the method has upon the knowl-

edge it needs to have available in order to be able to achieve a solutions. Moreover, since the

decisions will depend upon the speci�c problem to be solved, a feature is present in the
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Exists-value

(define (model-of-method MBR-Method-Model)

(problem )

(method (define (model-based-hypothesis-generation)

(problem (>> problem))))

(principle model-based-reasoning)

(requirements (or (?>> trace-model problem)

(?>> causal-model problem)

(?>> prediction-model problem))))

(define (model-of-method Empirical-Method-Model)

(problem )

(method (define (empirical-hypothesis-generation)

(problem (>> problem))))

(principle empirical-association)

(requirements (?>> associate-model problem)))

model-of-method

model-based-hypothesis-generation

empirical-hypothesis-generation

?>> requirements

choose-diagnosis-method

Subsumption-Preference sources

pattern

model-of-method principle model-based-reasoning method-models

mbr-method-model empirical-method-model

preferred-model reify

mbr-method-model condition choose-diagnosis-method

requirements preferred-model requirements mbr-method-model

requirements

empirical-method-model result method

preferred-model

choose-diagnosis-method diagnosis

diagnosis-meta

choose-diagnosis-method diagnosis

diagnosis-problem diagnosis-meta

diagnosis-problem

Figure 6: Models of model-based reasoning (MBR) and empirical methods.

entity.

Figure 6 shows the models of methods and

. These two methods are the key to perform a diagnosis

based either on device-models or on empirical association. Both methods generate hypotheses of

malfunctions. Their suitability depends on being able to determine whether or not the models

they require are present in a speci�c problem. To check whether these models are already present

or can be inferred, the query-method ` ' is used in the feature of

the models.

Metalevel method can be now de�ned manipulating these models

of methods, as shown in Figure 7. First, a preference of model-based reasoning upon the rest of

more empirical methods is set, since model-based diagnosis tends to be more reliable than that

based on empirical methods.

Preference method sets a preference for those values in

that satisfy a over those that do not satisfy it. In this case, the pattern is satis�ed

by s whose is . As result,

feature of holds a poset with being preferred to .

In task the operator lifts this poset to the metalevel of this same

task. The operational semantics of the reection cycle (section 3.5) will reect down from the

metalevel one of the most preferred models, in this case there is one most preferred, namely

. The task of checks whether the

of hold. In case these hold,

will be the preferred model. In case these do not hold, the system backtracks the

last decision to reect down the most preferred item and reects down the next preferred { which

would be . Finally, the task selects the of the model of

method that is the .

Now can be de�ned as the metalevel method for the

task, as shown in �gure 8. First, a metalevel is de�ned in which

is the metalevel method for the task. Next, a metalevel

of is de�ned as re�nement of . Finally, any speci�c problem

can be de�ned as a re�nement of .
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Choose-Diagnosis-Method

Figure 7: The de�nition of a method that selects the diagnosis method most suitable to a given

problem.

Figure 8: is installed as a metalevel method for the diagnosis task.

17

(define (conditional-method Choose-Diagnosis-Method)

(problem )

((method-models (define (Subsumption-Preference)

(pattern (define (model-of-method)

(principle model-based-reasoning)))

(sources (define (mbr-method-model)

(problem (>> problem)))

(define (empirical-method-model)

(problem (>> problem)))))))

((preferred-model (reify of (>> method-models))))

(condition (>> requirements preferred-model))

(result (>> method preferred-model)))

(define (meta Diagnosis-Meta)

((diagnosis (define (choose-diagnosis-method)

(problem (referent)))))

(define Diagnosis-Problem)

(define (diagnosis-meta (Meta of Diagnosis-Problem))

(define (diagnosis-problem Problem-13)

(complaint does-not-start)

)
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Metalevel architectures in AI systems have been used for a wide range of purposes: strategic

reasoning [8] [11], non-monotonic reasoning [18], and modelling expert systems [1]. Precedents on

using reection for case-based reasoning are [10] and [15]. Our work on architectures is related to

cognitive architectures that integrate learning with problem solving like SOAR [13], THEO [12].

SOAR learning is based on a single method called while our purpose in NOOS has been to

integrate several learning methods within a problem solving framework. THEO integrates several

learning methods but provides more restricted metalevel capabilities than NOOS { the metalevel

methods allowed are prede�ned and ranked by a total order. Related work on knowledge-level

modelling of AI systems includes the COMMET (or components of expertise) framework [17], and

the KADS methodology [1]. KADS has reective framework, called \knowledge-level reection"

that uses the KADS model to specify the system self-model of structure and process, very much

like our model of entities, tasks, and methods.

The design of NOOS was guided by the goal of following knowledge modelling analysis in

KBS construction and the integration of learning methods in the same framework [3]. We have

performed a knowledge modelling analysis of case-based reasoning and learning [5] and we have

used NOOS to implement CHROMA [6], a system for recommending a plan for the puri�cation of

proteins from tissues and cultures. CHROMA learns from experience using two learning methods:

CBR learning and induction. The reective capabilities of NOOS allow CHROMA to analyze

and decompose problem solving and learning methods in a uniform way, and also to combine

them in a simple and e�cient way. SPIN is another system being developed using NOOS at our

Institute. SPIN is a sponge identi�cation system for a class of marine sponge species (the family

of ). SPIN currently integrates a bottom-up induction method, a top-down induction

method, and an CBR method based on an entropy measure.

We have shown in this paper the role of preferences in section 2.3 and in the DDL formalization.

However, complex reasoning about preferences has not been explained. In particular, NOOS

supports operations for combining multiple preferences, constructors of preferences and higher

order preferences [4].

The design decisions that have shaped NOOS arise from one basic intuition: reection is clean

and powerful mechanism to represent di�erent types of knowledge in separate layers and then

de�ne the relationship among them. Previously, several AI systems developed at our Institute,

MILORD [8] and BOLERO [11] used the distinction between metalevel and base-level embody

the di�erence between domain reasoning and strategic reasoning. The capabilities of NOOS allow

us �rst to analyze a task domain, describing its structure using knowledge modelling, and then

construct an appropriate architecture for problem solving and learning.

The research reported on this paper has been developed at the IIIA inside the ANALOG Project

funded by Spanish CICYT grant 122/93, the European TMR project (PL93-0186 ) and with

a CSIC fellowship for the �rst author.
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