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Abstract.
The approach of in this paper tries to model the scenario of how an agent with

poor domain experience could improve its problem solving behavior. In contrast to
other approaches, we do not permit that agents exchange domain knowledge (neither
cases nor domain theory). The agent with poor experience takes benefit of the problem
solving behavior of other agents to improve its performance. Thus, it requests other
agents for solving known problems and then induces one domain theory per requested
agent. Finally, the agent achieves a higher accuracy in solving problems by his own
using the induced domain theories.

1 Introduction

A multi-agent system (MAS) is composed of a collection of agents holding a set of properties
[7] and also they are able to both coordinate and cooperate in order to achieve a goal. The
introduction of learning capabilities into a MAS allows the improvement of the global prob-
lem solving behavior. Some approaches use inductive learning methods for concept learning
on a MAS. The goal of concept learning is to induce a domain theory compatible with all
positive and negative examples. Therefore, the goal of concept learning in MAS is to build an
integrated domain theory compatible with the positive and negative examples of all agents.
For instance, Davies and Edwards [4] propose an extension of the Version Space [8] method
for concept learning in MAS. The goal is to integrate the version spaces of each agent in
order to build a domain theory consistent with all the local domain knowledge. A similar idea
is introduced by Brazdil and Torgo [3]. Here the authors consider that each agent is able to
induce a domain theory and then all the individual domain theories are transferred to one of
the agents who integrates them. In both approaches [4, 3], the integrated theory can be used
by any of the agents belonging to the system to independently solving new problems. Notice
that agents have to share domain information to build the integrated theory.

In our paper we propose that an agent can improve his accuracy by inducing a domain
theory from the problem solving behavior of the other agents. Moreover, we do not permit
the exchange of information among agents but only solutions of cases. Thus, one agent ask
the others for solving problems and induces a domain theory taking into account only the
descriptions of the problems solved correctly.



A different vision of the cooperation among several entities is that ofensemble learning.
An ensemble is composed of several base classifiers (that use inductive learning methods),
being each one of them capable of completely solving a problem from its own experience.
Because the classifiers can provide different solutions for the same problem, the key issue
of ensemble learning is how to aggregate different solutions proposed by different classi-
fiers. Prodomidis et al. [13] distinguish four ways of performing such aggregation: voting,
weighted voting, arbitrating, and combining. Through voting and weighted voting, the so-
lution to a problem is proposed by the majority of base classifiers. Instead, arbitrating and
combining perform a sort of meta-learning by learning either which classifiers are most pre-
ferred or combining the solutions respectively. Both, an arbiter and a combiner are trained on
the predictions done by a particular set of classifiers.

Plaza and Ontãnón [11] define acommiteeas a set of agents, each one having his own
experience and capable of completely solving new problems. Agents in a commitee can solve
problems but they can also collaborate with others in order to improve their accuracy. The
difference between this approach and the most common approaches to MAS learning is that
all the agents in the system are capable of completely solving problems.

The approach introduced in this paper tries to model the scenario of how an agent be-
longing to a commitee could improve its problem solving behaviour. As in [11], we assume
that agents of a commitee hold the following properties: 1) they are cooperative, i.e. they
always will try to solve the problems; 2) the experience (case base) of each agent is different;
3) each agent is capable of completely solving a problem. Commonly, the improvement of
the domain theory is done by acquiring new problems, but in our scenario the agents do not
exchange neither cases (as in [10]) nor domain theory(as in [3, 4]). Instead, an agent asks
to the others for the classification of some cases. Then from the proposed solutions, the first
agent is able to induce a new domain theory that will be used in the future for solving new
problems by his own.

On the other hand, when an agent has a little case base (i.e. poor experience), the domain
theory resulting from the induction on these cases could also be poor. As a consequence, given
a new problem, this agent either could not classify it because the induced domain theory is
too specific, or the problem could have several solutions because the induced domain theory
is too general. In both cases, the accuracy of the agent should not be satisfactory. With the
approach we propose, that agent induces a domain theory from the problem solving behavior
of each other agent. Thus, the accuracy of that agent is improved thanks to the aggregation of
the solutions proposed by each domain theory.

In the next sections we explain in detail the approach. Section 2 describes the MAS sce-
nario. Section 3 describes some experiments and discuss the results of them. Finally the paper
closes with the conclusions and future work.

2 Description of the scenario

Let us suppose that an agent has not enough experience in problem solving, i.e., its case
base contains few cases. The domain theory that could be induced from this case base is also
poor. Therefore, the goal of this agent should be to acquire more cases to induce a better
domain theory. Because we assume that this agent cannot exchange domain knowledge with
other agents, the only possible situation is that one agent asks other agents to solve problems.
Eventually, the agent could send to the requested agents only part of the problem description.
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Figure 1:Acquisition and learning phases.

The process we propose has three phases:acquisition phase, learning phase,andproblem
solving phase. Each agentAGi owns a set of casesEi. During the acquisition phase an agent
with poor experience (sayAG1) sends to the other agents each case inE1 and builds one
problem solving behavior table for each requested agent. Then, during the learning phase,
these tables are used byAG1 to build a domain theory (DTi) table for each agentAGi. These
tables contain, for each solution classclassk, a general description (commonly a disjunction
of descriptionsdij) with a certain degree of confidencecdk. In the following we will explain
these phases in detail.

Let M be a multi-agent system composed ofn agents. Each agentAGi has his own
experienceEi. This experience is composed of a set of problems (cases) that the agent has
solved in the past. A caseci is a pair(pi, classk) wherepi is the description of the problem
andclassk is the correct solution class where it belongs. Let us suppose now thatAG1 is
the agent owning a small case base, so this agent should need to acquire more experience
about the domain in order to induce a good domain theory. Therefore,AG1 can initiate the
acquisition phase.

During the acquisition phase,AG1 asks the other agentsAG2...AGn to solve all the cases
ci ∈ E1. These agents solve the problems using their own problem solving method and case
base and, for each problempi, each agentAGi proposes a solution classclassj. Notice that
different agents can propose different solution classes according to their experience. Then,
AG1 compares the solution proposed byAGi (classj) and the correct solution class (classk)
and builds theproblem solving behaviortable (see Fig. 1). The problem solving behavior
table of agentAGi contains which problemspj have been correctly solved (C in Fig. 1)
and those incorrectly solved (I in Fig. 1). At the end of the acquisition phase,AG1 has a
problem solving behavior table for each agentAGi. Each one of these tables contains, for
each solution class, the problems of that solution class thatAGi has correctly solved and
those that has incorrectly solved.

During thelearning phase, for each agentAGi, AG1 uses the problem solving behavior
table of that agent to induce a domain theory (DTi). For each agentAGi and each solution
classclassk, AG1 uses an inductive learning method to build a general description for that



class. This method takes as examples the problems that the agentAGi has correctly solved for
classk, and as negative examples the remaining ones (i.e. the problems inclassk incorrectly
solved and the problems belonging to the other classes). Moreover, the descriptions induced
by AG1 per class and agent are assigned a confidence degreecdk (see Fig. 1). Given a class
classk and an agentAGi, the confidence degree thatAG1 assigns to the descriptions induced
for classk is computed as follows:

cdk =
card(CAGi

)

card(Totalik)

wherecard(CAGi
) is the number of problems inclassk thatAGi has correctly solved; and

card(Totalik) is the number of cases thatAGi has (correctly or incorrectly) classified as
belonging toclassk. Thus, when an agentAGi correctly solves most problems of a solution
class, the confidence degree thatAG1 has inAGi for that class is high. Conversely, when the
agentAGi solves incorrectly most problems of a solution class the confidence degree for this
class is low.

Because the domain theoryDT1 has been induced from few cases, the descriptions of the
solution classes could not be accurate enough. For this reason, a new problem could satisfy
descriptions of more than one solution class, i.e. it could be classified as belonging to several
solution classes. As we explain below, the domain theoriesDTi allows the use, during the
problem solving phase, of an aggregation method that avoids multiple classifications of the
new problems.

Notice that the domain theoryDT1 thatAG1 can induce from its own case baseE1 should
not be exactly the same that the domain theories built from the problem solving behavior table
of each agentAGi. Let Ck be the set of cases inE1 belonging to theclassk solution class.
The description for classclassk in DT1 has been built taking as examples the setCk and as
negative examples the setE1 − Ck. Instead, the learning method induced eachDTi taking
as examples only those problems inclassk that have been correctly solved byAGi and as
negative examples the problems incorrectly solved inclassk and the setE1−Ck. This means
thatDTi should contain more specific descriptions thanDT1.

During theproblem solving phase, agentAG1 classifies new problems using the domain
theory tables induced from the problem solving behavior tables of each agent. LetDTi be
the domain theory table built byAG1 from the problem solving behavior of agentAGi; and
Dk = {dkj} the descriptions induced for the solution classclassk from theAGi behavior.
For each new problemp, AG1 searches in the domain theory table of each agent for class
descriptions coveringp. Let Cl = {classi|∃dij ∈ Di such thatdij covers p} be the multi-set
of the classifications ofp according to each domain theoryDTi, thenAG1 has to aggregate
the solutions inCl to find a classification forp. The aggregation method has three steps:

1. All the agents propose the same classification forp, i.e.,Cl = {classk} for all the domain
theories, in such situationAG1 classifiesp as belonging toclassk.

2. Most domain theories classifyp as belonging toclassk, in such situationAG1 classifies
p as belonging toclassk (majority rule).

3. If there is a tie situation among two or more classes, thenAG1 takes into account the
confidence degree of the class descriptions of each domain theory. For each classclassk

in the tie situation,AG1 computes confidence degreeCD(classk) as follows:



CD(classk) =
∑

DTi∈CorrectDT

cdi

whereCorrectDT is the set of domain theories that proposedclassk as the solution forp;
andcdi is the confidence degree of the domain theoryDTi for the solution classclassk.
The winner class ismax{CD(classk)}, i.e.,AG1 classifiesp as belonging to the solution
class with higher confidence degree.

The aggregation method prefers the application of the majority rule before the use of the
confidence degree. The reason is that, in principle, agentAG1 has the same confidence on
all the domain theories. Only when the majority rule produces a tie situation,AG1 takes into
account the confidence degree of each individual class description. In the future we plan to
experiment with other aggregation methods.

The acquisition phase is an expensive process due toAG1 asks to all other agents of
the MAS. Nevertheless, this cost is compensated by the fact that during the problem solving
phase, agentAG1 autonomously solves new problems. In the future we plan to reduce the
number of agents requested byAG1.

3 Experimental Results

To implement the scenario described in the previous section, we need to determine both
learning and problem solving methods used by the agents. In our experiments, we suppose
that 1) all the agents use the LID method [2] for problem solving; and 2) the agent with little
experience uses the INDIE method [1] to induce descriptions of the solution classes. The use
of these methods is not a restriction since each agent could use any problem solving method.
Also, the inductive learning method used to induce domain theory could be any of the usual
methods (e.g. decision trees).

Lazy Induction of Descriptions(LID) is a lazy concept learning method for classification
tasks in case-based reasoning (CBR).LID determines the most relevant attributes of a problem
and searches in the case base for cases sharing these relevant attributes.

INDIE is a heuristic bottom-up inductive learning method that obtains a most specific
generalization satisfied by a set of positive examples. Given a set of training examplesE =
{e1, ..., em} and a set of solution classesC = {class1, ..., classn}, the goal of INDIE is to
obtain a discriminant descriptionDk for each solution classclassk.

3.1 Experiments

We run experiments on both the Car Evaluation and the Large Soybean databases from the
UCI repository (www.ics.uci.edu/∼mlearn/MLRepository.html). Our multiagent system is
composed of six agents, namelyAG1...AG6. We considered thatAG1 is the one with little
experience on the domain. AgentsAG2...AG6 solve problems using the LID method and
agentAG1 uses INDIE to induce a domain theory. In the experiments we compared the
accuracy ofAG1 using the domain theories induced from 1) its own case base; and 2) the
problem solving behavior table of the other agents.

The Car Evaluation database contains 1728 examples representing descriptions of cars
belonging to four solution classes:unacc, acc, goodandv-good. There are not descriptions



Table 1: Experiments on Car Evaluation and Large soybean datasets. ColumnsCard(E1) andCard(Ei) re-
spectively shows the number of cases in the case base ofAG1 and other agents. The two right columns are the
accuracy ofAG1 using both the domain theory fromE1, and the learned domain theory. In parenthesis there is
the percentage of multiple solutions.

Dataset Card(E1) Card(Ei) own domain theory learned domain theory

Car
50
100

301
291

61.86% (15.22 %)
64.64% (16.64 %)

75.61% (0.02%)
78.67% (0.02 %)

Soybean
37
50
100

42
39
29

45.06 % (17.05 %)
54.38 % (15.64 %)
66.51 % (16.53 %)

52.69 % (0.37 %)
61.31 % (0.09 %)
68.43 % (0.05 %)

of cars with attributes having unknown value. The approach has been evaluated using 10-
fold cross-validation, i.e. we randomly extracted 10% of the cases as the test set, while the
rest were randomly distributed among all agents. We performed an experiment withAG1

owning 50 cases and with each agentAGi owning 301 cases. The results (see Table 1) show
that the accuracy achieved byAG1 using the learned domain theory (i.e., that induced from
the problem solving behavior of the other agents) is75.61% whereas the accuracy using
its own domain theory is61.86%. The results also show that with its own domain theory,
AG1 provides multiple solution classes for around15% of the test cases. The percentage of
multiple solutions is almost 0 when using the learned domain theory.

We conducted a second experiment withAG1 having 100 cases and with each agent
having 291 cases. Results are also similar to those of the first experiment: the accuracy ofAG1

using the learned domain theory is higher than using its own domain theory. Moreover, the
percentage of multiple solutions also decreases using the learned domain theory. The analysis
of these results shows that the increase of accuracy is a direct consequence of the decrement
of multiple solutions. As explained before, the domain theory induced from the case base of
AG1 produces a high percentage of multiple solutions due to the overgeneralization of the
induced descriptions. The aggregation of the solutions produced by each individual domain
theory avoids this multiplicity.

In order to confirm the feasibility of the learned domain theory, we performed experiments
with the Large Soybean database, whose characteristics are different to the Car database:
the number of cases is smaller and there is a higher number of solution classes. The Large
Soybean database contains 307 examples that can be classified as belonging to 19 solution
classes. Moreover, the description of some examples have attributes with unknown values.
Due to the small number of examples in this database, the evaluation has been done using
5-fold cross-validation, i.e. we randomly extracted 20% of cases as test set, while the rest
were randomly distributed among the agents. We experimented withAG1 having a case base
closer in size to the case bases of the other agents. In particular, in the first experimentAG1

has 37 cases and eachAGi has 42. In the second experimentAG1 has 50 cases and eachAGi

has 39 cases. Results of both experiments (see Table 1) show also that the accuracy ofAG1

using the learned domain theory is higher than using its own domain theory.
Finally, we conducted a third experiment withAG1 whose case base is much larger than

the other case bases. In particular, we considered thatAG1 has 100 cases and the case base
of the other agents has 29 cases. In this experiment the accuracy using the learned theory
(68.43%) is near the accuracy using its own domain theory (66.51%). Notice that now most
of the multiple solutions of the own theory have been converted to failed classification in the
learned theory.



3.2 Discussion

The results on both domains show that while the case base size ofAG1 is either smaller or
closer to the case base size of the other agents, the accuracy using the learned domain theory
is higher than using the own domain theory. This is consistent with the fact that inductive
learning methods need many examples to induce good domain theories. Notice that accuracy
on Soybean withAG1 having 100 cases (3.5 times plus cases than the other agents) is similar
using both the own domain theory and the learned domain theory. Therefore, our approach is
feasible in situations whereAG1 has little experience. Nevertheless when its case base size is
too small, this can prevent the learning of a domain theory from the other agents due to the
fact thatAG1 has not enough cases to ask.

Most errors made byAG1 using its own domain theory are due to the multiplicity of
answers, i.e., to the agent not being able to determine a unique solution class for a problem.
Instead, with the learned theoryAG1 takes benefit of the aggregation method to achieve a
unique solution for each test case. This is a consequence of theensemble effectthat states
that the resulting error of the combined predictions made by several independent classifiers
is lower than the error of an individual classifier [5].

Because the problem solving method used by the agents could be changed, we also per-
formed experiments considering thatAG1 uses the LID method on its own case base. The
accuracy of LID on the Car database is73% and77% whenAG1 has respectively, 50 and
100 cases. These accuracies are higher than the accuracies obtained from its own domain
theory (and closer to those of the learned theory). This result is consistent with the fact that
case-based reasoning methods perform better than inductive methods with a small case base.
Using LID on the soybean database, the accuracies ofAG1 are53.07%, 58.08% and74.61%
with 37, 50 and 100 cases respectively. Notice that whenAG1 has 100 cases, the accuracy is
higher using LID than using the learned theory. This is becauseAG1 has the most of cases
and, moreover it uses a CBR method.

4 Conclusions and Future Work

In this paper we propose the use of inductive learning techniques to improve the domain
theory of one agent with poor experience on a domain. We assume that all the agents are
able to completely solve problems of a domain and that they do not exchange neither cases
nor domain theory. Our approach has three phases. The first one is the acquisition phase in
which an agent asks to other agents for solving known problems and builds one problem
solving behavior table for each agent. The second phase is the learning phase, in which the
agent induces one domain theory from each problem solving behavior table. Finally, during
the problem solving phase the agent uses the induced domain theories and an aggregation
method to reach a solution for new problems. Notice that this MAS could be easily extended
with other agents building the problem solving behavior table of each new agent and then
inducing domain theory from it.

We run experiments comparing the accuracy of the agent with poor experience using the
domain theory induced from its case base with the accuracy using the learned domain theory.
Results show that our approach is feasible because supports the elimination of multiple so-
lutions (failures) in classifying new problems taking benefit of the ensemble effect thanks to
the aggregation method. This produces an increment of the agent accuracy.



As future work we plan to use different methods to aggregate the individual solutions. In
particular, we could use a criterion based only on the confidence degree of the induced domain
theories. Currently, the aggregation method does not take into account the solution proposed
by the agent with less experience. In the future we could use meta-learning techniques, such
as the combiners and arbiters, to reach the solution for a new problem and also to reduce the
number of requested agents.
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