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Abstract. In the recent past, an increasing number of multiagent sys-
tems (MAS) have been designed and implemented to engineer complex
distributed systems, Several previous works have proposed theories and
architectures to give these systems a formal support. Among them, one
of the most widely used is the BDI agent architecture presented by Rao
and Georgeff. We consider that in order to apply agents in real domains,
it is important for the formal models to incorporate a model to represent
and reason under uncertainty. With that aim we introduce in this paper
a general model for graded BDI agents, and an architecture, based on
multi-context systems, able to model these graded mental attitudes. This
architecture serves as a blueprint to design different kinds of particular
agents. We illustrate the design process by formalising a simple travel
assistant agent,

1 Introduction

In the recent past, an increasing number of multiagent systems {MAS) have
been designed and implemented to enginesr complex distributed systems. Several
previous works have proposed theories and architectures to give these systems a
formal support. Agent theories are essentially specifications of agents’ behaviour
expressed as the properties that agents should have. A formal representation of
the properties helps the designer to reason about the expected behaviour of the
system [25]. Agent architectures represent a middle point between specification
and implementation. They identify the main functions that ultimately determine
the agent’s behaviowr and define the interdependencles that exist among them
[25]. Agent theories based on an intentional stance are among the most common
ones. Intentional systems describe entities whose behaviour can be predicted
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by the method of attributing certain mentalistic attitudes such as knowledge,
belief —information attitudes, desire, intention, obligation, commitment —pro-
attitudes, among others [5]. A well-known intentional system formal approach is
the BDI architecture proposed by Rao and Georgeff [20, 21}. This model is based
on the explicit representation of the agent’s beliefs (B) -—used to represent the
state of the environment, its desires (D} —used to represent the motivations of
the agent, and its intentions (I} —used to represent the goals of the agent. This
architecture has evolved over time and it has been applied in several of the most
significant multiagent applications developed up to now.

Modelling different intentional notions by means of several modalities (B, D,
1} can be very complex if only one logical framework is used. In order to help
in the design of such complex logical systems Giunchiglia et.al. {9] introduced
the notion of multi-context system (MCS for short). This framework allows the
definition of different formal components and their interrelation. In our case, we
propose to use separate contexts to represent each modality and formalise each
context with the most appropriate logic apparatus. The interactions between
the components are specified by using inter-unit rules, called bridge rules. These
rules are part of the deduction machinery of the system. This approach has
been used by Sabater et.al. [22] and Parsons et.al. [19] to specify several agent
architectures and particularly to model some classes of BDI agents {17). Indeed
one advantage of the MCS logical approach to agency modelling s that it allows
for rather affordable computational implementation. ¥or instance, a portion of
the framework described in [17] is being now implemented using a prolog multi-
threaded architecture [8].

The agent architectures proposed so far mostly deal with two-valued infor-
mation. Although the BDI model developed by Raoc and Georgell explicitly ac-
knowledges that an agent’s model of the world is incomplete, by modelling beliefs
as a set of worlds that the agent knows that it might be in, it makes no use of
guantified information about how possible a particular world is to be the actual
one. Neither does it allow desires and intentions t6 be quantified, We think that
taking into consideration this graded information could improve the agent’s per-
formance. There are a few works that partially address this issue and emphasize
the importance of graded models, Notably, Parsons and Giorgini [17] consider
the belief quantification by using Evidence Theory. In their proposal, an agent
is allowed to express its opinion on the reliability of the agents it interacts with,
and to revise its beliefs when they become inconsistent. They set out the im-
portance of quantifying degrees in desires and intentions, but this is not covered
by their work. Lang et al. {14} present an approach to a logic of desires, where
the notion of hidden uncertainty of desires is introduced. Desires are formalized
to support a realistic interaction between the concepts of preference and plau-
sibility {(or normality), both represented by a pre-order relation over the sets of
possible worlds. Other works deal with reasoning about intentions in uncertain
domains, as the proposal of Schut et al. [24]. They present an efficient intention
reconsideration for agents that interact in an uncertainty environment in terms
of dynamics, observability, and non-determinism.




All the above mentioned proposals mode] partial aspects of the uncertainty
related to mental notions involved in an agent’s architecture, We present in this
paper a general model for a graded BDI agent, specifying an architecture able
to deal with the environment uncertainty and with graded mental attitudes. In
this sense, belief degrees represent to what extent the agent believes a fornula iy
true. Degrees of positive or negative desire allow the agent to set different levels
of preference or rejection respectively. Intention degrees give also a preference
measure but, in this case, modelling the cost/benefit trade off of reaching an
agent’s goal. Then, Agents having different kinds of behaviowr can be modeled
on the basis of the representation and interaction of these three attitudes.

This paper is organised as follows: in Section 2, we introduce multi-context
systems and the general multivalued logie framework for the graded contexts.
Sections 3, 4, and 5 present the mental units of the graded BDI model, that
is the contexts for beliefs (BC), desives (DC), and intentions (IC). Section 6
outlines two functional contexts for planning (PC) and communieation (CC). In
Section 7, we deal with bridge rules, we illustrate the overali reasoning process
in Section 8, and finally, we present some conclusions and future lines of work,

2 Graded BDI agent model

The architecture presented in this paper is inspired by the work of Parsons et.al.
[17} about multi-context BDI agents. Multi-context systems were introduced by
Giunchighia et.al, [9} to allow different formal {logic) components to be defined
and interrelated. The MCS specification of an agent contains three basic compo-
nents: units or contexts, logics, and bridge rules, which channe! the propagation
of consequences among theories. Thus, an agent is defined as a group of inter-
connected units: {{Ci}ie7, D), where each context C; € {Ci}ier Is the tuple
C; = (Ly, Aj, A;) where L;, A; and A; are the language, axioms, and inference
rules respectively. They define the logic for the context and its basic behaviour
as constrained by the axioms. When a theory T; € L; is assoclated with each
unit, the implementation of a particular agent is complete. Ay can be under-
stood as rules of inference with premises and conclusions in different contexts,

for instance:
Ol : lel C‘Z L
03 18
means that if formula ¢ is deduced in context €y and formula ¢ is deduced in
context C» then formula @ is added to context Cs.

The deduction mechanism of these systems is based on two kinds of inference
rules, internal rules A; inside gach unit, and bridge rules Ay, outside, Internal
rules allow to draw consequences within a theory, while bridge rules allow to
embed results from a theory into another (7).

We have mentael contexts to represent beliefs (BC), desires {DC} and inten-
tions {IC). We also consider two functional contexts: for Planning (PC) and
Communication (CC). The Planner is in charge of finding plans to change the
current world into another wotld, where some goal is satisfied, and of computing




the cost associated to the plans. The comimunication context is the agent’s door
to the external world, receiving and sending messages. In summary, the BDI
agent model is defined as:

A, = ({BC,DC,IC, PC,CCY, Ay

Each context has an associated logic, that is, a logical language with its own
semantics and deductive system. In order to represent and reason about graded
notions of bellefs, desires and intentions, we decide to use a modal many-valued
approach. In particular, we shall follow the approach developed by Hdjek et
al. in e.g. {12] and [10} where uncertainty reasoning is dealt with by defining
suitable modal theories over suitable many-valued logics. The basic idea is the
following. For instance, let us consider a Belief context where belief degrees ave
to be modeled as probabilities. Then, for each classical (two-valued) formula
4, we consider a modal formula By which is interpreted as “p is probable”.
This modal formula By is then a fuzzy formula which may be more or less true,
depending on the probability of ¢. In particular, we can take as truth-value of
By precisely the probability of ¢. Moreover, using a many-valued logic, we can
express the governing axioms of probability theory as logical axioms involving
modal formulae of the kind Byp. Then, the many-valued logic machinery can
be used to reason about the modal formulae By, which faithfully respect the
uncertainty model chosen to represent the degrees of belief.

In this proposal, for the mental contexts we choose the infinite-valued
Lukasiewicz logic but another selection of many-valued logies may be done for
each unit, according to the measure modeled in each case 1. Therefore, in this
kind of logical frameworks we shall have, besides the axioms of Lukasiewicz
many-valued logic, a set of axioms corresponding to the basic postulates of a
particular uncertainty theory. Hence, in this approach, reasoning about prob-
abilities (or any other uncertainty models) can be done in a very elegant way
within a uniform and flexible logical framework. The same many-valued logical
framework may be used to represent and reason about degrees of desires and
intentions, as will be seen in detail later on,

3 Belief Context

The purpose of this context is to model the agent’s beliefs about the environment.
In order to represent beliefs, we use modal many-valued formulae, following the
above mentioned logical framework. We consider in this paper the particular
case of using probability theory as the uncertainty model. Other models might
be used as well by just modifying the corresponding axioms.

! The reason of using this many-valued logic is that its main connectives are based
on the arithmetic addition in the unit interval [0, 1), which is what is needed to deal
with additive measures like probabilities. Besides, Lukasiewicz logic has also the min
conjunction and maz disjunction as definable connectives, so it also allows to define
a logic to reason about degrees of necessity and possibility.




3.1 The BC language

To reason about the credibility of crisp propesitions, we define a language for
belief representation, following Godo et al.’s {10}, based on Lukasiewicz logic, In
order to define the basic crisp language, we start from a classical propositional
language L, defined upon a countable set of propositional variables PV and
connectives (-, ), and extend it to represent actions. We take advantage of
Dynamic logic which has been used to model agent’s actions in [23] and [16].
These actions, the environment transformations they cause, and their associated
cost must be part of any situated agent's beliefs set,

The propositional language L is thus extended to Lp, by adding to it action
modalities of the form [e] where « is an action. More concretely, given a set
T, of symbols representing elementary actions, the set IT of plans {composite
actions) and formulae Lp is defined as follows:

— IIy C I (elementary actions are plans)

— if @, B € IT then oy B € I, {the concatenalion of actions is also a plan}
— if @, 8 € I then o U € IT {(non-deterministic disjunction)

— if o € II then o* € IT (iteration)

— If A is a formula, then A? € IT (test)

—ifpe PV, thenpe Lp

— ifype Lp then ~p € Lp

—ifp,pe Lpthenp -9 € Lp

— if o € I and @ € Lp then o]y € Lp.

The interpretation of [0} A is “after the eveculion of o, A is true”

We define a modal language BC over the language Lp to reason about the
belief on crisp propositions. To do so, we extend the crisp language Lp with a
fuzzy unary modal operator B. If ¢ is a proposition in Lp, the intended meaning
of By is that “p is believable”. Formulae of BC are of twa types:

— Crisp (non B-modal): they are the {crisp} formulae of Lp, built in the usual
way, thus, if ¢ € Lp then ¢ € BC.

— B-Modal: they are built from elementary modal formulae By, where ¢ is
crisp, and truth constants 7, for each rational r € [0, 1}, using the connectives
of Lukasiewicz many-valued logic:

o Ifp € Lp then Bp € BC

o Ifr e QN {0,1] then 7€ BC

o If &,% ¢ BC then & —, % € BC and &% ¢ BC (where & and —p,
correspond to the conjunction and implication of Lukastewicz logic)

Other Lukasiewicz logic connectives for the modal formulae can be defined from
&, -y and 0: —@ is defined as @ vy 0, DAY as $&(P >y ¥), PV Y as
(P A P), and @ =V as (F -y, TYe(F —, D).

Since in Lukasiewicz logic a formula @ —p ¥ is 1-true iff the truth value of
¥ is greater or equal to that of §, modal formulae of the type ¥ — 1 By express
that the probability of ¢ is at least 7. Formulae of the type ¥ —1 ¥ will be
denoted as (¥, 7).




3.2 Belief Semantics

The semantics for the language BC is defined, as usual in modal logics, using
a Kripke structure. We have added to such structure a p function in order to
represent the world transitions caused by actions, and a probability measure p
over worlds. Thus, we define a BC probabilistic Kripke structure as a 4-tuple
K = (W, e, p} where:

— W is a non-empty set of possible worlds.

~ e: ¥V xW — {0,1} provides for each world a Boolean (two-valued) evaluation
of the propositional variables, that is, e{p,w) € {0, 1} for each propositional
variable p € V and each world w € W. The evaluation is extended to
arbitrary formulae in L, as described below.

—p: 2% 5 [0,1] is a finitely additive probability measure on a Boolean
algebra of subsets of W such that for each crisp ¢, the set {w | e(yp, w) = 1}
is measurable [12].

— p Hy = 2*W assigns to each elementary action a set of pairs of worlds
denoting world transitions.

Fxtension of e to Lp formulae:

e is extended to L using classical connectives and to formulae with action modal-
ities ~as [a} A, by defining p{a; 8) = pla) o p(8), pla U B) = pla) U p(8),
pla*) = (p(a))* (ancestral relation) and p{p?) = {{w,w) | efp,w) = 1}, and
setting e(fa] 4,w) = min {e(A,w;) | {w,w;) € p(a}}. Notice that e{fa] A, w) =1
iff the evaluation of A is 1 in all the worlds w' that may be reached through the
action e from w.

Eztension of e to B-modal formulae:

e is extended to B-modal formulae by means of Lukasiewicz logic truth-functions
and the probabilistic interpretation of belief as follows:

e{Byp,w) = p({w' € W | e(p,w') = 1}), for each crisp ¢
e(f,w)=r, forallr e GnN[0,1)

e(P&F, w) = max{e(d) + e(F) — 1,0)

— e(@ -y, ¥, w) = min(l — () + e(¥),1)

{

Finally, the truth degree of a formula @ in 2 Kripke structure K = (W, e, i1, 0)
is defined as ||B[I* = infye e(®,w).

3.3 BC axioms and rules

As mentioned in Section 2, {o set up an adequate axiomatization for our be-
Hef context logic we need to combine axioms for the crisp formulae, axioms of
Lukasiewicz logic for modal formulae, and additional axioms for B-modal for-
mulae according to the probabilistic semantics of the B operator. Hence, axioms
and rules for the Belief context logic BC are as follows:

1. Axioms of propositional Dynamic logic for Lp formulae (see e.g, [11]).




2. Axioms of Lukasiewicz logic for modal formulae: for instance, axioms of
Hijek’s Basic Logic (BL) [12] plus the axiom: =@ — @

3. Probabilistic axioms
Blyp — ) -1, (By — By)
Bo = 1Bl A-9) -1 Ble Ay)
By = B-yp

4, Deduction rules for BC are; modus ponens, necessitation for [a] for each
o € IT (from ¢ derive [ajy), and necessitation for B (from ¢ derive Byp).

Deduction is defined ag usual from the above axioms and rules and will be
denoted by Fge. Notice that, taking into account Lukasiewicz semantics, the
second probabilistic aziom corresponds to the finite additivity while the third one
expresses that the probability of - is 1 minus the probability of ¢. Actually,
one can show that the above axiomatics is sound and complete with respect to
the intended semantics described in the previous subsection {cf. [12]). Namely,
if T is a finite theory over BC and & iz a (modal} formula, then T' | & iff
(¥4% =1 in each BC probabilistic Kripke structure K model of T' (i.e. X such
that |Z| =1 for ell # € T).

4 Desire Context

In this context, we represent the agent’s desires. Desires represent the ideal
agent’s preferences regardless of the agent’s current perception of the environ-
ment and regardless of the cost involved in actually achieving them. We deem
important to distinguish what is positively desired from what is not rejected.
According to the works on bipolarity representation of preferences by Benferhat
et.al. [2], positive and negative information may be modeled in the framework of
possibilistic logic. Inspired by this work, we suggest to formalise agent's desires
also as positive and negative. Positive desires represent what the agent would
like to be the case. Negative desires correspond to what the agent rejects or does
not want to oceur. Both, positive and negative desires can be graded.

4.1 DC Language

The language DC is defined as an extension of a propositional language L by
introducing two (fuzzy) modal operators DT and D~. D% reads as “p is pos-
itively desired” and its truth degree represents the agent’s level of satisfaction
would ¢ become true. D7y reads as “ip is negatively desired” and its truth de-
gree represents the agent’s measure of disgust on ¢ becoming true. As in BC
logic, we will use a modal many-valued logic to formalise graded desires. We use
again Lukasiewicz logic as the base logic, but this time extended with a new con-
nective A (known as Baaz's connective), considered also in [12], For any modal
&, if & has value < 1 then AP gets value 0; otherwise, if @ has value 1 then
AP gets value 1 as well. Hence AP becomes a two-valued (Boolean) formula.
Therefore, DC formulae are of two types:




— Crisp (non modal): formulae of L
— Many-valued (modal}: they are built from elementary modal formulae Dty
and D™, where ¢ is from L, and truth constants 7 for each rational r € [0, 1]:
e If p € L then D™y, Dty e DC
o Ifr e QN [0,1] then ¥ € DC
o I O,We DO then & -5 ¥ € DC and $&¥ € DC

As in BC, (D), 7) denotes # —, Dip.

In this context the agent’s preferences will be expressed by a theory T con-
taining quantitative expressions about positive and negative preferences, like
(DFeo,a) or (D74, B), as well as qualitative expressions like DFey —»;, Dty
(vesp. D79 -5 D7), expressing that ¢ is at least as preferred (resp. rejected)
as 9. In particular (DF¢;,1) € T means that the agent has maxhnum preference
tn ¢ and Is fully satisfied if it Is true. While (DF¢y, ) ¢ T for any o > 0 means
that the agent is indifferent to ¢; and the agent doesn't benefit from the truth of
¢;. Analogously, (D™ ;,1) € T means that the agent absolutely rejects ¢; and
thus the states where 2); is true ave totally unacceptable. (D~4y, 8) € T for any
B > 0 simply means that ¢; is not rejected, the same applies to the formulae
not explicitly inchided in T'.

4.2 Semanties for DC

The degree of positive desire for {or level of satisfaction with) a disjunction of
goals  V i is taken to be the minimum of the degrees for ¢ and . Intuitively
if an agent desirves p V ¥ then it is ready to accept the situation where the less
desired goal becomes true, and hence to accept the minimum satisfaction level
produced by one of the two goals. In contrask the satisfaction degree of reaching
both  and ¢ can be strictly greater than reaching one of them separately. These
are basically the properties of the guaranteed possibility measures {see e.g. [1}).
Analogously, we assume the same model for the degrees of negative desive or
rejection, that is, the rejection degree of ¢ V ¢ Is taken to be the minimum of
the degrees of rejection for ¢ and for ¢ separately, while nothing prevents the
rejection level of ¢ A 9 be greater than both.

The DC models are Kripke structures Mp = (W, e, 71,7~} where W and e
are defined as in the BL semantics and #¥ and 7~ arve preference distributions
over worlds, which are used to give semantics to positive and negative desires:

—at : W — [0,1] s a distribution of positive preferences over the possible
worlds. In this context nt{w) < w(w') means that ' is more preferred
than w.

— 77 : W — [0,1] is a distribution of negative preferences over the possible
worlds: 7~ (w) < 7 {w") means that w' is more rejected than w.

We impose a consistency condition: #~ (w) > 0 implies 7F(w) = 0, that is, If
w is rejected to some extent, it cannot be desired. And conversely. The truth
evaluation e is extended to the non-modal formulae in the usual {classical) way.




The extension to modal formulae uses the preference distributions for formuiae
D~y and D'y, and for the rest of modal formulae by means of Lukasiewicz
connectives, as in BC semantics, plus the unary connective A. The evaluation of
modal formulae only depends on the formulsa jtself -represented in the preference
measure over the worlds where the formule is true— and not on the actual world
where the agent is situated:

— e(D*p,w) = inf{mt (W) | efp,w') =1}
~ o(D"p,w) = inf{m(w') | elp,w’) =1}

B Lif e(d,w)=1
e(A,w) { 0, otherwise,

As usual, by convention we take Inf §§ = 1 and thas e(DV L, wy=e(D~ L,w} =1
for all w € W,

4.3 DC Axioms

In a similar way as in BC, to axiomatize the logical system DC we need to com-
bine classical logic axioms for non-modal formulae with Lukasiewicz logic axioms
extended with A for modal formutae. Also, additional axioms characterizing the
behaviour of the modal operators D and D~ are needed. Hence, we define the
axioms and rules for the DC logic as follows:

1. Axioms of classical logic for the non-modal formulae,
2. Axioms of Lukasiewicz logic with 4 {cf. [12]) for the modal formulae,
3. Axioms for DY and D~ over Lukasiewciz logic:
DAV B)=DYAAD'B
D (AVB)=D"AAD™B
—!LA(D+AA D_A) —3 "»L(VD“A&:VD"'A), where V is —!LA-vg,g.
DH(L)
D={1)
4. Rules are: modus ponens, necessitation for A, and introduction of D¥ and
D~ for implications: from A — B derive DB — DYA4 and D™B —y,
D—A,

Notice that the two first axioms in item (3) define the behaviour of D~ and
Dt with respect to disjunctions, while the third axiom establishes that it is not
possible to have at the same time positive and negative desires over the same
formula except if the formula is a contradiction. In that case notice that the an-
tecedent of the axiom becomes false. Finally, the two inference rules state that
the degree of desire is monotonically decreasing with respect to logical implica-
tion, This axiomatics is correct with respect to the above defined semantics, and
the conjecture is that it is complete too.

2 Notice that e(V®, w) = 1 if e(d, w) > 0, and e{VH, w) = 0 otherwise.




5 Intention Context

In this context, we represent the agent’s intentions. We follow the model intro-
duced by Rao and Georgefl [20, 21], in which an intention is considered a funda-
mental pro-attitude with an explicit representation. Intentions, as well as desires,
represent the agent’s preferences. However, we consider that intentions cannot
depend just on the benefit, or satisfaction, of reaching a goal ¢ —represented in
D, but also on the world’s state w and the cost of transforming it into a world
wy where the formula ¢ is true. By allowing degrees in intentions we represent
a measure of the cost/benefit relation involved in the agent’s actions towards
the goal. The positive and negative desires are used as pro-active and restrictive
tools respectively, in ovder to set intentions. Note that intentions depend on the
agent’s knowledge about the world, which may allow —or not— the agent to set a
plan to change the world into a desired one. Thus, if in a theory T we have the
formula I — I then the agent may try ¢ before ¢ and it may not try ¢ if
(4,8} is a formula in T and § < Threshold. This situation may mean that the
benefit of getting ¢ is low or the cost is high.

5.1 IC Language

We define its syntax in the same way as we did with BC {except for the dynamic
logic part), starting with a basic language L and incorporating a modal operator
I. We use Lukasiewicz multivalued logic to represent the degree of the intentions.
As in the other contexts, if the degree of I is §, it may be considered that the
truth degree of the expression “p is intended” is 4. The intention to make ¢ true
must be the consequence of finding a feastble plan «, that permits to achieve a
state of the world where ¢ holds.

The value of Iy will be computed by a bridge rule {see {3) in next Seetion
7}, that takes into account the benefit of reaching ¢ and the cost, estimated by
the Planner, of the possible plans towards it.

5.2 Semantics and axiomatization for IC

The semantics defined in this context shows that the value of the intentions
depends on the formula intended to bring about and on the benefit the agent
gets with it. It also depends on the agent’s knowledge on possible plans that
may change the world into one where the goal is true, and their associated cost.
This last factor will make the semantics and axiomatization for IC somewhat
different from the presented for positive desires in DC.

The models for IC are Kripke structures K = (W, e, {m,}wew} where W
and e are defined in the usual way, and for each w € W, 7, : W — (0,1} is 2
possibility distribution where @, {w') € 10,1} is the degree on which the agent
may try to reach the state w' from the state w,

The truth evaluation e : V x W — {0,1} is extended to the non-modal
formulae in the usual way. It is extended to modal formulae using Lukasiewicz
semantics as e(lyp, w} = Ny {{w' | (e, w") = 1}), where N, denotes the necessity




measure associated to the possibility distribution m,, defined as N,,(9) = inf{1—
7u(8} | 3 & 5}. A sound and complete axiomatics for the I operator, is defined
in a similar way as for the previous mental operators but now taking the axioms
corresponding to necessity measures {cf. {12]), that is, the following axioms:

1. Axioms of classical logic for the non-modal formulae.
2. Axioms of Lukasiewicz logic for the modal formulae,
3. Axioms for I over Lukasiewciz logic:
Hp =) = e — 1Y)
~J(L}
Ip AY) = (o A T9)
4. Deduction rules are modus ponens and necessitation for T (from ¢ detive
L),

6 Planner and Communication Contexts

The nature of these contexts is functional, The Plammer Context (PC) has to
build plans which allow the agent to move from its current world to another,
where a given formula is satisfied. This change will indeed have an associated
cost according to the actions involved. Within this context, we propose to use a
first order language restricted to Horn clauses (PL), where a theory of planning
includes the following special predicates:

— actionfa, P, A, cg) where a € Iy is an elementary action, P C PL is the
set of preconditions; A C PL are the postconditions and ¢, € [0,1] is the
normalised cost of the action,

— planfye, &, P, A, ca, 7} where o € IT is a composite action representing the
plan to achieve o, P are the pre-conditions of ¢, A are the post-conditions
¢ € A, ¢y is the normalized cost of « and r is the belief degree { > 0) of
actually achieving ¢ by performing plan a. We assume that only one instance
of this predicate is generated per formula.

— bestplanfee, o, P, A, ¢o, v) similar to the previous one, but only one instance
with the best plan is generated.

Each plan must be feasible, that is, the current state of the world must satisfy
the preconditions, the plan must make true the positive desire the plan is built
for, and eannot have any negative desire as post-condition. These feasible plans
are deduced by a bridge rule among the BC, DC and PC contexts (see (2) in
the next Section 7).

The conununication unit {CC) makes it possible to encapsulate the agent’s
internal structure by having a unique and well-defined interface with the envi-
ronment. This unit also has a first order language restricted to Horn clauses.
The theory inside this context will take care of the sending and receiving of
messages to and from other agents in the Multi Agent sociely where our graded
BDI agents live. Both contexts use resolution as a deduction method.




7 Bridge Rules

For our BDI agent model, we define a collection of basic bridge rules to set the
interrelations between contexts. These rules are illustrated in figure 1. In this
section we comment the most relevant ones.

The agent’s knowledge about the world’s state and about actions that change
the world, is introduced from the belief context into the Planner as first order
formulae [.}:

EaALLA M)
P [Be]

Then, from the positive desires, the beliefs of the agent, and the possible

transformations using actions, the Planner can build plans. Plans are gener-

ated from actions, to fulfill positive desires, but avoiding negative desires. The
following bridge rule among D, B, and P contexts does this:

D (DY), D (D7, threshold), P 1 action(w, P, A, c),
B . (B([Q]LP))T)?B : B(A - _"rb) (2)
P :plan{p,a, P, A, e,r)

As we have previously mentioned, the intention degree trades off the benefit
and the cost of reaching a goal. There is a bridge rule that infers the degree of
I for each plan o that allows to achieve the goal. This value is deduced from
the degree of D%y and the cost of a plan that satisfies desire . This degree is
calculated by function f as follows:

D:{D%p,d), P: plan(p, o, P, A, ¢, 7) @)
I (praf(ds <, ?‘))

Different functions model different individual behaviours. For example, if we
constder an eguélibrated agent, the degree of the intention to bring about ¢,
uwnder full belief in achieving ¢ after performing o, may depend equally on the
satisfaction that it brings the agent and in the cost —considering the complement
to 1 of the normalised cost. So the function might be defined as

fld,e,r) =r{d + (1 — }}/2.

In fact, given the plan P for the goal p, with desire level d and{normalized) cost
¢, we can think of 4 = {d + (1 — ¢}}/2 as the utility of reaching ¢ by means of
the plan P. The intention degree as computed above is thennothing but + - 4,
that is, the utility u multiplied by the probability r of reaching ¢ after the plan
is executed. This is actually the expecied uiility of reaching by means of the
plan P if one considers a utility value of 0 when the plan P does not reach ¢.
In BDI agents, bridge rutes have been also used to determine the relation-
ship between the mental attitudes and the actual behaviour of the agent. Well-
established sets of relations for BDI agents have been identified [21]. If we use
the sirong realism model, the set of intentions is a subset of the set of desires,




which in turn is a subset of the beliefs. That is, if an agent does not believe
something, it will neither desire it nor intend it {20):

B.-ﬂB1,bandD.-wD;b ()
DDy I:=Iy
‘We also need bridge rules to establish the agent’s interactions with the en-
vironment, meaning that if the agent intends ¢ at degree iy, Where i, I8
the maximum degree of all the intentions, then the agent will focus on the plan
-bestplan- that allows the agent to reach the most intended goal:

I (T, tnae), P+ bestplan(p, a, P, A, cq,7) )

C': Cldoes(n))
Through the comunication unit the agent perceives all the changes in the
enviroment that are introduced by the following bridge rule in the belief context:

c: B
B:Bf @)

Tigure 1 shows the graded BDI agent proposed with the different contexts
and the bridge rules relating them.

Fig. 1. Multicontext model of a graded BDI agent

8 Example of a graded BDI Agent for tourism

Suppose we want to instruct our travel agent to lock for a one-week holiday
destination package. We instruct the agent with two desires, first and more
important, we want to rest, and second we want to visit new places (visitNP).
We restrict its exploration range as we do not want to travel more than 1000
kms from Rosario, where we live. To propose a destination {plan) the agent will
have to take into account the benefit (with respect to rest and to visitNP) and




the cost of the travel. The agent will consult with a travel agency that will give a
number of plans, that conveniently placed in the planner context will determine
the final set of proposals. In this scenarvio we have the following theories in the
BC, DC, and PC contexts (IC has no initial theory):

D context: The agent has the following positive and negative desires:

- (D*(rest),0.8)

- (D (visit NP}, 0.7)

- (D*{rest A visitN P),0.9)

- (D™ {distance > 1000km), 0.9)

B context: This theory contains knowledge about the relationship between pos-
sible actions the agent can take and formulae made true by their execution. In
this case, actions would be traveling to different destinations. For this example
we consider only six destinations:

1l = {CarlosPaz, Cumbrecita, Bariloche, VillaGesell, Mardel Plata, PtoMadryn}.

Then, we represent the agent’s beliefs about visiting new places and resting.
In particular, we may consider the degree of B([ojvisit NP} as the probability
of visitNP after traveling to o According to the places we know in each
destination and the remaining places to visit in each destination, we give our
travel agent the following beliefs:

- (B{{Cumbrecita]visitNP), 1)

- {B([Carlos Paz]visitNP), 0.3)

- (B({Bariloche]visitNP}, 0.7)

- (B([Villa Geseli]visitNP}, 0.6)

- (B([Mar del Plata]visitNP), 0.3)
- (B{[Pto Madryn}visitNP}, 1)

The agent needs to assess also beliefs about the possibility that a destination
offers to rest. In this case the degree of B{[a}jRest) is interpreted as the
probability of resting in «. These beliefs are determined by the characteristics
of the destination —beach, mountains, big or a small city, etc— and taking into
accouttt our personal views:

- (B([CumbrecitajRest), 1)

- (B([Carlos Paz]Rest}, 0.8)

- {B([Bariloche]Rest}, 0.6)

- (B{[Villa Gesell]Rest), 0.8}

- {B([Mar del PlatajRest), 0.5)
- (B{[Pto Madryn|Rest}, 0.7)




We assume here that, for each action ¢, the positive desires are stochastically
independent, so we add to BC an appropriate inference rule:
{Blo)Rest,r), (BlaJvisitN P, s)
(Ble}(Rest A visitN P),r - 5)

P Context A series of elementary actions:

- action (Cumbrecita, {cost = 800},{dist =500 km}, 0.67)

- action (Carlos Paz, {cost = 500},{dist = 450 km}, 0.42)

- action (Bariloche, {cost = 1200},{dist = 1800 km},1)

- action {Pto Madryn, {cost = 1000},{dist =1700 km}, 0.83)
- action {Villa Gessell, {cost = 700},{dist =700 km}, 0.58)

- action {Mar del Plata, {cost = 600},{dist =850 km}, 0.5)

Once these theories are defined the agent is ready to reason in order to deter-
mine which Intention to adopt and which plan is associated with that intention.
We follow give a brief schema of the different steps in this process:

1. The desires are passed from DC to PC.

2. Within PC plans for each desire are found.
Starting from the positive desires the planner looks for a set of different
destination plans, taking into consideration the beliefs of the agent about
the possibilities of satisfying the gosals rest and visitNP through the
different actions. Using the restriction introduced by the negative desire:
(D~ (dist > 1000km),0.9) the planner rejects plans to Baviloche and to Pto
Madryn, because their post-conditions make true (dist > 1000km) which
is strongly rejected (0.9). Therefore, using the bridge rule {2), plans are
generated for each desire. For instance, for the most preferred desive, i.e.
rest A visitN P the following plans are generated:

plan(rest A visitN P, Cumbrecita, {cost = 800}, {dist = 500km},0.67,1)
plan(rest A visitN P, CarlosPaz, {cost = 500}, {dist = 450km},0.42,0.24)
plan(rest AvisitN P, VillaGessell, {cost = 700}, {dist = 700km},0.58, 0.48)
plan(rest A visit NP, Mardel Plata, {cost = 600}, {dist = 850km},0.5,0.15)

3. The plans determine the degree of inlentions.
Using bridge rule {3) and the function f proposed for an equilibrated agent
the I context caleulates the intention degree for the different destinations.
Since f is monotonically increasing with respect to d, it is enough to consider
the most preferred desived, i.e. rest A visitNP. Hence, rest A visit NP is
preferred to a degree 0.9, using f{d, b, ¢) = (0.8 + (1 — ¢))/2 we successively
have for o € {Cumbreeita, CarlosPaz, VillaGessell, Mardel Plata}:

{I{rest A vigitN P}, 0.615),
(I{rest A visitNP),0.1776),




(I{rest A visitN P),0.3168),
(I{rest A visitN P),0.105).
We get a maximal degree of intention for rest A visit NP by the plan cum-
brecita, of 0.615.

4, A plan is adopted.
Tinally, by means of bridge rule (5), the action & = Cumbrecita is selected
and passed to the Communication context CC.

0 Conclusions and Future Work

This paper has presented a BDI agent model that allows to explicitly represent
the uncertainty of beliefs, desires and intentions. This graded architecture is
specified using multicontext systems and is general enough to be able to specify
different types of agents. In this work we have used a different context for each
attitude: Belief, Desire and Intention. We used a specific logic for each unit,
according to the attitude represented. The Lukasiewicz multivalued logic is the
framework chosen to formalise the degrees and we added the corresponding ax-
iomatic in order to represent the uncertainty behaviour as probability, necessity
and possibility. Other measures of uncertainty might be used in the different
units by simply changing the corresponding axiomatic. Adding concrete theories
to each context, particular agents may be defined using our context blueprints,
The agent’s behaviour is then determined by the different uncertainty measures
of each context, the specific theories established for each unit, and the bridge
rules. An issue of current research is to look for possible alternative axiomatic
modelings of desires and intentions, and their implications in the bridge rules
which deal with them, and check how they can also influence the agent’s behav-
ior, Besides, the model introduced, based on a multicontext specification, can be
easily extended to include other mental attitudes.

As for future work, we are considering two directions. On the one hand we
want to extend our multicontext agent model to a multiagent scenavio. We plan
to do this by introducing a social context in the agent architecture to deal with
all aspects of social relations with other agents. In particular to equip this social
context with a good logical model of trust is very important to allow the agent
to infer beliefs from other agents” information, Interesting models of trust are
Liau’s logle of Belief, Information and Trust (BIT) [15] in the extension of this
model described in [4] in this volume.

On the other hand, from an computational point of view, our idea is to
implement each unit as prolog thread, equipped with its own meta-interpreter.
The meta-interpreter purpose will be to manage inter-thread (inter-context)
communication, i.e. all processes regarding bridge rule firing and assertion of
bridge rule conclusions into the corresponding contexts. This implementation
will support both, the generic definition of graded BDI agent architectures and
the specific instances for particular types of agents. The implementation will
also allow us to experiment and validate the formal model presented.
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