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Abstract. Hard c-means can be used for building classifiers in super-
vised machine learning. For example, in a n-class problem, c¢ clusters are
built for each of the classes. This results into n - ¢ centroids. Then, new
examples can be classified according to the nearest centroid.

In this work we consider the problem of building classifiers using fuzzy
clustering techniques. In particular, we consider the use of fuzzy c-means,
as well as some variations. Namely, fuzzy c-means with variable size and
entropy based fuzzy c-means.

Keywords: Clustering, Classification, Fuzzy c-means, Variable-size fuzzy
c-means, entropy-based fuzzy c-means.

1 Introduction

Clustering [6] and classification [3] are common tools in machine learning [g].
In both cases, sets of examples are considered. In supervised machine learning
there is a highlighted attribute that classifies the examples into categories. This
attribute determines the class of the examples. This is not the case of unsu-
pervised machine learning. In such framework, all attributes are considered as
equal, when knowledge is extracted.

Then, in supervised machine learning, tools have been developed for finding
models for the relevant attribute. That is, models are built that permit to assign
a class (i.e., assign a value to the relevant attribute) to each new example for
which such class is not known. Several different types of models exist based
on different assumptions. Examples include, neural networks, (fuzzy) rule-based
systems, statistical models, etc.

In unsupervised machine learning, methods have been developed to extract
knowledge from the data. Clustering is one of the tools used for extracting such
knowledge, as it permits to build structures in which similar objects are put
together in clusters.

Besides of this use of clustering as an unsupervised machine learning tool. Clus-
tering can also be used for supervised learning. For example, clustering has been
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used for building models based on the k-means [5] and for building fuzzy rules. In
this latter case, clustering is used to build (fuzzy) partitions of the examples.

In this paper we will consider the use of some fuzzy clustering techniques
[6,[IT] and their use in a classification tool. We propose a method to be used
with fuzzy c-means [2] and then we develop variations for the case of entropy-
based c-means and their variations with variable size.

The approach presented here includes the advantages that, from the concep-
tual view, present the alternative clustering methods against fuzzy c-means, and
this one with respect to k-means [11].

The structure of the paper is as follows. In Section[2] we review some clustering
techniques and an approach to build classification models. Then, in Section Bl we
introduce our approach for using fuzzy clustering techniques. Then, in Section [
we present an application and the experiments performed.

2 Clustering and Classification

In this section we give a review of some aspects of clustering and classifica-
tion that will be used later on in this work. First we consider a few clustering
algorithms, and then we show how to build classifiers using clustering methods.

Here, we consider n examples in a given p dimensional space. We will denote
these examples by z € RP for k = 1,...,n. When the class of each example is
known, we will denote this information as follows: k = {k1, ..., K.} corresponds
to the classes; || is the number of classes and k(zy), or simply &g, denotes the
class for example .

2.1 Fuzzy Clustering

As explained in the introduction, clustering methods are to obtain a set of clus-
ters from a set of examples. In this case, the only information considered is a set
of examples x; in a p dimensional space. Therefore, no information on the class
of xy is required here (although, as we will show latter, this information might
be available).

Some of the most well-known algorithms for clustering are the hard c-means
(also known as k-means) and the fuzzy c-means.

Both methods assume that we know a priori the number of clusters to be built.
Such number will be denoted here by the parameter c¢. Then, the algorithms find
a partition of the set of examples (the set {zx}) into ¢ different clusters. In hard
c-means the partition is a classical one. That is, examples are assigned to only
one cluster. Instead, in fuzzy c-means the partition is fuzzy. That is, examples
can belong at the same time to different clusters. In this case, the membership
to the clusters is not complete but only partial. This situation is modelled using
the so-called fuzzy sets and fuzzy memberships.

Here we will use u;; to denote the membership of element x; to the i-th
cluster. In the case of hard c-means as elements are either in the cluster or not
in the cluster, we have that u; is either 0 or 1 (boolean membership). Moreover,
as the elements can only belong to one cluster, we have that Y . ; u; = 1.



364 V. Torra and S. Miyamoto

Instead, in fuzzy clustering we have that as membership is partial we have that
u;, is in the interval [0,1]. In this latter case, u;, = 0 corresponds to non-
membership and wu;; = 1 corresponds to full membership to cluster i. Values
in-between correspond to partial membership (the largest the value, the greatest
the membership). Nevertheless, in this latter case, the constraint Y .- | u;, = 1is
maintaned. If this equality holds for all examples k, and we have that u, € [0, 1]
for all 7 and k, we say that u defines a fuzzy partition.

In this section we will review first the fuzzy c-means (FCM) algorithm. Then,
we will consider one of its variations: fuzzy c-means with variable size (VFCM).
And finally, we will also describe an alternative method for fuzzy clustering
known as entropy-based fuzzy c-means (EFCM).

Most fuzzy clustering algorithms are defined in terms of a minimization prob-
lem with some constraints. In the case of fuzzy c-means [2L[9], the minimization
problem is the following one:

Cc n
Trem(U, V) =Y (i)™ ||aw — vil? (1)
i=1 k=1
with constraints:
— Uk € [0, 1]
— > jui =1 for all k

For conciseness, we will denote the values u that satisfy these two constraints
by M.

With respect to the notation used above, we have that v; is recalled as the
centroid of the i-th cluster (cluster center/cluster representative), and that m
is a parameter (m > 1) that expresses the desired level of fuzziness. This is, m
determines the degree of fuzziness in the membership functions. With values of
m near to 1, solutions tend to be crisp (with the particular case that m = 1
corresponds to the crisp c-means). Instead, larger values of m yield to clusters
with increasing fuzziness in their boundaries.

Local optimal solutions of the fuzzy c-means problem are obtained using an
iterative process, that interleaves two steps. The first one that estimates the
optimal membership functions of elements to clusters (considering the centroids
as fixed) and another that estimates the centroids for each cluster (having the
memberships as constant). This process is defined as follows:

Step 1: Generate an initial U and V'
Step 2: Solve minyen J(U, V) computing:
° ka _U’LH2 7n1—1 -1
we = (2 ( )")
; lze — ;]2
Step 3: Solve miny J(U,V) computing:
o, = 2= (k)T
ZZ:1 (Uzk)m

Step 4: If the solution does not converge, go to step 2; otherwise, stop
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As the method leads to a local optimal, different initial values can lead to
different solutions.

The so-called entropy-based fuzzy c-means (EFCM) is an alternative fuzzy
clustering method (proposed in [I0], see also [I1]). The main difference between
fuzzy c-means and entropy-based fuzzy c-means is the way in which fuzziness is
introduced. In this case, a parameter A (A > 0) is used to force a fuzzy solution.
Formally speaking, the method is defined in terms of the optimization of the
following objective function:

n

JEFCM(UV ZZ{ulkak_UZHQ—’_)‘ ulklogum} (2)
k=11i=1

Again, the objective function is subject to the constraints u;;, € [0,1] and
S uik =1 for all k.

The parameter A plays a role similar to m in fuzzy c-means. Here, the smaller
the A, the fuzzier the solutions. Instead, when A\ tends to infinity, the second
term becomes negligible and the algorithm yields to a crisp solution.

The way to solve EFCM is an iterative process, as for the FCM, but with
different expressions for computing the memberships u;; and the centroids v;.
More concretely, the following expressions are considered:

2
e~ Mlzk—vil|
Uik =

S¢_, e Mimull ®)
> he1 UikTh 4)
Dot Uik

FCM and EFCM lead to different solutions. A relevant difference is that the
centroids have a membership equal to one in the FCM while in the EFCM it
might have a lower membership. It can be easily observed that given a unique
set of centers, the memberships and the shape of the clusters would be different
in both cases due to the way memberships u;; are computed.

A variation of these clustering methods was introduced [12] so that the size
of each cluster is variable. The variation consists on a variable for each cluster
roughly corresponding to its size. The rationale of such introduction was to
reduce misclassification when there are clusters of different size. In standard
FCM, two adjacent clusters have equal membership function (equal to 0.5) in
the mid-point between the two centroids.

Formally speaking, the size of the i-th cluster is represented with the param-
eter a; (the largest is «;, the largest is the proportion of elements that belong
to the i-th cluster). A similar approach was given by Ichihashi, Honda and Tani
in [7].

When such parameters for variable size are considered, the expressions to
minimize for FCM and EFCM are as follows:

v =

Jrom(a, U, V) Zalz o; uzk Haxk—le
=1
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n (&
Terem (o, U V) =Y 3 {uillok — vil|* + A uilog(o;  uir) }
k=1 i=1
Both objective functions are minimized considering the constraints given
above for the membership values u;;, and adding additional constraints for «;.
The new constraints are the following ones:

- Z?:lai:l
—q;>0foralli=1,...,c

These fuzzy clustering algorithms are also solved by an iterative process, but
now including an additional step for estimating the parameters «;. In the case
of the FCM, the values of « are estimated by (this corresponds to [Step 8.1] in
the algorithm for FCM):

o = - Zzzl(ujk)muﬂc _UjHQ mq—1
b [Z(Zzzl(uzk)mek —Uz‘HQ) ]

In such algorithm, the expression for u;; in Step 2 should be replaced by (the
expression for v; in Step 3 is valid):

j=1

(zc:(aj)(Hmk—viHQ)ml_l)—l 5)
Uik =
* =2 ) g — g2
=
In the case of variable-size EFCM, the expression of v; is still valid but the
following expressions are required for u;; and ay:

=Mz, —vi] [?

;e
ik = 25:1 aje=Mlze—v; |12 ©
n
a; = D k1 Wik
n

2.2 Classification

In this section we review the use of hard c-means for building classifiers. For this
purpose, we consider a set of examples x; in a p dimensional space, and for each
example its class k(xy).

Then, given a set of examples xj, the classification model is built considering
the following two steps:

1. For each k; € k, define X,; as those x, such that its classis « (i.e., k(xg) = K):
X, = {z|k(zr) = K}

2. Apply hard c-means to each X, and construct for each X, ¢ different clus-
ters. Therefore, we obtain ¢ |x| centroids. We will use v”, for r =1,...,¢ to
denote the ¢ centroids obtained for class k.
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Then, using the centroids (v’ for r = 1,...,¢) obtained in the previous step,
the classification of new examples ex into the classes x in k is done applying the
following algorithm:

minDist = oo
For all r do
For all k do
minDist = min(minDist,d(ex,v’)) (distance between ex and the
centroid o)
end loop
end loop
Assign ex to the class x if minDist = v, for some r.

This method corresponds to building a voronoi map in two steps. First, the ex-
amples of each class are partitioned and, second, their centroids are put together
to define the map.

3 Classification Model Based on Fuzzy Clustering

We have extended the model described in Section to incorporate fuzziness.
Now, as in the case of crisp partitions, we start grouping the objects according
to its class. This is, computing X, := {z|k(zx) = £}. Then, the fuzzy clustering
algorithm is applied to each class X,;. This leads to a set of centroids for each
class. We will use v}, for r =1,..., ¢ to denote the ¢ centroids obtained for class
k. As in the case of the c-means, we obtain ¢ - |k| centroids.

The computation of the class of new objects in the p dimensional space differs
from the case of the c-means. In that case, the nearest centroid was considered
as the most rellevant issue. Now, we will consider the membership value of the
object into each class. Then, for testing we will select the class with the largest
membership.

Nevertheless, the consideration of membership functions is not straightfor-
ward. As fuzzy c-means (and its variations) results into a fuzzy partition for
each class x, we have that the membership of a new object into the classes can
be computed in, at least, two different ways. The two alternatives are described
below. We use ex, as in the previous section, to denote the new example to be
classified.

1. Consider the c¢ fuzzy partitions as separated partitions. Then, compute for
each class k, and for each cluster r (r = 1,...,¢), the membership of ex to
vy.. Compare memberships and assign to ex the cluster and class with the
largest membership.

2. Consider the ¢ fuzzy partitions as a single partition (combined partition).
This is, put all centroids together and compute a new fuzzy partition that
encompass all the existing clusters. Then, determine the membership of ex
to all the clusters and assign to ex the cluster and the class with the largest
membership.
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The computation of the new fuzzy partition in the second alternative is simple
in the case of FCM. In this case, we can compute the fuzzy partition inferred
from any set of centroids using the expression wu;; in Step 2 (Section [2)). Thus,
defining the set V := U,—1,... . U, v} and then using:

/e — vil|P\ miiy 1
u(ew, vi) = (Z ( lea — v|[2 ) )
veEVY
for all v; € V we can determine the membership of ex to the new partition.

Similarly, when the clustering algorithm used is the EFCM, a similar process
can be applied. In this case, Expression [B]should be used for computing the new
memberships. So, the membership of ex to clusters v; in V is defined as:

e—)\||ex—v71||2

ZchEV ef/\||e:v7'u||2

Instead, when variable size fuzzy c-means is considered, it is not enough to
define the union of the centroids and apply the corresponding expressions for
computing the membership values. As can be observed in Expressions [l and [G],
these expressions depend on the values of « (the size of the clusters), and when
merging the two sets of centroids, the values of a are no longer valid. To solve
this drawback we have defined a new vector of o’ in terms of the previous values
of a.. These new values are computed as follows:

ulex,v;) = uj =

/
K,

al = ay * |learningSetClass(k)|/|learningSet|

where 7 is foralli e 1,...,c.
This definition of o' satisfies the constraints that «; > 0 and > a; = 1.

3.1 Analysis

Methods based on k-means assume that clusters are crisp and that in the result-
ing model the region under study is splitted (in a crisp way) following a Voronoi
tessellation. This tessellation is based on the centroids of the clusters obtained
by the k-means.

When fuzzy clustering algorithms are used, these assumptions are changed.
First of all, we soften the crisp constraint on the boundaries of each region.
Thus, objects can belong at the same time to different clusters. Nevertheless,
when for a given point only the largest membership value is considered, the
resulting tessellation is still the Voronoi one.

Variable-size fuzzy clustering permits clusters to have different size. Roughly
speaking, the larger the number of objects associated to a centroid, the larger
the region of the corresponding cluster. In this case, the tessellation changes its
shape and not only the centroids come into consideration but also the dimension
of the cluster (the parameter « using the notation given above).

Thus, using other fuzzy clustering methods than the k-means for building a
classifier, the differences on the clustering model are exported to the classifier.
This is for example the case of using a fuzzy clustering method that considers
variable size.
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4 Experiments

We have applied our approach to the classification of gene expressions in the bud-
ding yeast Saccharomyces cerevisiae. In particular, we used the data downloaded
from [I3] and described in [4]. Each gene is described in terms of numerical val-
ues, and most of them include a label with its name and function. The file contains
information on 6221 genes. This data has been used in several studies as in [IJ.

In our case, we have used these data to compare the four approaches described
in Section Bl This is, the classification based on the FCM and the EFCM, with
and without variable size.

Some preprocessing was applied to the data as there are missing values. First,
data was normalized to avoid scaling problems among variables. Normalization
was achieved substracting the mean of each variable and dividing by the corre-
sponding deviation. After normalization, missing values have been replaced by
zero (this corresponds to replace the original data by its mean).

In this paper we report the results obtained for the case of the gene labels
equals to “mitosis” and “protein degradation”.

For testing, we have splitted the data into two sets: one for learning the model
and the other for testing. Given a label, we have considered two classes: (i) those
genes belonging to the class (positive examples) and (ii) those that do not belong
to the class. Then, we selected at random 20% of the records of each class for
learning and the rest was used for testing.

For each training/test pair, we have tested the four algorithms FCM and
EFCM with and without variable size. Also, in each case we have compared the
two alternatives of constructing the membership function (considering the parti-
tions as separated entities or putting them together). For each of the algorithms,
several values of m, A and ¢ were considered. In particular, we have considered
the following values for m and A\: m = {1.05,1.2,1.4}, A = {40,20,10}. With
respect to ¢, we have considered two cases, one with ¢ = 3 for both positive and
negative examples and another with ¢ = 3 for positive examples and ¢ = 8 for
negative examples. The consideration of a larger number of clusters for negative
examples was due to the fact that the number of negative examples is much
larger than those for positive examples.

Table 1. Rate of success considering separated partitions and combined partitions. In
the upper part of the table results corresponds to the “mitosis” problem and the lower
part corresponds to the “protein degradation” problem.

Clustering parameter ¢ Separated Combined
FCM m = 1.05 3 0.5163 0.8426
VFCM m = 1.05 3 0.6355 0.9430
ENT A=40.0 30.0176 0.8117
FCM m = 1.05 3 0.5439 0.8099
VFCM m = 1.05 3 0.5417 0.9639
ENT A =40.0 30.0262 0.7966
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Table 2. The rate of success for FCM and variable size fuzzy c-means (FCM) for the
“mitosis” and the “protein degradation” problem, for several executions

¢ FCM-mitosis VFCM-mitosis FCM-P.D. CFCM-P.D.

30.823 0.99051 0.806 0.98392
8 0.867 0.99051 0.845 0.98392
30.823 0.99051 0.884 0.98408
8 0.882 0.99051 0.926 0.98408
30.851 0.99035 0.808 0.98408
8 0.828 0.99051 0.836 0.98408
30.841 0.99035 0.854 0.98424
80.914 0.99051 0.829 0.98424
3 0.900 0.99019 0.784 0.98392
8 0.920 0.99019 0.823 0.98408
30.832 0.99051 0.864 0.98408
8 0.856 0.99051 0.910 0.98408
30.878 0.99067 0.837 0.98392
8 0.889 0.99051 0.877 0.98408
3 0.842 0.99051 0.875 0.98408
8 0.848 0.99051 0.900 0.98408

Each combination of algorithm/parameters was executed 8 times, selecting
each time the 20% of the records at random using a different seed.

The results show that considering a single partition lead to better results
than considering two separated partitions. Table [[] shows the number of records
classified correctly for the algorithms considered for some of the tests. It can be
seen that the difference between separated and combined partitions is significant,
being the combined partitions better than the separated ones.

Additionally, we can see that when the partitions are combined, the FCM with
variable size is the method that obtains better results. These results are valid
for both the experiments on “mitosis” and “protein degradation”. The results
of the 8 executions (with m = 1.2 and c either 3 or 8) are given in Table

5 Conclusions and Future Work

In this paper we have studied the use of fuzzy c-means and some of its variations
for building classifiers. We have proposed a way to deal with fuzziness and fuzzy
partitions when several classes are present. We have analysed the characteristics
of our method with respect to the one based on k-means. We have underlined the
differences between them. The approach has been applied to data from bioinfor-
matics. In particular, we have applied our method to classify gene expressions
from the yeast Saccharomyces cerevisiae.

Although the results obtained by our approach are significant for the two
problems studied, the use of fuzzy clustering is not necessarily better than crisp
clustering for all sets of examples. The appropriateness of the method depends on
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the data and its structure. Nevertheless, we consider that the better performance
of variable-size fuzzy c-means with respect to standard fuzzy c-means is rellevant.

As future work we consider the implementation of new experiments, and the
study of new methods to combine the fuzzy sets resulting from several fuzzy
clustering algorithms (or several executions of the same clustering method with
different objects).
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