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Abstract In this paper we overview recent results about the
lattice of subvarieties of the variety BL of BL-algebras and
the equational definition of some families of them.

1 Introduction

It is well-known that the variety BL of BL-algebras is the
equivalent algebraic semantics for Hájek’s basic fuzzy logic
BL. Thus subvarieties of BL naturally correspond to sche-
matic extensions of BL, i.e., to sets of formulas which include
all axioms of BL and which are closed under substitution and
under Modus Ponens. Three outstanding subvarieties of BL
are the variety G of Gödel algebras, the variety Ł ofWajsberg
algebras and the variety � Product algebras, which are the
algebraic counterparts of Gödel, Łukasiewicz and Product
logics resepctively. Subvarieties of G, Ł and � are count-
able and relatively simple to describe [HK], [K], [DNL2],
[Pa], and [CT] (see a short summary later in Sect. 3.1). Con-
trariwise the lattice Sub(BL) of subvarieties of BL seems
extremely difficult. For example we will see in Sect. 2 that
there are continuum many subvarieties that are generated by
the ordinal sum of two totally ordered Wajsberg algebras,
see [AM]. Thus the main task of this paper is to describe
some of the most important sublattices (or just subposets) of
Sub(BL).

Since one of the reasons for introducing BL was the
search of a common fragment of Łukasiewicz Logic, Gödel
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Logic and Product Logic, one of the most natural sublattic-
es of Sub(BL) is the lattice of subvarieties of the join of
the varieties of Wajsberg algebras, of Gödel algebras and of
Product algebras. Such join, which will be called Ł�G in the
sequel, is axiomatized in [CEGT], and the lattice of its sub-
varieties are fully described in [DNEGGS]. The main results
about such lattice are sketched in Sect. 3. It turns out that
not only Ł�G is a proper subvariety of BL, but the lattice of
its subvarieties is countable. Thus there are continuum many
subvarieties of BL which are not subvarieties of Ł�G.

A second reason for introducing BL was the search of
the logic of all continuous t-norms and their residuals. In
[CEGT] it is shown that BL is in fact complete with re-
spect to the class of the so called t-norm BL-algebras, i.e., of
all residuated lattices whose monoid operation is a continu-
ous t-norm on [0, 1]. This result suggests the investigation
of the subvarieties of BL which are generated by a single
t-norm algebra. This has been done in [EGM], and the main
results will be sketched in Sect. 4. Surprisingly, the poset of
such varieties is countable, and any such variety is finitely
axiomatizable.

Another fundamental result in the theory of BL-algebras
is the decomposition theorem, which says that every linearly
ordered BL-algebra is the ordinal sum of a family of linearly
ordered Wajsberg hoops, see [AM], [LS] and [MB]. Hence
every BL-algebra can be decomposed as a subdirect product
of ordinal sums of Wajsberg hoops. This result suggests the
investigation of another interesting poset of varieties, namely
the poset consisting of all varieties generated by BL chains
which are the ordinal sums of finitely many Wajsberg hoops.
This problem will be afforded in Sect. 5, on the ground of a
number of results contained in [AM]. It turns out that such
poset is not countable and is strictly related with the lattice
of universal theories of Wajsberg hoops.

Finally, in Sect. 6 we survey the theory of local and perfect
BL-algebras, based on results in [DNSEGG], which extends
the theory and results already developed for MV-algebras in
[ST,T1].

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.
You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.

GENERAL ----------------------------------------
File Options:
     Compatibility: PDF 1.2
     Optimize For Fast Web View: Yes
     Embed Thumbnails: Yes
     Auto-Rotate Pages: No
     Distill From Page: 1
     Distill To Page: All Pages
     Binding: Left
     Resolution: [ 600 600 ] dpi
     Paper Size: [ 595 842 ] Point

COMPRESSION ----------------------------------------
Color Images:
     Downsampling: Yes
     Downsample Type: Bicubic Downsampling
     Downsample Resolution: 150 dpi
     Downsampling For Images Above: 225 dpi
     Compression: Yes
     Automatic Selection of Compression Type: Yes
     JPEG Quality: Medium
     Bits Per Pixel: As Original Bit
Grayscale Images:
     Downsampling: Yes
     Downsample Type: Bicubic Downsampling
     Downsample Resolution: 150 dpi
     Downsampling For Images Above: 225 dpi
     Compression: Yes
     Automatic Selection of Compression Type: Yes
     JPEG Quality: Medium
     Bits Per Pixel: As Original Bit
Monochrome Images:
     Downsampling: Yes
     Downsample Type: Bicubic Downsampling
     Downsample Resolution: 600 dpi
     Downsampling For Images Above: 900 dpi
     Compression: Yes
     Compression Type: CCITT
     CCITT Group: 4
     Anti-Alias To Gray: No

     Compress Text and Line Art: Yes

FONTS ----------------------------------------
     Embed All Fonts: Yes
     Subset Embedded Fonts: No
     When Embedding Fails: Warn and Continue
Embedding:
     Always Embed: [ ]
     Never Embed: [ ]

COLOR ----------------------------------------
Color Management Policies:
     Color Conversion Strategy: Convert All Colors to sRGB
     Intent: Default
Working Spaces:
     Grayscale ICC Profile: 
     RGB ICC Profile: sRGB IEC61966-2.1
     CMYK ICC Profile: U.S. Web Coated (SWOP) v2
Device-Dependent Data:
     Preserve Overprint Settings: Yes
     Preserve Under Color Removal and Black Generation: Yes
     Transfer Functions: Apply
     Preserve Halftone Information: Yes

ADVANCED ----------------------------------------
Options:
     Use Prologue.ps and Epilogue.ps: No
     Allow PostScript File To Override Job Options: Yes
     Preserve Level 2 copypage Semantics: Yes
     Save Portable Job Ticket Inside PDF File: No
     Illustrator Overprint Mode: Yes
     Convert Gradients To Smooth Shades: No
     ASCII Format: No
Document Structuring Conventions (DSC):
     Process DSC Comments: No

OTHERS ----------------------------------------
     Distiller Core Version: 5000
     Use ZIP Compression: Yes
     Deactivate Optimization: No
     Image Memory: 524288 Byte
     Anti-Alias Color Images: No
     Anti-Alias Grayscale Images: No
     Convert Images (< 257 Colors) To Indexed Color Space: Yes
     sRGB ICC Profile: sRGB IEC61966-2.1

END OF REPORT ----------------------------------------

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<<
     /ColorSettingsFile ()
     /AntiAliasMonoImages false
     /CannotEmbedFontPolicy /Warning
     /ParseDSCComments false
     /DoThumbnails true
     /CompressPages true
     /CalRGBProfile (sRGB IEC61966-2.1)
     /MaxSubsetPct 100
     /EncodeColorImages true
     /GrayImageFilter /DCTEncode
     /Optimize true
     /ParseDSCCommentsForDocInfo false
     /EmitDSCWarnings false
     /CalGrayProfile ()
     /NeverEmbed [ ]
     /GrayImageDownsampleThreshold 1.5
     /UsePrologue false
     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /AutoFilterColorImages true
     /sRGBProfile (sRGB IEC61966-2.1)
     /ColorImageDepth -1
     /PreserveOverprintSettings true
     /AutoRotatePages /None
     /UCRandBGInfo /Preserve
     /EmbedAllFonts true
     /CompatibilityLevel 1.2
     /StartPage 1
     /AntiAliasColorImages false
     /CreateJobTicket false
     /ConvertImagesToIndexed true
     /ColorImageDownsampleType /Bicubic
     /ColorImageDownsampleThreshold 1.5
     /MonoImageDownsampleType /Bicubic
     /DetectBlends false
     /GrayImageDownsampleType /Bicubic
     /PreserveEPSInfo false
     /GrayACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>
     /ColorACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>
     /PreserveCopyPage true
     /EncodeMonoImages true
     /ColorConversionStrategy /sRGB
     /PreserveOPIComments false
     /AntiAliasGrayImages false
     /GrayImageDepth -1
     /ColorImageResolution 150
     /EndPage -1
     /AutoPositionEPSFiles false
     /MonoImageDepth -1
     /TransferFunctionInfo /Apply
     /EncodeGrayImages true
     /DownsampleGrayImages true
     /DownsampleMonoImages true
     /DownsampleColorImages true
     /MonoImageDownsampleThreshold 1.5
     /MonoImageDict << /K -1 >>
     /Binding /Left
     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
     /MonoImageResolution 600
     /AutoFilterGrayImages true
     /AlwaysEmbed [ ]
     /ImageMemory 524288
     /SubsetFonts false
     /DefaultRenderingIntent /Default
     /OPM 1
     /MonoImageFilter /CCITTFaxEncode
     /GrayImageResolution 150
     /ColorImageFilter /DCTEncode
     /PreserveHalftoneInfo true
     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /ASCII85EncodePages false
     /LockDistillerParams false
>> setdistillerparams
<<
     /PageSize [ 576.0 792.0 ]
     /HWResolution [ 600 600 ]
>> setpagedevice



876 A. Di Nola et al.

2 General properties

In the sequel, given a class K of algebras of the same type,
I(K), S(K), H(K), P(K) and Pu(K) denote the classes of
isomorphic images, of subalgebras, of homomorphic images,
of direct products and of ultraproducts of algebras from K
respectively. We refer to the papers by Cignoli and Torrens
and by Montagna in this issue for notions concerning hoops
and BL-algebras and for the notion of ordinal sum. More-
over if, for all j ∈ J , Oj is a combination of I, H, S, P,
Pu, then for every collection {Aj : j ∈ J } of linearly or-
dered Wajsberg hoops, where J has a minimum j0 and Aj0

is bounded,
⊕

j∈J Oj (Aj ) denotes the set of all algebras of
the form

⊕
j∈J Bj , where for j ∈ J , Bj ∈ Oj (Aj ).

The following general properties concerning ordinal sums
are proved in [AM].

Proposition 1 Let A = ⊕
i∈I Ai be a linearly ordered BL-

algebra, where all Ai are linearly ordered hoops, I has a min-
imum i0 and Ai0 is bounded.Then S(

⊕
i∈I Ai ) = ⊕

i∈I S(Ai ),
(where of course S(Ai0) denotes the class of BL-subalgebras
of Ai0 , and for i �= i0, S(Ai ) denotes the class of subhoops of
Ai).

Note that a subhoop of any hoop may be trivial, whereas
a BL-subalgebra of a non-trivial Wajsberg algebra is always
non-trivial.

Proposition 2 Let A = ⊕n
i=0 Ai be a BL-algebra, where

A1, . . . , An are linearly ordered hoops, and A0 is a linearly
ordered BL-algebra. Then

H(A) = H(A0) ∪ {A0 ⊕ H(A1)} ∪
. . . ∪ {A0 ⊕ · · · ⊕ An−1 ⊕ H(An)}.

Proposition 3 Let A0, . . . , An, be as in Proposition 2. Then
ISPu(

⊕n
i=0 Ai ) = ⊕n

i=1 ISPu(Ai ).

Since the variety of BL-algebras is congruence distribu-
tive, Jónsson Lemma (cf. [Bu, Theorem IV.6.8]) holds. Thus
if K is a class of BL-algebras, the subdirectly irreducible
members of the variety generated by K are in HSPu(K).
Combining this with Propositions 2 and 3, we obtain:

Theorem 1 Let A0, . . . , An be as in Proposition 2. Then ev-
ery subdirectly irreducible member of the variety generated
by
⊕n

i=1 Ai is a member of

HSPu(A1) ∪ (ISPu(A1) ⊕ HSPu(A2)) ∪

. . . ∪ (

n−1⊕

i=1

ISPu(Ai ) ⊕ HSPu(An)).

We can use the above results to prove that the lattice of sub-
varieties of BL is uncountable.

Theorem 2 Let BL(n) denote the variety generated by all
ordinal sums of at most n + 1 linearly ordered Wajsberg
hoops, the first one bounded. Then:

1. The lattice of subvarieties of BL(n) is countable if and
only if n = 0;

2. For every n ≥ 0 there are uncountably many subvarieties
of BL(n + 1) which are not subvarieties of BL(n).

In particular there are uncountably many subvarieties of BL-
algebras.

Proof Note that BL(0) is just the variety of Wajsberg alge-
bras, whose lattice of subvarieties is countable. For n > 0
and for any set X of primes, let WX be the subalgebra of the
standard Wajsberg algebra [0, 1]L = ([0, 1], ⊗, ⇒, 0, 1)1

whose universe is the set of all rational numbers of the form
n/m where m, n ∈ N, m > 0, n ≤ m, and every prime
which divides m is in X. Let W(X, n) = WX ⊕ · · · ⊕ WX,
n + 1 times, and let V(X, n) denote the variety generated by
W(X, n). We prove that, for n, m > 0, V(X, n) ⊆ V(Y, m)
iff n ≤ m and X ⊆ Y .

The right-to-left implication is trivial, because W(X, n)
is a subalgebra of W(Y, m).

For the other direction, if n > m, then by Propositions
2 and 3 every member of HSPu(W(Y, m)) has m + 1 Wajs-
berg components at most, whereas W(X, n) is a subdirect-
ly irreducible member of V(X, n) with n + 1 components.
Hence there is a subdirectly irreducible element in V(X, n)\
V(Y, m), and the claim follows.

If X �⊆ Y , then let p ∈ X\Y .As usual, let (n)x = x⊕ n· · ·
⊕x. Then the fact that 1/p is not in WY can be expressed
by the universal formula ∀x ∼ (¬x = (p − 1)x), where ∼
denotes negation in classical logic. Hence the above formula
is true in WY and not in WX. It follows that WX /∈ ISPu(WY ),
and by Theorem 1, W(X, n) /∈ HSPu(W(Y, m)), and once
again the result follows.

Summing up, when X ranges over all non-empty sets of
prime numbers, V(X, n + 1) describes an uncountable set
of subvarieties of BL(n + 1) which are not subvarieties of
BL(n). �


Notation. There are several equivalent presentations of BL-
algebras. In this paper we assume a BL-algebra A to be an
algebraic structure of the form (A, ∧, ∨, ∗, →, 0, 1), where
(A, ∧, ∨, 0, 1) is a bounded lattice, (A, ∗, 1) is a commuta-
tive monoid with the unit element 1, and (∗, →) is an adjoint
pair satisfying the divisibility condition x ∧y = x ∗ (x → y)
and pre-linearity (x → y) ∨ (y → x) = 1. The correspond-
ing negation operation is defined as ¬x = x → 0 and the
equivalence operation as x ↔ y = (x → y) ∧ (y → x).

3 Subvarieties of BL generated by single-component
chains

Taking into account that any (saturated) BL-chain is an ordi-
nal sum (of BL-algebras) of copies of Wajsberg, Gödel and

1Recall that for all x, y ∈ [0, 1], x ⊗ y = max(0, x + y − 1) and
x ⇒ y = min(1, 1 − x + y). Further, ¬x = x ⇒ 0 = 1 − x and
x ⊕ y = ¬x ⇒ y = min(1, x + y).
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Product chains, we will call a single-component BL-chain
any BL-chain which is either a Gödel, Wajsberg or Product
chain (that is, it is not an ordinal sum of more than one com-
ponent). In [CEGT], an equation denoted (L�G), which is
only satisfied for single-component BL-chains, is introduced.
The variety defined by the equations of BL plus this equa-
tion is called Ł�G and is the least variety containing Ł,
� and G. In that paper equational characterizations are also
provided for Ł�, the least variety containing Ł and �, for
�G, the least variety containing � and G, and for ŁG, the
least variety containing Ł and G.

In [DNEGGS] a full description and equational charac-
terizations of all subvarieties generated by a family of single-
component BL-chains is given and they are shown to coin-
cide with the subvarieties of Ł�G. The content of this section
summarizes the results of that paper. The first subsection is
devoted to recall the well-known equational characterization
of the subvarieties of Product, Gödel and MV varieties, while
the structure of the lattice of subvarieties and the equational
characterization of all subvarieties of Ł�G is presented in
the second subsection.

3.1 Gödel, Product and Wajsberg subvarieties and their
equational characterization

We review here which are the subvarieties of the three basic
varieties, i.e. the variety of Gödel algebras G, the variety of
Product algberas � and the variety of Wajsberg algebras
Ł. Recall that Gödel algebras are BL-algebras satisfying the
equation

x = x ∗ x,

Wajsberg algebras2 are BL-algebras satisfying the equation

x = ¬¬x

and Product algebras are BL-algebras satisfying

x ∧ ¬x = 0

¬¬z → ((x ∗ x → y ∗ z) → (x → y)) = 1

The case of � is very simple since, as proved by Cignoli
and Torrens in [CT], the only proper subvariety of � is the
variety of Boolean algebras B. It is also known that the lattice
(chain in this case) of subvarieties of G is characterized by
the following results (see e.g., [HK,Go]).

Theorem 3 (1) The variety G is the variety generated by any
infinite Gödel chain and it is defined from the equations of
BL by adding the equation

x → x ∗ x = 1 (G)

(2) The set of subvarieties of G is the set {Gn | n ≥ 2}
where Gn is the variety generated by the finite Gödel

2In fact, Wajsberg algebras were introduced in [RT] using ¬ and →
as primitive operations, but this presentation is definitionally equivalent
to our presentation using the operations of BL-algebras.

chain with cardinal equal to n. Gn contains all Gödel
chains of length at most n and it is equationally defined
by the equations of G plus the equation
∨

i=1,2,... ,n

(xi → xi+1) = 1 (Gn)

(3) B = G2 ⊂ G3 ⊂ G4 ⊂ . . . Gn . . . ⊂ G.

Although these results are well-known, let us comment some
basic facts. First, all infinite Gödel chains satisfy the same
equations since each one of them generates the full variety
G. On the other hand, a Gödel chain with at most n elements
satisfies the equation (Gn) while chains with more than n
elements do not satisfy it. Finally, notice that G2 coincides
with the two element Boolean algebra B.

The rest of the subsection focuses on the subvarieties of
Wajsberg algebras, also known after Chang’s work as MV-
algebras. Actually, it is well known that, although they use
different languages, they are definitionally equivalent and
we will use both names indistinctly. The usual language of
MV-algebras uses Lukasiewicz product (⊗) and sum (⊕) as
main operators. Lukasiewicz product corresponds to the ∗
operation of the BL-algebra, while the addition is given by
x ⊕ y = ¬x → y, which in the particular case of MV-alge-
bras it is also equivalent to ¬(¬x∗¬y). The following results
will be expressed in the language of MV-algebras, as found in
the literature, and after they will be rewritten in the language
of BL-algebras.

In [K], Komori gave a complete description of the lattice
of all subvarieties of Ł. He proved that all subvarieties are
generated by their chains and they are finitely axiomatizable.
Indeed, Grigolia in [GR] gave an axiomatization of the vari-
eties generated by each finite MV-chain, and Rodríguez and
Torrens in [RT] gave finite axiomatizations for the subva-
rieties generated by finite families of finite MV-chain, both
using Wajsberg axioms. Finally, following Grigolia’s work,
Di Nola and Lettieri gave in [DNL2] an equational character-
ization of all varieties of MV-algebras. In the following we
describe the subvarieties and their axiomatizations.

First of all, Komori proved that every subvariety of Ł
has a finite set of generators. Every generator is a finite chain
Sn =

{
0, 1

n
, . . . , n−1

n
, 1
}

or an infinite chain Sw
n = �((Z ×

Z), (n, 0)), where � is the Mundici functor [CDOM] between
MV-algebras and lattice-ordered abelian groups with strong
unit. Here Z is seen as the totally ordered additive group of
integers, and Z×Z is the lexicographic product of Z by itself.
Thus, Sw

n = {
(x, y) : x ∈ { 1

n
, . . . , n−1

n

}
, y ∈ Z

} ∪ {(0, y) :
y ∈ Z

+} ∪ {(1, −y) : y ∈ Z
+} ∪ {(0, 0), (1, 0)}, where

Z
+ = 1, 2, . . . ; furthermore notice that Sn = �(Z, n) ⊂ Sw

n .
Actually Komori ([K, Theorem 4.11]) proved that if a sub-

variety W of Ł is proper, then there exist two sets of integers
I = {α1, . . . , αs} and J = {β1, . . . , βt } such that I ∪ J
�= ∅ and W = V(Sα1, . . . , Sαs

, Sw
β1

, . . . , Sw
βt

)3. Moreover, Di
Nola and Lettieri [DNL2] proved that it is possible to assume,
if I �= ∅, α1 < α2 < · · · < αs such that αi is not a divisor

3As usual, V(A1, . . . , An) denotes the subvariety of Ł generated by
A1, . . . , An.
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of αj whenever i < j ≤ s; if J �= ∅, β1 < β2 < · · · < βt

such that βi is not a divisor of βj whenever i < j ≤ t ; if
both I �= ∅ and J �= ∅, αi is not a divisor of βj for every
i = 1, . . . , s and j = 1, . . . , t . Note that if αi is a divisor of
βj , then Sαi

⊂ Sβj
⊂ Sw

βj
.

The finite equational characterization of every subvariety
of Ł provided by [DNL2] is given in the next theorem. For
every i ∈ Z

+, we set

δ(i) = {n ∈ Z
+ : n is divisor of i}.

Furthermore, if J is a nonempty finite subset of Z
+ and i =

2, 3, . . . , we put

�(i, J ) = δ(i) \ ∪j∈J δ(j).

In the case that J=∅, then we define �(i, J) = δ(i).

Theorem 4 [DNL2] Let W be a proper subvariety of Ł.
Then there exist finite sets I and J of integers of Z

+, with I ∪
J �= ∅, such that A ∈ W iff A satisfies the following equations:

(1) ((n + 1)(xn))2 = 2(xn+1), where n = max{I ∪ J };
(2) (p(xp−1))n+1 = (n + 1)(xp), for every positive integer

1 < p < n such that p is not a divisor of any i ∈ I ∪ J ;
(3) if I �= ∅, (n + 1)(xq) = (n + 2)(xq), for every q ∈

∪i∈I�(i, J ).

In this theorem, as usual, xn denotes x∗ n. . . ∗x and nx
denotes x⊕ n. . . ⊕x.

Example 1 The variety V(Sw
4 ) is defined by the following

equations:

(5x4)2 = 2x5;
(3x2)5 = 5x3;
This corresponds to I = ∅ andJ = {4}.The variety V(Sw

3 , Sw
4 )

is defined by the single equation:

(5x4)2 = 2x5;
This corresponds to I = ∅ and J = {3, 4}. Finally, the variety
V(S5, S

w
8 , Sw

12) is defined by the following equations:

13x12)2 = 2x13;
(7x6)13 = 13x7;
(9x8)13 = 13x9;
(10x9)13 = 13x10;
(11x10)13 = 13x11;
This corresponds to I = {5}, J = {8, 12} and �(5, J ) = {5}.

�

The above equations by Di Nola and Lettieri are given

using the operations of MV-algebras. In order to obtain the
equations of the subvarieties generated by a single-compo-
nent BL-chain, we will need to translate them into equations
using operations of BL. Namely, the equations appearing in
(1), (2) and (3) of Theorem 4 can be equivalently written
using only ∗ and ¬ as follows:

[¬((¬(xn))n+1)]2 ↔ ¬((¬(xn+1))2) = 1 E1(n)

[¬((¬(xp−1))p)]n+1 ↔ ¬((¬(xp))n+1) = 1 E2(n, p)

¬((¬(xq))n+1) ↔ ¬((¬(xq))n+2) = 1 E3(n, q)

3.2 Subvarieties of Ł�G

As already mentioned, the least variety containing Ł, �
and G called Ł�G has been equationally characterized in
[CEGT] by the equations of BL plus the following equation:

(x → x ∗ y) → [(x → 0) ∨ y ∨
((x → x ∗ x) ∧ (y → y ∗ y))] = 1 (L�G)

It is easy to check that the only chains contained in Ł�G are
the single-component ones, i.e., chains in one of the varie-
ties Ł, � and G4. As a consequence we have that the class
of varieties generated by single-component chains coincides
with the full lattice of subvarieties of Ł�G. Next theorem
gives a full description of the subvarieties of Ł�G.

Theorem 5 The lattice of the subvarieties of Ł�G is the
direct product of the lattices of the subvarieties of Ł, �
and G. Moreover the sublattice of the subvarieties of Ł�,
ŁG and �G are the direct product of the lattice of the subva-
rieties of Ł and �, of Ł and G and of � and G respectively.

The following result is crucial in the proof of this theo-
rem: let V be a subvariety of Ł�G and let VL, V� and VG

the subvarieties of V containing the algebras of V satisfying
respectively the equations of Ł, � and G. Then:

(1) VL, V� and VG are the subvarieties obtained as the inter-
sections of V with Ł, � and G respectively, and they
determine univocally the variety V as subvariety of Ł�G.

(2) For each V1, V2 and V3, subvarieties of Ł, � and G
respectively, there exists a unique subvariety V of Ł�G
such that VL = V1, V� = V2 and VG = V3.

Therefore, the above theorem also provides a complete descrip-
tion of the lattice of subvarieties of Ł�G, which is depicted
in Fig. 1.

Taking into account that all subvarieties of Ł, � and G
are finitely generated, it follows that all subvarieties of Ł�G
are finitely generated as well. To obtain the equations of these
subvarieties (as subvarieties of Ł�G) we need to combine
the equations characterizing subvarieties of Ł, of G and �
that is:

¬¬x → x = 1 (L)

[¬((¬(xn))n+1)]2 ↔ ¬((¬(xn+1))2) = 1 E1(n)

[¬((¬(xp−1))p)]n+1 ↔ ¬((¬(xp))n+1) = 1 E2(n, p)

¬((¬(xq))n+1) ↔ ¬((¬(xq))n+2) = 1 E3(n, q)

x → (x ∗ x) = 1 (G)
∨

i=1,2,... ,n
(xi → xi+1) = 1 (Gn)

l(x ∧ ¬x) → 0 = 1 (�1)

(x → x ∗ x) → ((x → 0) ∨ x) = 1 (�3)

4For any non-trivial ordinal sum take two elements x, y from different
components such that 0 < x < y < 1 and at least one of them is non
idempotent. Then x → x ∗ y = x → x = 1, but (x → 0)∨ y ∨ ((x →
x ∗ x) ∧ (y → y ∗ y)) < 1 since x → 0 < y < 1, y < 1 and either
x ∗ x < x or y ∗ y < y.
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Fig. 1 Graph of subvarieties of Ł�G

Notation : Notice that all the equations written so far have
been deliberately written under the form “term = 1”. In this
way it will be easy to combine them and also will allow us
to use to a safe notation to refer to the left hand side terms of
these equations (the term that is not 1) by just adding the name
of a variable(s) to the corresponding label. That is, for in-
stance, L(x) will stand for ¬¬x → x, G(x) for x → (x ∗x),
and so forth for �1(x), �3(x) and Gn(x1, . . . , xn+1) respec-
tively.

Using this above notation, subvarieties of Ł�G are equa-
tionally characterized as follows. Let V be a subvariety of
Ł�G and let VL, V� and VG be as in (1). Then there exists
a set of equations {EVL

i (x) = 1 | i ∈ I1} characterizing VL

as subvariety of Ł; analogously, let {EV�

i (x) = 1 | i ∈ I2}
and {EVG

i (x) = 1 | i ∈ I3} be the set of equations defining
V� and VG as subvarieties of � and G respectively.

Theorem 6 With the above assumptions, V is the subvariety
of Ł�G determined by the equation
[

L(x) ∧
(
∧

i∈I1

E
VL

i (x)

)]

∨
[

�1(x) ∧ �3(x) ∧
(
∧

i∈I2

E
V�

i (x)

)]

∨
[

G(x) ∧
(
∧

i∈I3

E
VG

i (x)

)]

= 1.

Of course, in many cases, this is not the simplest equation
defining the subvariety. For example, the equational charac-
terization of the varieties Ł�, �G and ŁG given in [CEGT]
is much simpler. Namely, they consist of the equations of BL
plus the equation

x → (x ∗ y) = ¬x ∨ y (L�)

for the variety Ł�; the equation

(x ∧ ¬x) = 0 (�1)

and (L�G) for the variety �G; and the equation

(¬¬x → x) ∨ (x → x ∗ x) = 1 (LG)

and (L�G) for the variety ŁG. In [DNEGGS], the inter-
ested reader can find equational characterizations and lattice
descriptions for the particular cases of subvarieties of Ł�,
ŁG and �G.

An interesting remark is that all the equations used above
in the characterization of the subvarieties of Ł�G except
for (Gn), involve only one variable. In particular, the variety
�, as extension of Ł�G, can be characterized by the equa-
tions (�1) and (�3), both using only one variable. This is
obviously not true for characterizing � as subvariety of BL.

Notice also that the standard completeness results for the
logics corresponding to the varieties BL, Ł�G, Ł�, ŁG and
�G given in [CEGT] do not extend to arbitrary axiomatic
extensions of BL, in particular to arbitrary axiomatic exten-
sions of Ł�G. This is the case for example of Sn or Gn. In
fact there is no t-norm algebra belonging to these varieties
so it is impossible that the corresponding logics be standard
complete.

4 Varieties generated by t-norm algebras

In this section we study the subvarieties of BL generated
by a special class of BL-chains, called regular, containing
the standard BL-chains, that is, the BL-chains defined by a
t-norm and its residuum on [0, 1]. Mainly we prove that there
exist a special subset of them, called canonical regular BL-
chains with the property that for each regular BL-chain there
exists a canonical regular BL-chain defining the same sub-
variety. Moreover two different canonical regular BL-chains
define different subvarieties. In this section we give also two
algorithms. The first one, given two canonical BL-chains,
checks whether the subvariety generated by one chain is em-
beddable into the subvariety generated by the other. The sec-
ond algorithm, given a canonical BL-chain, finds a finite set
of equations defining the variety generated by the chain. From
a logical point of view, this means that we provide, for each
regular BL-chain, an effective method to find the axiomatic
extensions of BL defining a logic complete with respect to
the given BL-chain. In particular, in the t-norms setting this
means that we provide for each continuous t-norm, an effec-
tive method to find the axiomatic extensions of BL defining
the logic of the given continuous t-norm. Let A be a BL-alge-
bra and let V(A) denote the variety generated by A. In this
section we also prove that the set of subvarieties {V(A) | A
is a standard BL-chain} is countable while there are uncon-
tably many subvarieties of BL. Finally let us mention that
most of the proofs are not included but can be found in the
paper [EGM] that is the basic reference of this section. Only
a few alternative, shorter proofs of some results are included.
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4.1 Regular BL-chains and their generated varieties

In the decomposition of a standard BL-chain as an ordinal
sum of Wajsberg hoops, there is always a first component,
which is necessarily bounded, and any component appear-
ing in the decomposition is (isomorphic to) one of following
hoops:

2, the hoop defined on the set of two idempotent elements
{0, 1}, coinciding with the two-element Boolean algebra.

L, the hoop defined on [0, 1] by Lukasiewicz’s t-norm and
its residuum, and coinciding with the corresponding stan-
dard BL-algebra. (This is obviously a bounded hoop.)

C, the cancellative hoop defined on the semi-open interval
(0, 1] by the product t-norm and its residuum.

A BL-chain A is called regular if it is the ordinal sum
of Wajsberg hoops of the form L, C and 2, and A has a first
component (which is either L or 2). The class of regular BL-
chains will be denoted by REG. Obviously t-norm algebras,
those isomorphic to [0, 1]� = ([0, 1], min, max, �, →, 0, 1)
for some continuous t-norm �, are regular but there are reg-
ular BL-chains that are not t-norm algebras. Furthermore,
the subclass of REG consisting of those BL-chains which
are finite ordinal sums of Wajsberg hoops will be denoted by
Fin.

Definition 1 Let A ∈ REG. Then Fin(A) denotes the set of
all finite ordinal sums of Wajsberg hoops W0, . . . , Wn such
that the following conditions hold:

- Each Wi is isomorphic either to 2, or to C or to L.
- W0 is either 2 or L.
- There are components A0 < . . . < An of A such that

A0 is the first component of A, and for every i, if Wi is
isomorphic to L, then Ai is isomorphic to L, if Wi is iso-
morphic to C then Ai is isomorphic either to C or to L,
and if Wi is isomorphic to 2 then Ai is isomorphic either
to 2 or to L.

In the sequel, and to simplify notation, if � is any contin-
uous t-norm, then we will write Fin(�) for Fin([0, 1]�). The
last definition plays an important role, since it turns out that,
for any regular BL-chain A, the set Fin(A) fully determines
the variety generated by A.

First steps toward this result are given in the following
lemma, which is based on Proposition 3.

Lemma 1 Let A ∈ REG. Then:

(1) Every finitely generated subalgebra of A is a subalgebra
of at least one algebra in Fin(A).

(2) Every algebra in Fin(A) is in ISPu(A).
(3) ISPu(A) = ISPu(F in(A)).

Actually, from (3) of Lemma 1 one can check that V(A) =
V(F in(A)) for any A ∈ REG. Indeed, the following chain of
equalities hold: V(A) = V(ISPu(A)) = V(ISPu(F in(A)))
= V(F in(A)). But we can prove more than this. In fact we
are going to show that for any A, B ∈ REG, we have V(A) ⊆
V(B) iff Fin(A) ⊆ Fin(B).

To prove this characterization, what we actually do is,
given a regular BL-chain A, to characterise those regular
BL-chains in Fin which do not belong to Fin(A). We start
by considering the following terms:
eL(x) : (x → x2) ∨ ((x → x3) → x2)

eC(x) : x → x2

e2(x) : (x → x3) → x2

where expressions of the form xm stand for abbreviations of
x � · · · � x, m times. Notice that:
– the equation eL(x) = 1 is valid in 2 and in cancellative

hoops and it is not valid in any MV chain with more than
two elements.

– the equation eC(x) = 1 is valid in 2 and it is not valid
either in any MV chain with more than two elements or
in non-trivial cancellative hoop.

– the equation e2(x) = 1 is valid in any cancellative hoop
and it is not valid either in 2 or in any MV chain.
This leads us to define an equation associated to each BL-

chain of Fin. Namely, let A = ⊕
i=0,n Ai ∈ Fin, and for

each i = 0, . . . , n let eA
i be eL if Ai is an MV algebra with

more than two elements, be eC if Ai is a non-trivial cancella-
tive hoop, and be e2 if Ai is 2. Then we define the following
equation:

(eA) :

[(
∧

i=0...n−1

((xi+1 → xi) → xi)

)

�

(¬¬x0 → x0) →
(
∨

i=0...n

xi

)]

∨
[
∨

i=0...n

eA
i (xi)

]

= 1.

By construction, the equation (eA) is not valid in A (Hint: take
a sequence of values 0 ≤ x0 < x1 < · · · < xn < 1 such that
for each i = 0, ..., n, xi ∈ Ai . Hence (

∧
i=0...n−1((xi+1 →

xi) → xi) ) � (¬¬x0 → x0) = 1, but
∨

i=0...n xi = xn < 1
and eA

i (xi)) < 1 for all i = 0, ..., n.) Moreover, it is not
difficult to prove the following stronger result.

Lemma 2 Let D ∈ REG, and let A ∈ Fin. Then the equa-
tion (eA) is valid in all B ∈ Fin(D) iff A �∈ Fin(D).

Theorem 7 Let D, E ∈ REG. Then V(D) ⊆ V(E) iff
Fin(D) ⊆ Fin(E). Thus, in particular, V(D) = V(E) iff
Fin(D) = Fin(E)

Proof One direction is easy. If Fin(D) ⊆ Fin(E) then
V(D) = V(F in(D)) ⊆ V(F in(E)) = V(E).As for the other
direction, assume V(D) ⊆ V(E) and Fin(D) �⊆ Fin(E).
Then there is A ∈ Fin(D) and A �∈ Fin(E). Then, by
Lemma 2, the equation (eA) will be valid in Fin(E), hence in
V(F in(E)) = V(E), hence in V(D), hence in Fin(D). Now,
again by Lemma 2, A �∈ Fin(D), contradiction. �


By using (3) of Lemma 1, a consequence of this result
is that, for any A, B ∈ REG, A ∈ V(B) iff A ∈ ISPu(B).
Hence if A satisfies all equations valid in B, it also satisfies
all universal formulas valid in B.
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4.2 Canonical regular BL-chains and embedding algorithm

Thanks to Theorem 7, in the first part of this section we show
that regular BL-chains admit a kind of canonical form, in
terms of their generated varieties, as finite ordinal sums whose
components may be either basic components (i.e. 2, C, L
components) or complex components consisting in turn of
ordinal sums of infinite copies of 2, C, � = 2⊕C and L com-
ponents. This canonical representation is used in the second
part of the section to develop an algorithm to check when the
variety generated by a regular BL-chain A is included in the
variety generated by another regular BL-chain B.

In the sequel, C∞ denotes the ordinal sum of ω copies
of C, �∞ denotes the ordinal sum of ω copies of �, and
L∞ denotes the ordinal sum of ω copies of L. (Recall that G
denotes in fact the ordinal sum of continuum many copies of
2.)

The proofs of next lemmas, propositions and theorems
mainly use the result of Theorem 7 and also that of Lemma
2, that is, they are proved by computing the set of Fin(A)
for the different regular BL-chains appearing in them.

Lemma 3 Let B ∈ REG. Assume B = D ⊕ A ⊕ D′, with D
and D′ possibly empty. If A has no L component, then:

(1) If A has infinitely many 2 components and no C compo-
nent, then V(B) = V(D ⊕ G ⊕ D′).

(2) If A has infinitely many C components and no 2 compo-
nent, then V(B) = V(D ⊕ C∞ ⊕ D′).

(3) If A has infinitely many alternations5 of C and 2, then
V(B) = V(D ⊕ �∞ ⊕ D′).

If A has infinitely many L components, then:

(4) V(B) = V(D ⊕ L∞).

Moreover in this last case, if the first Wajsberg component
of B is L then V(B) = BL, otherwise V(B) = SBL.

Definition 2 A regular BL-algebra H is said to be canonical
iff either H = L∞, or H = 2 ⊕ L∞, or H is a finite ordinal
sum of components of the form L, 2, G, C, C∞ and �∞, where

(1) each component G is not preceded and not followed by 2
or by another G;

(2) each component C∞ is not preceded and not followed by
C or by another C∞.

(3) each component �∞ is not preceded and not followed by
2, G, C, C∞ or by another �∞.

Theorem 8 For every regular BL-algebra H there is a canon-
ical regular BL-algebra K such that V(H) = V(K).

The proof is done case by case. For regular chains having
infinite number of L components the result is easy. For the
case of regular chains having a finite number ofL components

5We say that A = ⊕
i∈I Ai , with Ai ∈ {C, 2} for all i, has infinitely

many alternations of C and 2 if for every n ∈ N there are i0 < i1 <
· · · < in ∈ I such that for j = 0, . . . , n− 1, if Aij = C then Aij+1 = 2,
and if Aij = 2, then Aij+1 = C.

the result is obtained proving first that the number of these
components must be the same and then studying the ordinal
sums contained in between two adjacent L components.

Next theorem proves that two different canonical BL-
chains generate different varieties.

Theorem 9 Let H = ⊕
i=0,n Hi and K = ⊕

i=0,m Kj be
two canonical regular BL-chains. Then V(H) = V(K) if and
only if n = m and Hi = Ki for each i = 1, . . . , n.

This theorem means that there are as many subvarieties of
BL generated by regular BL-chains as canonical regular BL-
chains. Since canonical regular BL-chains are finite ordinal
sums of components belonging to the set {L∞, L, 2, G, C, C∞,
�∞}, we obtain as a corollary that the set varieties gener-
ated by single regular BL-algebras is countable. Since t-norm
algebras are regular algebras, the set of varieties generated
by single t-norm algebras is obviously countable as well6.

The results about canonical regular BL-chains can be
particularized to t-norm (standard) BL-chains, the (regular)
chains defined on [0, 1] by a continuous t-norm and its
residuum. Actually, due to Lemma 3, if we restrict ourselves
to t-norm algebras, it turns out that their corresponding canon-
ical regular algebras are indeed t-norm algebras (i.e., ordinal
sums of G, � and L components) with the only exception
of those t-norm algebras that generate the whole subvariety
SBL (those with infinitely-many L components but not start-
ing with L): 2 ⊕L∞ is not a t-norm algebra, so it is replaced
by � ⊕ L∞, that also generates the variety of SBL-algebras.
So, we introduce the following definition.

Definition 3 A BL-chain A is said to be a canonical t-norm
algebra iff either A = L∞, or A = � ⊕ L∞, or A is a finite
ordinal sum of components of the form L, �, G and �∞,
where each component G is not preceded and not followed
by another G, and each component �∞ is not preceded and
not followed by G, or by � or by another �∞.

As an example, it is easy to check that 2 ⊕�∞ ⊕G ⊕C∞
is not a canonical regular algebra, while L⊕C ⊕L⊕�∞ is a
canonical regular algebra but not a canonical t-norm algebra.
Finally, G ⊕ L ⊕ �∞ is indeed a canonical t-norm algebra.

If � is a continuous t-norm, let us say that � is canoni-
cal if the corresponding BL-chain [0, 1]� is canonical in the
above sense. Then for t-norm algebras, Theorem 8 becomes
as follows.

Theorem 10 For every continuous t-norm � there is a canon-
ical continuous t-norm ◦ such that V([0, 1]�) = V([0, 1]◦).

From these results we can define an easy algorithm to
decide, given two canonical BL-chains A and B, whether
one has A ∈ V(B), or equivalently whether V(A) ⊆ V(B).
Note that this occurs just when A can be embedded into an
ultrapower of B, hence in this case A satisfies not only all

6Indeed, this result for t-norm algebras was already known, actually
in [Ha] it is shown that every variety generated by a t-norm BL-algebra
is Co-NP complete, and there are only countably many Co-NP complete
sets.
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identities valid in B, but also all universal formulas which are
valid there. So the algorithm really checks if A ∈ ISPu(B).
Thus our algorithm is called embedding algorithm. In the
following we write D � E for D ∈ ISPu(E), for D and E
considered as Wajsberg hoops. The following facts about the
embedding relation � are the basis of the algorithm:

1. C � L and 2 � L.
2. If E is any finite ordinal sum of linearly ordered hoops

from the set {�∞, G, C, C∞, 2}, the first one bounded,
then L �� E.

3. If E is any finite ordinal sum of G, C, C∞ and 2, then
E � �∞.

4. If E is any finite ordinal sum of components isomorphic
to 2, then E � G.

5. If E is any finite ordinal sum of components isomorphic
to C, then E � C∞.

6. If E is any finite ordinal sum of C, C∞, 2, L and G, then
�∞ �� E.

7. If E is any finite ordinal sum of 2, L, C and C∞, then
G �� E.

8. If E is any finite ordinal sum of 2, L, C and G, then C∞ ��
E.

9. If E is any ordinal sum of two or more linearly ordered
hoops, then E �� L, E �� C and E �� 2.

Using this and Proposition 3, a linear algorithm can be
devised to check, given two canonical regular BL-chains A
and B, whether A ∈ V(B). The main steps are the following,
for full details consult [EGM].
Embedding algorithm.

- If B = L∞, then A ∈ ISPu(B).
- If B = 2 ⊕ L∞, then A ∈ ISPu(B) iff A is of the form

2 ⊕ H (i.e., if the first component of A is not L).
- If A ∈ {L∞, G ⊕ L∞} and B /∈ {L∞, G ⊕ L∞}, then

A /∈ ISPu(B).
- It remains to consider the case where A = ⊕n

i=0 Ai and
B = ⊕m

j=0 Bj , where for all i ≤ n and for all j ≤
m, Ai , Bj ∈ {2, L, G, C, C∞, �∞}. In this case what we
do is to succesively check for each index i = 1, . . . , n
whether there exists the minimum index ji ≤ m such that
⊕i

k=0 Ai � ⊕ji

j=0 Bj but
⊕i

k=0 Ai �� ⊕ji−1
j=0 Bj . If for a

first index i the corresponding index ji does not exist it
means that A �∈ ISPu(B) since one has

⊕i
k=0 Ai �� B,

hence A �∈ V(B). Otherwise, if for each i we can find
such a ji , then we can assure that A ∈ V(B).
Two remarks are in order here:
Remark 1: recall that for i = 0, � is meant as embed-
ding of BL-algebras, hence if A0 = L �= B0 then directly
A �∈ V(B).
Remark 2: assume we have found the index ji for i =
0, . . . , k and now we have to look for jk+1. If Ak⊕Ak+1 �
Bjk

still holds then jk+1 = jk . Otherwise, jk+1 = min{j |
j > jk, Ai+1 � Bj }.

Notice that, in particular, if both A and B contain finitely-
many L components, then a necessary condition for having
A ∈ V(B) is that B must have at least as many L components
as A has.

Example 2 Consider the canonical regular algebras A = 2⊕
2 ⊕ L ⊕ 2 ⊕ C∞ ⊕ G (n = 5) and B = �∞ ⊕ L ⊕ �∞
(m = 2), and let us check whether A ∈ V(B) using the
above algorithm. It turns out that j0 = j1 = 0, j2 = 1 and
j3 = j4 = j5 = 2. Hence A ∈ V(B).

Now consider the algebras A = 2⊕L⊕C⊕2(n = 3) and
B = �∞ ⊕L⊕G ⊕C∞(m = 3) and let us run the algorithm
again. In this case, j0 = 0, j1 = 1, j2 = 3 but j3 is undefined
since 2 ⊕ L ⊕ C � �∞ ⊕ L ⊕ G ⊕ C∞ but 2 �� C∞. �


4.3 Axiomatization of varieties generated by a regular
BL-chain

In the rest of the section, given A ∈ REG, we denote by A⊥
the set Fin\Fin(A). Moreover, given M ⊆ REG we denote
by Min(M) the set of minimal elements of M with respect
to the embedding relation � (i.e., B � D iff B ∈ ISPu(D)).
In particular, the sets Min(A⊥), for A ∈ REG, will play a
major role in the rest of this section.

The relation � can be extended to classes of algebras: if
M and M′ are two classes of algebras, we shall write M � M′
iff for all D ∈ M′ there exists B ∈ M such that B � D. For
instance, for any A ∈ REG, we have Min(A⊥) � A⊥.

To present the first main result we need first a previous
lemma.

Lemma 4 Let M, M′ ⊆ Fin such that M � M′. Then, every
algebra which satisfies the set of equations {(eD) | D ∈ M}
will also satisfy the equations {(eE) | E ∈ M′}.

Theorem 11 Let A be a regular BL-chain. Then:

(1) V(A) is axiomatized by AX(A) = {eB : B ∈ A⊥}.
(2) V(A) is axiomatized byAX0(A) = {eB : B ∈ Min(A⊥)}.

Proof We prove (1), (2) is an easy consequence of (1) and
Lemma 4.

If D ∈ A⊥, then by Lemma 2, eD is valid in (every
element of) Fin(A), hence it is valid in every element of
V(F in(A)) = V(A). It follows that every member of V(A)
satisfies AX(A). As for the other direction, assume B is a
BL-chain that satisfies AX(A). We have to prove that B ∈
V(A). Assume B �∈ V(A). By Theorem 7, it follows that
Fin(B) �⊆ Fin(A). Hence there exists a regular D ∈ Fin(B)
and D �∈ Fin(A). Then, on the one hand, since D ∈ Fin(B),
by Lemma 2 it follows that the equation eD is not valid in
Fin(B). On the other hand, since D �∈ Fin(A), we have
eD ∈ AX(A). Therefore, by hypothesis, B satisfies eD, and
therefore eD is valid in Fin ∩ ISPu(B) = Fin(B). Contra-
diction. �
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It only remains to show that for any regular BL-chain A
(thus for any t-norm algebra too), V(A) is finitely axiomatiz-
able. Due to the previuos theorem, it is enough to show that,
for any canonical regular BL-chain A, Min(A⊥) is always
finite. This is shown in full detail in [EGM] in a case by case
basis. Actually, what is described is a general procedure to
find all the elements of Min(A⊥), showing that in any case
there are only finitely many. Thus, we do not only derive
that V(A) is finitely axiomatizable but also, and very impor-
tant, we can obtain the equations axiomatizing V(A) as a
BL-extension.

The procedure of finding Min(A⊥) can be thought as
expanding a tree, where the root node is the empty ordinal
sum, and each node is an ordinal sum that corresponds to
a possible expansion (with a 2, C or L component) of its
parent. The basic idea of the tree building procedure is that
nodes are successively expanded until it is checked they do
not belong to Fin(A). From them, only those which are min-
imal are kept. During the expansion process, nodes can be
closed (i.e., their branches are pruned) as soon as they are
checked to embedd another currently open node. The algo-
rithm described below makes use of the following notion of
degree of maximal embeddability of one algebra into another
one.

Definition 4 Let A be a canonical regular BL-chain, with
A = A1 ⊕ ... ⊕ An, where Ai ∈ {2, C, G, C∞, �∞, L}, for
i = 1, . . . , n. Let B ∈ Fin. Then the degree of “maximal
embeddability” of B in A is defined as follows:

g(B � A) =





k, if B ∈ Fin(A1 ⊕ · · · ⊕ Ak) and
B �∈ Fin(A1 ⊕ · · · ⊕ Ak−1)

n + 1, if B �∈ Fin(A)

where obviously k ≤ n.

In the following description we useU∅ to denote the empty
ordinal sum, and by convention we take g(U∅ � A) = 0 for
any A.

procedure f ind Min⊥(A)
% input: A = A1 ⊕ ... ⊕ An, canonical regular BL-chain,
% – where A1 ∈ {�,L, 2,G, �∞} and
% Ai ∈ {C, �,L, 2,G,C∞, �∞} for i > 1 –
% output: minimal list
% – list in which minimal elements of A⊥ are stored –
% auxiliary list: open list
% – list containing nodes to be expanded –

n = length(A); open list = [U∅]; minimal list = [ ];
do while open list �= [ ]

U = f irst (open list); k = g(U � A);
if k = 0 then expanded nodes = {U ⊕ 2,U ⊕ L};
if 0 < k < n then

expanded nodes = {U ⊕ 2,U ⊕ C,U ⊕ L};
if k = n then expanded nodes = {U ⊕ 2,U ⊕ C};
for all U ′ ∈ expanded nodes do

l = g(U ′ � A);
if l = 1 or (1 < l ≤ n and and Al �= �∞) then

open list = update(open list,U ′);

if l = n + 1 then
minimal list = update(minimal list,U ′);

end for
open list = remove(open list,U);

end do
end procedure
function update(list,U)
% inputs: list to be possibly updated with node U
% output: list after being updated

for all W ∈ list do
if g(W � A) = g(U � A) then do

if W � U then return list ;
if U ≺ W then list = remove(list, W);

end do
end for
list = append(list,U); return list ;

end function

As an example, let us consider a continuous t-norm � iso-
morphic to G ⊕ L ⊕ �∞ ⊕ L. The above procedures yield
the expanded tree of Fig. 2, where one can get Min(�⊥) =
{L, 2 ⊕ C ⊕ L ⊕ 2, 2 ⊕ C ⊕ L ⊕ C}.

5 Varieties generated by ordinal sums of finitely many
Wajsberg hoops

In this section we move from varieties generated by regular
BL-chains, i.e., ordinal sums whose Wajsberg components
can be either L, 2 and C, to varieties generated by BL-chains
which are ordinal sums of finitely many (arbitrary) Wajsberg
hoops.

We start from the following observation. Let A = ⊕n
i=0 Ai

be a linearly ordered BL-algebra, where A0 is a linearly or-
dered Wajsberg algebra and for i > 0, Ai is a linearly ordered
Wajsberg hoop. Let V(A) be the variety generated by A. Re-
call that by Theorem 1 the subdirectly irreducible members
of V(A) are in

HSPu(A0) ∪ (ISPu(A0) ⊕ HSPu(A1)) ∪

· · · ∪ (

n−1⊕

i=0

ISPu(Ai ) ⊕ HSPu(An)).

Since the behavior of the operators ISPu and HSPu on line-
arly ordered Wajsberg algebras and Wajsberg hoops are well-
known, the above result will allow us to describe the contain-
ment relation on varieties of BL-algebras generated by finite
ordinal sums of linearly ordered Wajsberg hoops. We recall
some known definitions and results.

The radical of aWajsberg algebra A, Rad(A), is the inter-
section of all maximal filters of A. It is easily shown that the
radical of a Wajsberg algebra is a cancellative subhoop of A.
We say that the rank of A is n if A/Rad(A) is isomorphic
to the Wajsberg chain of n + 1 elements, denoted by Wan. If
A/Rad(A) is infinite, then we say that A has infinite rank.
For every Wajsberg algebra A of finite rank n, let d(A) denote
the greatest k such that Wak is embeddable into A. (That d(A)
is finite when rank(A) is finite follows from [Gi]). Finally,
for k > 0, we say that 1

k
is in A iff Wak is embeddable in A.

We say that every rational in A is in B if for every k > 0, if
1
k

is in A, then it is also in B.
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Fig. 2 Expanded tree for � = G ⊕ L ⊕ �∞ ⊕ L

We define two relations � and � on Wajsberg algebras
and on Wajsberg hoops as follows:
(1) If D is a non-trivial linearly ordered cancellative hoop,

then C � D iff C � D iff C is a cancellative hoop.
(2) If D has infinite rank, then C � D always, and C � D iff

C is either a cancellative hoop, or every rational in C is
in D. (see [Gi]).

(3) If D is infinite and has finite rank m, then C�D iff either C
is a cancellative hoop or rank(C) divides m. Moreover,
C � D iff either C is cancellative or rank(C) divides
rank(D) and d(C) divides d(D).

(4) If D is finite, say D = Wan, then C � D iff C � D iff
C = Wam for some m which divides n.
We recall the following results, which they are either

proved in, or follow easily from [F], [GMT] and [Gi], and
which are also recalled (with a different notation) in [AM].

Proposition 4 Let C, D be either linearly ordered Wajsberg
hoops or linearly ordered Wajsberg algebras. Then C � D iff
C ∈ HSPu(D), and C � D iff C ∈ ISPu(D).

As a consequence, we obtain:

Theorem 12 . Let A1, . . . , An, B1, . . . , Bm be linearly or-
dered (non-trivial) Wajsberg hoops, let A0, B0 be linearly
ordered (non-trivial) Wajsberg algebras, let A = ⊕n

i=0 Ai ,
B = ⊕m

j=0 Bj , and let V(A) and V(B) be the varieties gener-
ated by A and B respectively. Then V(B) ⊆ V(A) iff m ≤ n,
and there are 0 = i0 < i1 < . . . < im ≤ n such that for
j < m, Bj � Aij , and Bm � Aim .

Proof If the condition of Theorem 12 holds, then

B ∈
m−1⊕

j=0

ISPu(Aij ) ⊕ HSPu(Aim)

⊆ HSPu(

m⊕

j=0

Aij ) ⊆ HSPu(A) ,

therefore V(B) ⊆ V(A). Conversely, if V(B) ⊆ V(A), then
every subdirectly irreducible member of V(B) is a subdirectly
irreducible member of V(A), therefore it is in

HSPu(A0) ∪
n⋃

k=1

(

k−1⊕

i=0

ISPu(Ai ) ⊕ HSPu(Ak)).

Now consider the BL-algebra D = ⊕m
j=0 Dj where for j <

m, Dj = Bj , and in addition:

(1) If Bm has infinite rank, then Dm is the (hoop reduct of
the) Wajsberg algebra [0, 1]L on [0, 1].

(2) If Bm is finite, then Dm = Bm.
(3) If Bm is cancellative, then Dm is the cancellative hoop

(0, 1] equipped with product and product residuation.
(4) If Bm is the reduct of an infinite Wajsberg algebra with

finite rank k, then Dm is the Chang algebra with rank k
generated by 1

k
and a positive infinitesimal ε.

Note that Dm is simple in cases (i), (ii) and (iii), and in case
(iv) it is subdirectly irreducible, with minimum non-trivial fil-
ter generated by 1−ε. Since the minimum non-trivial filter of
Dm is also the minimum non-trivial filter of D, it follows that
D is a subdirectly irreducible member of V(B). Hence D ∈
V(A), therefore D ∈ HSPu(A0) ∪⋃n

i=1(
⊕i−1

j=0 ISPu(Aj ) ⊕
HSPu(Ai )). Hence there are i0 = 0 < . . . < im ≤ n such
that Bm � Aim and for j < m, Bj � Aij as desired. �


6 The variety generated by perfect BL-algebras

The starting point of the present section is the observation
that in every BL-algebra A, one can consider the largest MV -
algebra MV(A) which is a subalgebra of A [ST]. Indeed, a
BL-algebra A is an MV -algebra iff ¬¬x = x for all x ∈ A,
where ¬x = x → 0. Recall that an operation of addition is
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defined in an MV -algebra A by setting x ⊕y = ¬(¬x ∗¬y)
for all x, y ∈ A.

From [ST] we know that in anyBL-algebra A = (A, ∧, ∨,
∗, →, 0, 1), the greatest MV -subalgebra of A is given by

MV(A) = (MV (A), ∧, ∨, ∗MV , ⊕MV , 0, 1),

where MV (A) = {¬x : x ∈ A}, via the following operations
[ST]:

¬x ∗MV ¬y = ¬x ∗ ¬y

¬x ⊕MV ¬y = ¬¬x → ¬y = ¬(x ∗ y) = ¬(¬¬x ∗ ¬¬y).

Moreover, in [CT2] it is shown that the mapping ¬¬ :
A → MV (A) is a morphism of BL-algebras, i.e., it preserves
the BL-algebra operations.

We shall explore the role of MV(A) in the class of BL-
algebras and its properties. What we expect is that giving
conditions on MV(A), we get informations on A, or by con-
sidering classes of MV-algebras we can induce the consider-
ation of interesting classes of BL-algebras. This is what we do
in the rest of this section, relating the properties (local or per-
fect) of a BL-algebra A with the properties (local or perfect)
of the corresponding MV-algebra MV(A), and studying these
types of BL-algebras and the varieties generated by them.

6.1 General results

Let A be a BL-algebra, MV(A) its greatest MV-subalgebra,
Filt (A) the set of all proper filters of A and Id(MV(A)) the
set of all proper ideals of MV(A)7. There is an interesting
interplay between Filt (A) and Id(MV(A)). Indeed, we can
map any element of Filt (A) into an element of Id(MV(A))
and viceversa. To show this, assume D to be a proper filter
of a BL-algebra A and P to be an ideal of MV(A). Then we
define:

¬D = {¬x ∈ MV (A) : x ∈ D},
P ¬ = {x ∈ L : ¬x ∈ P },
Rad(A) =

⋂
{F : F ∈ Filt (A), F maximal},8

M(MV(A)) =
⋂

{I : I ∈ Id(MV(A)), I maximal}
S(A) = {x ∈ A : ¬¬x ≥ ¬x}.

With these definitions, it easy to define a mapping from
Filt (A) to Id(MV (A)) and viceversa. Indeed we have the
following propoerties (see [DNSEGG] for proofs):

Proposition 5 Let A be a BL-algebra, D ∈ Filt (A) and
P ∈ Id(MV(A)). Then the following statements hold:

(1) ¬D ∈ Id(MV(A));
7Notice that in MV-algebras we can indistinctly deal with filters or

ideals since they are dual, but this is not the case in BL-algebras, since
the negation is not necessarily involutive. In the latter case, the suitable
theory is filter theory, which is in good correspondence with congru-
ences.

8Note that in MV-algebras literature Rad(A) usually refers to the
intersection of maximal ideals.

(2) (¬D)¬ ⊇ D;
(3) If D is maximal then ¬D is maximal and (¬D)¬ = D;
(4) P ¬ ∈ Filt (A);
(5) ¬(P ¬) = P ;
(6) If P is maximal then P ¬ is maximal;
(7) (M(MV(A)))¬ = Rad(A);
(8) Rad(A) ⊆ S(A);

Regarding the radical of BL-algebras, the following impor-
tant properties are proved in [DNSEGG].

Proposition 6 For any BL-algebra A the following condi-
tions hold:

(1) Rad(A) = {x ∈ A : ¬(xn) < x for all n};
(2) for all x ∈ A, ¬¬x → x ∈ Rad(A).

Finally, recalling that an MV -algebra A is semisimple
iff the intersection of its maximal ideals is {0}, we have the
following statement.

Proposition 7 Let A be a BL-algebra. Then A is a semisim-
ple MV -algebra iff Rad(A) = {1}.

6.2 Local BL-algebras

In the structure of certain types of algebraic systems one
attempts to classify the “atoms” of the theory, i.e., those alge-
bras from which the others are in somehow composed. One
usually tries first to classify the simple structures, those with
no proper homomorphic images. At next level of complexity
one studies the indecomposable ones, i.e. those algebras that
cannot be written as a non-trivial direct sum.

In the theory of MV-algebras the simple structures are,
up to isomorphism, subalgebras of the standard MV-alge-
bra [0, 1]. Such algebras are also called locally finite. Not
every MV-subalgebra, however, can be built up from the sim-
ple algebras. On the other hand, every MV-algebra can be
obtained subdirectly from products of MV-chains. It turns
out there are also non-linearly ordered indecomposable MV-
algebras, which we call local MV-algebras. Local MV-alge-
bras are just those MV-algebras having exactly one maximal
ideal (or equivalently, one maximal filter). Refinements of the
notion of local MV-algebra are given by perfect MV-algebras
and singular MV-algebras. We recall that an MV-algebra A
is said to be singular if there are x, y ∈ A of finite order9

such that x ∗ y ∈ M(A) \ {0}. A is said to be perfect if
and only if for every element a ∈ A exactly one of a and
¬a is of finite order. It happens that a perfect MV-algebra
A is a local MV-algebra which is generated by its unique
maximal ideal I . Actually we have that A = I ∪ ¬I , where
¬I = {¬x ∈ A | x ∈ I }.

Unfortunately the class of perfect MV-algebras does not
form a variety, in fact it is not closed under direct products.
However, it remains an interesting class, because the class

9The order of x is the smallest natural n for which nx = x⊕ n. . .
⊕x = 1. If it exists we write MV -ord(x) = n, otherwise we write
MV -ord(x) = ∞.
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of perfect MV-algebras, as a full subcategory of the category
of all MV-algebras, is equivalent to the category of abelian
lattice ordered groups [DNL1]. The variety V(Perf ) gener-
ated by all perfect MV-algebras can be equationally charac-
terized by the equation (2x)2 = 2(x2). Every element from
the variety V(Perf ) can be subdirectly represented by per-
fect MV-chains. We conclude this short report on local and
perfect MV-algebras by recalling that local MV-algebras can
be classified into three pairwise disjoint subclasses. Indeed,
any local MV-algebra is either perfect, or locally finite or
singular.

Bearing in mind the above described results for MV-alge-
bras, we try to parallel as much as possible the above theory
to BL-algebras.

In a BL-algebra A, the order of an element x ∈ A is

defined as the smallest natural n such that xn = x∗ n· · · ∗x =
0. In this case we put ord(x) = n, otherwise ord(x) = ∞
if no such n exists. By convention, we put x0 = 1 for any
x �= 0. We point out that although this notion of BL-order
does not coincide in general with the notion of MV -order
given before, it is easy to check that in any MV-algebra it
holds that MV -ord(x) = ord(¬x).

In [ST] the authors extend the notion of local MV-algb-
eras to BL-algebras by defining a BL-algebra to be local
if it has exactly one maximal filter, and they prove that a
BL-algebra A is local iff, for all x ∈ A, ord(x) < ∞ or
ord(¬x) < ∞. Then, like for MV-algebras, the class of local
BL-algebras can be partitioned in three pairwise disjoint sub-
classes. Strictly speaking a local BL-algebra A is said to be

(1) perfect iff, for all x ∈ A, ord(x) < ∞ iff ord(¬x) = ∞;
(2) locally finite iff, for all x ∈ A − {1}, ord(x) < ∞;
(3) peculiar iff there existx, y ∈ A−{0, 1}, such that ord(x) =

∞, ord(y) < ∞, ord(¬y) < ∞.

Indeed, a locally finite BL-algebra is a locally finite MV -
algebra ([T1], Theorem 1). Moreover, taking in account that
ord(¬x) = MV -ord(x) and ord(x) = ord(¬¬x) = MV -
ord(¬x) for all x ∈ A, we get:

Theorem 13 A local BL-algebra A is perfect iff MV(A) is
perfect.

Theorem 14 Let A be a local BL-algebra such that A �=
MV(A). Then A is peculiar iff MV(A) �= {0, 1} is either
singular or locally finite.

We illustrate Theorem 14 with the following examples:

Example 3 Let � : [0, 1]2 → [0, 1] be the continuous t-norm
defined as

x � y =
{

max{x + y − 1/2, 0} if x, y ∈ [0, 1/2],
x ∧ y otherwise.

� is the ordinal sum of the t-norm of Łukasiewicz and min
with respect to the intervals [0, 1/2] and [1/2, 1]. Its resid-
uum “→” is defined as

x → y =






1 if x ≤ y,

min{1/2, 1/2 − x + y} if y < x ≤ 1/2,

y otherwise.

By [H2], L = ([0, 1], ∧, ∨, �, →, 0, 1) is a t-norm alge-
bra, hence a BL-chain, which is actually peculiar. Further,
MV(L) = [0, 1/2) ∪ {1}, which is locally finite. �


Now we give an example of a peculiar BL-algebra L with
MV(L) being singular.

Example 4 Let N and R be the set of integers and real num-
bers, respectively. Let F be an ultrafilter of subsets of N

containing the cofinite subsets of N and R
∗ = R

N/F be
the ultrapower determined from F . Denote by L1 = [0, 1]∗
the unit interval of R

∗, structured as an MV -algebra with
the same operations which define the Łukasiewicz algebra
over [0, 1]. L1 is a singular MV -algebra [BDNL]. Now, let
L2 be the Chang’s MV -algebra [Ch] and let L = L1 ⊕ L2
be the ordinal sum of L1 with L2. Then L is peculiar and
MV(L) = L1 − {11} ∪ {1} is singular because is MV -iso-
morphic to L1. �


6.3 The variety generated by perfect BL-algebras

The class of perfect BL-algebras, although closed by homo-
morphic images and subalgebras, is not a variety. We can
consider the subvariety of BL-algebras generated by all per-
fect BL-algebras. Let us denote such a variety by P0. Then
we have:

Theorem 15 Let Each A ∈ P0 is a subdirect product of per-
fect BL-chains.

Using this result and the fact that any BL-chain satifies the
equation

¬
((¬(x2)

)2
)
=
(
¬((¬x)2

))2
(p0)

if and only if the chain is perfect, we obtain the following
equational characterization of P0

Theorem 16 The variety P0, generated by perfect BL-alg-
ebras, is the subvraiety of BL defined by the equation (p0).

Now we examine the generators of the variety P0.
By ([H2], Theorem 3), any BL-chain A can be isomor-

phically embedded into a saturated BL-chain A∞.

Theorem 17 If A is a perfect BL-chain, so is A∞.

By Theorem 15, the variety P0 has an infinite number
of generators which are the perfect BL-chains. By Theorem
17, we can choose perfect saturated BL-chains as generators
of P0, since a non-saturated BL-chain is a subalgebra of the
corresponding saturated BL-chain.
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On the other hand, according to [T2], we define a BL-
algebra A to be bipartite (resp. strongly bipartite) if A = M∪
¬M for some (resp. every) maximal filter M . Next theorem
characterizes these types of algebras and their relations to the
correspondign largest MV -subalgebras.

Theorem 18 A BL-algebra A is bipartite for a maximal filter
M if and only if S(A) ⊆ M . Moreover, A is strongly bipartite
if and only any of the following three conditions hold:

(1) S(A) = Rad(A)
(2) S(A) is a proper filter of A
(3) A/Rad(A) is a Boolean algebra

Theorem 19 Let A be aBL-algebra.Then A is (resp. strongly)
bipartite iff MV(A) is (resp. strongly) bipartite.

It turns out that the class of strongly bipartite BL-alge-
bras form a variety, indeed it can be checked that any linearly
ordered BL-algebra is strongly bipartite if and only it satisfies
the following set of equations:

[¬¬(xn) ∧ ¬x] ∨ [¬¬x ∧ (¬x)n] = ¬x ∧ ¬¬x,

for all n,

or equivalently, by this other set of equations

[¬(xn) ∨ x] ∧ [¬((¬x)n) ∨ ¬x] = x ∨ ¬x,

for all n.

The interesting thing is that the variety of strongly bipar-
tite algebras coincides with the variety P0 generated by the
class of perfect algebras.

Theorem 20 A BL-algebra A is strongly bipartite if and
only if A ∈ P0.

Finally we could ask ourselves about the class of bipartite
BL-algebras. This class is not a variety, it is only closed by
direct products and subalgebras. Actually, if a direct product
contains a component which is bipartite, the product itself
is bipartite. From this, it is easy to prove the following last
result.

Theorem 21 The variety generated by bipartite BL-algebras
is the full variety BL.
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