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Abstract. Electronic institutions (EIs) define the rules of the game in
agent societies by fixing what agents are permitted and forbidden to
do and under what circumstances. Autonomic Electronic Institutions
(AEIs) adapt their regulations to comply with their goals despite coping
with varying populations of self-interested external agents. We present
a self-adaptation model based on Case-Based Reasoning (CBR) that al-
lows an AEI to yield a dynamical answer to changing circumstances. In
order to demonstrate adaptation empirically, we consider a traffic con-
trol scenario where the agent population changes. Within this setting,
we demonstrate statistically that an AEI is able to adapt at run-time by
means of CBR.

1 Introduction

The growing complexity of advanced information systems in the recent years,
characterized by being distributed, open and dynamical, has given rise to inter-
est in the development of systems capable of self-management. Such systems are
known as self-* systems [1] , where the * sign indicates a variety of properties:
self-organization, self-configuration, self-diagnosis, self-repair, etc. A particular
approximation to the construction of self-* systems is represented by the vision
of autonomic computing [2], which constitutes an approximation to computing
systems with a minimal human interference. Some of the many characteristics
of autonomic systems are: it must configure and reconfigure itself automatically
under changing (and unpredictable) conditions; it must aim at optimizing its
inner workings, monitoring its components and adjusting its processing in order
to achieve its goals; it must be able to diagnose the causes of its eventual mal-
functions and repair itself; and it must act in accordance to and operate into a
heterogeneous and open environment.

Electronic Institutions (EIs) [3] have been proved to be valuable to regulate
open agent systems. EIs define the rules of the game by fixing what agents are
permitted and forbidden to do and under what circumstances. We have defined
Autonomic Electronic Institution (AEI) as an EI with autonomic capabilities
that allows it to adapt its regulations to comply with institutional goals despite



varying agent’s behaviours [4]. Thus, an AEI has to self-configure its regula-
tions to accomplish its institutional goals. In previous work [5] we have learned
those regulations that best accomplished the institutional goals for a collection
of simulated agent populations. This paper extends that work with a Case-Based
Reasoning (CBR) approach that allows an AEI to self-configure its regulations
for any agent population. Since our hypothesis is that populations that behave
similarly can be regulated in a similar manner, the CBR approach helps us iden-
tify populations that behave similarly and subsequently retrieve the ”control”
parameters for an AEI to regulate it.

The paper is organized as follows. In section 2 we describe the notion of
autonomic electronic institutions. Section 3 details the learning model that we
propose and how an AEI uses CBR. Section 4 describes the case study employed
as a scenario wherein we have tested our model. Section 5 provides some empir-
ical and statistical results. Finally, section 6 summarizes some conclusions and
related work and outlines paths to future research.

2 Autonomic Electronic Institutions

In general, an EI [3] involves different groups of agents playing different roles
within scenes in a performative structure. Each scene is composed of a coordi-
nation protocol along with the specification of the roles that can take part in
the scene.

We have extended the notion of EI to support self-configuration, in the sense
of regulation adaptation. In this manner in [4] we incorporate notions of in-
stitutional goals and regulation configuration to define an autonomic electronic
institution (AEI) as a tuple: 〈PS,N, DF, G, Pi, Pe, Pa, V, δ, γ〉. Next, we only
provide an intuitive idea about the elements of an AEI (further details can be
found in [4]).

We assume that the main objective of an AEI is to accomplish its institutional
goals (G). For this purpose, an AEI will adapt. We assume that the institution
can observe the environment where agents interact (Pe), the institutional state
of the agents participating in the institution (Pa), and its own state Pi to assess
whether its goals are accomplished or not. Since an AEI has no access whatsoever
to the inner state of any participating agent, only the institutional (social) state
of an agent (Pa) can change. Therefore, each agent can be fully characterized by
his institutional state Pa = 〈ai1 , . . . , aim〉 where aij ∈ IR, 1 ≤ j ≤ m.

Formally, we define the goals of an AEI as a finite set of constraints G =
{c1, ..., cp} where each ci is defined as an expression gi(V ) C [mi, Mi] where
mi,Mi ∈ IR, C stands for either ∈ or 6∈. Additionally, gi is a function over
the reference values V = 〈v1, . . . , vq〉, where each vj results from applying a
function hj upon the agents’ properties, the environmental properties and/or
the institutional properties; vj = hj(Pa, Pe, Pi), 1 ≤ j ≤ q. In this manner,
each goal is a constraint upon the reference values where each pair mi and Mi

defines an interval associated to the constraint. Thus, the institution achieves its
goals if all gi(V ) values satisfy their corresponding constraints of belonging (at



Fig. 1. Learning Model in two steps.

list to a certain degree) to their associated intervals. This is measured by means
of a satisfaction function that computes the goal satisfaction degree (see [5] for
further details).

The AEI definition includes the mechanisms to support the adaptation with
the normative transition function (δ), and with the PS transition function (γ).
An AEI employs norms to constrain agents’ behaviors and to assess the conse-
quences of their actions within the scope of the institution. We focus on norms
describing prohibitions parametrically. So that each norm Ni ∈ N , i = 1, . . . , n,
has a set of parameters 〈pN

i,1, . . . , p
N
i,mi

〉 ∈ IRmi . In fact, these parameters cor-
respond to the variables in the norm transition function that will allow the
institution to adapt. On the other hand, adapting a PS involves the definition of
a set of parameters whose values will be changed by the PS transition function.
We define each scene in the performative structure, Si ∈ PS, i = 1, . . . , t, as hav-
ing a set of parameters 〈pR

i,1, ..., p
R
i,qi
〉 ∈ INqi where pR

i,j stands for the number of
agents playing role rj in scene Si. Thus, changing the values of these parameters
means changing the performative structure.

Next section details the learning model used to adapt the AEI by changing
those parameters.

3 Learning Model

Our aim is that at run-time an AEI could adapt its regulations to any population.
We propose to learn the norm transition function (δ) and the PS transition
function (γ) in two different steps in an overall learning process. In previous work
[5] we have approached the first learning step, which corresponds to learn the
best parameters for a set of predefined populations. In this work we focus on the
second learning step: how to adapt the parameters to any population. As shown
in Figure 1, in an initial step our AEI learns by simulation the best parameters
for a collection of different agent populations. For each population of agents (A),
the algorithm explores the space of parameter values (I1, .., Ik) in search for the
ones that lead the AEI to best accomplish its goals (G) for this population of



agents. Afterwards, we propose to use a Case-Based Reasoning (CBR) approach
as a second step because it allows the AEI to solve situations that have been
learned previously. We assume that similar agent populations behave in similar
way, causing similar situations that may require similar solutions. Thus, at a
second step an AEI identifies, in run-time, those situations for which its goals are
not accomplished and uses CBR to retrieve a solution (regulation parameters)
from the most similar situation in the knowledge base.

3.1 Applying CBR

Case Based Reasoning (CBR) [6] is based on learning from experience. The idea
is to search in the experience (memory) of the system for similar situations,
called cases, and using the corresponding solution to solve the current problem.
In general, a new problem in a CBR system is solved by retrieving similar cases,
reusing the case solution, revising the reused solution, and retaining the new ex-
perience. In this work we focus our attention in the first step of the CBR cycle,
namely the retrieve process. Nevertheless, before addressing it, it is necessary to
choose a representation for cases.

Case Definition The representation of cases is central to any CBR system.
Cases must be represented based on the knowledge of the problem domain in
order to choose the main features that better describe the case and thus that
better help the processes involved in the CBR cycle. As to AEIs, we differentiate
the following main features to be considered to represent cases:

– AEI parameters’ values. They represent the parameters’ values of some
institution, namely the norm parameters’ values and the performative struc-
ture parameters’ values that an AEI uses for regulating agents.

– Runtime behaviour. They represent the global behaviour of the institution
at runtime for some agent population when the institution uses the AEI
parameters’ values.

– Best AEI parameters’ values. They represent the learned parameters’
values of the institution for the previous agent population. In other words:
the solution. Thus, they correspond to the parameters that the institution
must apply in order to accomplish its institutional goals given both previous
AEI parameters’ values and runtime behaviour.

More precisely, regarding AEIs, we propose the definition of a case as a tuple
(Np,PSp,V,pop,Np∗,PSp∗), where:

– (Np,PSp) stands for the AEI parameters’ values:
• Np stands for the current norm parameters’ values;
• PSp stands for the current performative structure parameters’ values;

– (V,pop) stands for the runtime behaviour:
• V stands for the current set of reference values;



• pop stands for statistic data that characterises the behaviour of the
agents’ population at runtime1;

– (Np∗,PSp∗) stands for the best AEI parameters’ values:
• Np∗: represents the best values for the norm parameters given the current

norm parameters values (Np) and the runtime behaviour (V,pop); and
• PSp∗: represents the best values for the performative structure param-

eters given the current performative structure parameters values (PSp)
and the runtime behaviour (V,pop).

Thus, a case represents how an AEI (using Np as norm values and PSp as perfor-
mative structure values) regulating a population of agents (showing the runtime
behaviour described by pop and V) should change its regulations (to the Np∗

and the PSp∗ values). Notice that each case is an entry of the normative transi-
tion function (δ) and the PS transition function (γ). That is, the set of all cases
approximates both transition functions.

Similarity function In order to compare two cases we must define an appropri-
ate similarity function based on our representation of cases. We use aggregated
similarity to compute the degree of similarity between a new case Ci and a case
Cj in the case base:

S(Ci, Cj) = w1 · s AEI(Ci, Cj) + w2 · s V (Ci, Cj) + w3 · s pop(Ci, Cj) (1)

where s AEI corresponds to the similarity of the AEI parameters’ values (Np,
PSp), s V and s pop correspond to the similarity of the runtime behaviour
(V,pop), and w1, w2, w3 ≤ 0 are weighting factors such that w1 + w2 + w3 = 1.
The s AEI, s V and s pop similarity functions are computed as the similarity
average of their attributes. To assess the similarity between the values of an
attribute we use:

sim(attri, attrj) =
|attri − attrj |

max(attr)−min(attr)
(2)

where min(attr) and max(attr) correspond to the limits of the interval of values
of the attribute considered in the domain.

The Retrieval process In order to retrieve the most similar case to the problem
case Ci without comparing all cases in the case base, we propose to perform this
process in two steps:

1. Compare the AEI parameters’ values, (Np,PSp), of the problem case Ci with
the collection of all the AEI parameters’ values in the case base using s AEI
and select the set of AEI parameters’ values that best match.

2. Access the set of examples in the case base with these AEI parameters’
values. Afterwards, we compare case Ci with these examples and select the
case that best matches it based on similarity function S.

1 Notice that this data corresponds to reference values.



We use first step with the idea that the most similar case must have similar
AEI values because the runtime behaviour depends a lot of the AEI parameters’
values. In fact, this is our hypothesis since we want to change the AEI param-
eters’ values to change in some way the population behaviour and thus modify
the runtime behaviour in order to achieve the institutional goals. The first step
makes easy and fast the access to the most similar cases because we concentrate
on only comparing the cases with similar AEI parameters’ values. Thus, we do
not need to compare all the cases of the case base. Moreover, we only need to
compute once the similarity s AEI for all cases with the same values of AEI
parameters’ values.

4 Case Study: Traffic Control

We have considered and implemented the Traffic Regulation Authority as an
Autonomic Electronic Institution, and cars moving along the road network as
external agents interacting inside a traffic scene. Getting into more detail, we
focus on a two-road junction where no traffic signals are considered. Therefore,
cars must only coordinate by following the traffic norms imposed by the AEI.
Our case study considers the performative structure to be a single traffic scene
with two agent roles: one institutional role played by police agents; and one
external role played by car agents.

We assume institutional agents to be in charge of detecting norm violations
so that we will refer to them as police agents. The performative structure is
parametrized by the number of agents playing the police role. Each police agent
is able to detect only a portion of the total number of norm violations that
car agents actually do. Norms within this normative environment are related to
actions performed by cars. We consider two priority norms: the ‘right hand-side
priority norm’, that prevents a car reaching the junction to move forward or
to turn left whenever there is another car on its right; and the ‘front priority
norm’, that applies when two cars reaching the junction are located on opposite
lines, and one of them intends to turn left. Additionally, norms are parametrized
by the associated penalties that are imposed to those cars refusing or failing
to follow them. Cars do have a limited amount of points so that norm offenses
cause points reduction. The institution forbids external agents to drive without
points in their accounts.

In this work we focus on homogeneous populations where all agents in the
population share the same behaviour. We propose to model each population
based on three parameters (henceforth referred to as agent norm compliance
parameters): 〈fulfill prob, high punishment, inc prob〉; where fulfill prob ∈
[0, 1] stands for the probability of complying with norms that is initially as-
signed to each agent; high punishment ∈ IN stands for the fine threshold that
causes an agent to consider a fine to be high enough to reconsider the norm
compliance; and inc prob ∈ [0, 1] stands for the probability increment that is
added to fulfill prob when the fine norm is greater than the fine threshold
(high punishment). Car agents decide whether to comply with a norm based on



their norm compliance parameters along with the percentage (between 0 and 1)
of police agents that the traffic authority has deployed on the traffic environ-
ment. To summarise, agents decide whether they keep on moving –regardless
of violating norms– or they stop –in order to comply with norms– based on a
probability that is computed as:

prob =
{

police · fulfill prob fine ≤ high punishment
police · (fulfill prob + inc prob) fine > high punishment

(3)

The institution can observe the external agents’ institutional properties (Pa)
along time. Considering our road junction case study, we identity different ref-
erence values, V = 〈col, off, crash, block, expel, police〉 where col indicates
total number of collisions for the last tw ticks (0 ≤ tw ≤ tnow), off indicates the
total number of offenses accumulated by all agents, crash counts the number of
cars involved in accidents, block describes how many cars have been blocked by
other cars, expel indicates the number of cars that have been expelled out of
the environment due to running out of points, and finally, police indicates the
percentage of police agents that the institution deploys in order to control the
traffic environment.

The institution tries to accomplish its institutional goals by specifying the
penalties of both priority norms and by specifying how many police agents should
be deployed in the traffic scene. In this work we focus on four institutional goals:
(i) minimize the number of collisions; (ii) minimize the number of offenses; (iii)
minimize the number of expelled cars; (iv) and minimize the percentage of police
agents to deploy to control the traffic environment. Notice, though, that these
offences do not refer to offences detected by police agents but to the real offences
that have been actually carried out by car agents.

Finally, following the tuple case definition introduced in section 3.1,
(Np, PSp, V, pop,Np∗, PSp∗), we define a case Ci in this scenario as follows:

– Np = (fineright, finefront) are the values of both norms’ parameters;
– PSp = (police) is the value of the performative structure parameter;
– V = (col, crash, off , block, expel) are the reference values;
– pop = (mean off , median off , mean frequency off , median frequen-

cy off) contains the mean number of offenses, the median number of of-
fenses, the mean of the frequency of offenses, and the median of the frequency
of offenses carried out by agents for the last tw ticks (0 ≤ tw ≤ tnow);

– Np∗ = (fine∗right, fine∗front) are the best values for both norms’ parameters;
– PSp∗ = (police∗) is the best value for the parameter of the performative

structure.

5 Empirical Evaluation

As a proof of concept of our proposal in section 3, we extend the experimental
setting for the traffic case study employed in [5]. The environment is modeled as



a 2-lane road junction and populated with 10 homogeneous cars (endowed with
40 points each). Cars correspond to external agents without learning skills. They
just move based on their random trajectories and the probability of complying
with a norm (based on the function defined in (3)). During each discrete simu-
lation, the institution replaces those cars running out of points by new cars, so
that the cars’ population is kept constant.

The four institutional goals, related to the col, off , expel and police reference
values, are combined in a weighted addition, with weights 0.4, 0.4, 0.1 and 0.1
respectively. Thus, the first two goals are considered to be more important. The
goal satisfaction is measured by combining the degree of satisfaction of these
four institutional goals.

Table 1. Agent populations employed to generate the case base.

Populations Pop1 Pop2 Pop3 Pop4 Pop5 Pop6 Pop7

fulfill prob 0.5 0.5 0.5 0.5 0.5 0.5 0.5

high punishment 0 3 5 8 10 12 14

inc prob 0.4 0.4 0.4 0.4 0.4 0.4 0.4

fine∗right 2 5 8 11 13 14 15

fine∗front 1 4 6 9 12 13 15

police∗ 1 1 1 1 1 1 1

5.1 Case Base

As mentioned in section 3, (during training period) an AEI generates an initial
base of cases from simulations of a set of prototypical populations. Table 1 shows
the seven populations we have considered to generate the case base. They are
characterized by their norm compliance parameters, being fulfill prob = 0.5
and inc prob = 0.4 for all of them, whereas high punishment varies from 0 to
14. Table 1 also shows the best AEI parameters’ values (N∗, PS∗) for each one,
that is the fine∗right, fine∗front and police∗ values the institution has learned by
using genetic algorithms for each population.

In order to create the case base we have considered as AEI parameters’
values fineright ∈ {0, 3, 6, 9, 12, 15}, finefront ∈ {0, 3, 6, 9, 12, 15}, and police ∈
{0.8, 0.9, 1}. Overall we have considered 108 different AEI parameters’ values, as
the result of combining fineright, finefront, and police values. To create cases
our case base, we have simulated each population in Table 1 with all 108 AEI
parameters’ values, so we have generated a total of 756 cases for the seven agent
populations. To create each case, we have simulated the traffic model during
2000 ticks. Once finished the simulation, we generate a case by saving the AEI
parameters’ values (Np, PSp) used in this simulation, the runtime behaviour
for the 2000 ticks (V, pop), and the best AEI parameters’ values (Np∗, PSp∗)
corresponding to the population used in this simulation.



Fig. 2. Scheme of an AEI traffic experiment.

5.2 Similarity function

We use the aggregated similarity function defined in (1) to compute the degree
of similarity between two cases. We have set the weights as follows: w1 = 0.1,
w2 = 0.5, and w3 = 0.4. Regarding the attributes of the AEI parameters’ values,
the finefront and fineright values are in the interval [0, 15], and the police values
are in the interval [0, 1]. However, the attributes of the runtime behaviour have
not known limited values. We have established limits based on the values of the
initial generated cases. Thus, we have established that the col values are in the
interval [0, 300], crash ∈ [0, 400], off ∈ [0, 500], block ∈ [0, 200], expel ∈ [0, 900],
mean off ∈ [0, 30], median off ∈ [0, 30], mean frequency off ∈ [0, 2], and
median frequency off ∈ [0, 2]. Since the values of these attributes can be out
of the proposed interval, we force similarity to be 1 when |attri − attrj | >
max(attr)−min(attr).

5.3 Retrieving

We have designed an experiment to test the retrieval process. That is, we want
to test if at run-time the AEI is able to self-configure its parameters for different
agent populations by using the proposed CBR approach. Additionally, we want
to test if the CBR approach helps the AEI to adapt its parameters when a
change of agent population occurs at run-time. Figure 2 shows an scheme of an
experiment using the traffic simulator. As Figure 2 shows, each experiment is
composed of 40000 ticks which we divide in 20 steps. At each step (every 2000
ticks) the AEI checks its goal satisfaction degree and, if required, changes its
parameters’ values. Although this allows us to change the population of agents
at any step, we have run the experiments changing only once the population of
agents. We start the traffic simulator with a certain population of agents which
remains during first 10 steps, at step 11 (tick 20001) we always change the agent
population to Pop7 (see Table 1) which remains until last step. Thus, we are
simulating a run-time change of population.

For all experiments, the AEI starts with (0,0,0.8) parameters, that correspond
to no fine for both norms and a deployment of 80% of police agents. Thus,



Fig. 3. Percentage of correct experiments.

we expect the AEI to start with a low goal satisfaction degree (caused by the
parameters it is using since no population will follow norms) and to be able to
retrieve a similar case whose parameters will increase its goal satisfaction degree.
We also expect that in step 11 the AEI will obtain a low goal satisfaction degree
(caused by the change of agent population) and it will be able to increase the
goal satisfaction degree again by retrieving a case with more suitable parameters.

As mentioned above, when each step finishes the AEI decides, based on the
goal satisfaction of last 2000 ticks, if it has to retrieve a case or not. If the goal
satisfaction is greater than a threshold the AEI continues with the same param-
eters for a new 2000 ticks in next step. Otherwise (when the goal satisfaction is
lower than the threshold) the AEI launches its CBR engine to retrieve a case
of the case base in order to adapt its parameters. The threshold is computed as
a desired goal satisfaction value (G∗) minus an epsilon value (ε). In our experi-
ments, we have set ε = 0.03 and G∗ = 0.65, which corresponds to the minimum
of the best goal satisfaction degrees for populations in Table 1. The problem case
is generated from the values in last 2000 ticks in the same way as when creat-
ing the cases. The CBR system retrieves the most similar case so that the AEI
uses its solution (i.e., the best paraemters’ values) for next step. Thus, the goal
satisfaction degree can be computed again to check if it is necessary to define a
new problem case.

We have used fifteen different populations to test our approach. Each agent
population is characterized by their norm compliance parameters, being fulfill-
prob = 0.5 and inc prob = 0.4 for all of them, whereas high punishment varies

from 0 to 14. Seven of them are the ones used for generating cases2 (with
high punishment ∈ {0, 3, 5, 8, 10, 12, 14}) whereas the AEI has no prior cases

2 Notice that using the same agent population does not imply use the same case
because the runtime behaviour may result in different reference values.



about the remaining eight populations (with high punishment ∈ {1, 2, 4, 6, 7,
9, 11, 13}).

Table 2. Number of experiments initially stabilized in first 10 steps.

Steps 1 2 3 4 5 6 7 8 9 10 Not stabilized

Stabilized 0 518 153 36 19 9 5 2 1 1 6
Percentage stabilized 0 69 20.4 4.8 2.5 1.2 0.7 0.3 0.1 0.1 0.8

Table 3. Number of experiments initially stabilized in last 10 steps.

Steps 11 12 13 14 15 16 17 18 19 20 Not stabilized

Stabilized 157 332 102 70 46 15 15 8 4 1 0
Percentage stabilized 20.9 44.2 13.6 9.3 6.1 2 2 1 0.5 0.1 0

In order to obtain statistical results we have run each experiment 50 times
for each agent population. Thus, overall we have performed 750 experiments.
Figure 3 shows the percentage of correct experiments at each step for all ex-
periments. We consider that an experiment is correct when the goal satisfaction
degree value in last 2000 ticks (i.e., last step) is equal or greater than the thresh-
old (G∗-epsilon = 0.62). In Figure 3 we can see how the percentage of correct
experiments starts to stabilize around 90 percent between steps 5 and 6. Due
to the change of population, the percentage drops drastically at step 11, but it
is able to recover and it stabilizes again between steps 15 and 16. Thus, we can
state that in six steps our AEI is able to adapt its parameters to approximately
90 percent of experiments. We also can state that when the change of popula-
tion occurs in six steps our AEI is also able to adapt to the new population at
approximately 90 percent of experiments.

In order to analyse statistically how many steps the AEI needs to stabilize we
have separated first 10 steps from last 10 steps. That is, we compute separately
the initial stabilization and the stabilization when the population changes. Fo-
cusing on first 10 steps, our aim is to compute the required number of steps to
reach stabilization for a given initial population of agents. For each experiment
we have computed the first step for which the AEI has obtained a goal satisfac-
tion equal or greather than the threshold (that is, it has stabilized for the first
time). Table 2 shows the number of experiments that have stabilized for the first
time at each step, together with the corresponding percentage they represent.
Notice that not stabilizing a population means that the AEI is not able to re-
trieve a case whose parameters, when applied to the current population, yield to
an AEI’s satisfaction degree higher than the fixed threshold. Therefore, the AEI



Fig. 4. Percentage of experiments initially stabilized in first 10 steps.

keeps retrieving cases to try to adapt better to the given population. Notice that
there are some experiments which have not been stabilized at any of the first 10
steps. We have performed the chi-square test to test if our data (the percent-
age of experiments initially stabilized) follows an exponential distribution. The
chi-square test allows us to say that our data follows an exponential distribution
with lambda = 0.6 (chi-square value=9.73, with a significance level of 0.01 and
4 degrees of freedom). Figure 4 shows the stabilized percentage and the fitted
exponential.3 Finally, in order to compute the number of steps the AEI needs to
stabilize, we have computed the accumulate function of the fitted exponential
and have found that at step 5 the AEI stabilizes for the first time the 95 percent
of population -in the statistical sense- (significance level of 0.01).

Analogously, in order to compute the number of steps the AEI needs to sta-
bilize after an agent population change, we have used the same statistical test
with the data at steps from 11 to 20. Table 3 shows how many experiments the
AEI has initially stabilized in second 10 steps, toghether with the percentage
of stabilized experiments. Notice that at step 11 there is an initial percentage
of experiments stabilized. The change of agent population does not affect these
experiments the AEI does not require to perform any adaptation for them. Thus,
we have not used these experiments as data for our statistical test. The results of
the chi-square test applied to the percentage of experiments initially stabilized
in steps from 12 to 20 (in Table 3) point out that our data follows an exponen-
tial distribution with lambda=0.55 (chi-square value=4,99, with a significance
level of 0.01 and 8 degrees of freedom). The accumulate function of the fitted

3 Notice that we have performed a correction in the steps because in first step there is
a zero percentage (this is due to the experimental setting: during first step the AEI
only observes and its initial parameters have values that prevent any population of
fulfilling its goals).



Fig. 5. Histogram of the error computed in 100 subsets of 30 experiments.

exponential shows that the AEI needs 6 steps (step 16) to stabilize for the first
time the 95 percent of population -in the statistical sense- when there is an agent
population change to Pop7 (significance level of 0.01).

In Figure 3 we can see that none of the steps reaches the 100 percent of
correct experiments. That is, the AEI performs an error because there is always
a percentage of experiments where the goal satisfaction degree is less than the
threshold. In order to analyse statistically this error we have used the frequentist
classical statistical method of replicated measurements [7]. We have computed
replicated measurements of the error using our previous 750 experiments. From
the 750 experiments we have chosen 100 times a random subset of 30 experi-
ments. We have calculated the error in each subset of 30 experiments. The error is
computed as the percentage of experiments with error at steps 6,7,8,9,10,17,18,19
and 20 (steps where we have seen that the AEI is stabilized). Figure 5 shows
the histogram results of the error computed in the 100 subsets. Figure 5 also
shows the fitted normal distribution of the data. The mean of the error in the
data is 6.3, however the fitted normal distribution allows us expect that the er-
ror on population -in the statistical sense- will be in the range [1.5 11.01] (with
a significance level of 0.05). In other words, with 97.5 percent confidence the
maximum error is 11.01. In conclusion, our traffic AEI is able to stabilize in few
steps, however once it has stabilized it does a percentage of error (i.e., it obtains
a goal satisfaction degree less than the fixed threshold).

6 Discussion and Future work

Within the area of Multi-Agent Systems, adaptation has been usually envisioned
as an agent capability where agents learn how to reorganise themselves. Along



this direction, Hübner et al. [8] propose a model for controlling adaptation by us-
ing the MOISE+ organization model, and Gâteau et al. [9] propose MOISEInst

as an extension of MOISE+ as an institution organization specification of the
rights and duties of agents’ roles. In both models agents adapt their MAS orga-
nization to both environmental changes and their own goals. In [10] Gasser and
Ishida present a general distributed problem-solving model which can reorganize
its architecture; and Horling et al. [11] propose an approach where the members
adapt their own organizational structures at runtime. The fact that adaptation
is carried out by the agents composing the MAS is the most significant differ-
ence with the approach presented in this paper. In our approach there is indeed
a group of internal agents who can punish external agents but the reorganization
is carried out by the institution, instead of by the agents.

On the other hand, it has been long stated [12] that agents working in a com-
mon society need norms to avoid and solve conflicts, make agreements, reduce
complexity, or to achieve a social order. Most research in this area consider norm
configuration at design time [13] instead of at run-time as proposed in this pa-
per. In this manner, Fitoussi and Tennenholtz [13] select norms at design stages
by proposing the notions of minimality and simplicity as selecting criteria. They
study two basic settings, which include Automated-Guided-Vehicles (AGV) with
traffic laws, by assuming an environment that consists of (two) agents and a set
of strategies available to (each of) them. From this set, agents devise the ap-
propriate ones in order to reach their assigned goals without violating social
laws, which must be respected. Our approach differs from it because we do not
select norms at design stages. Previously, Sierra et al. [14] used evolutionary
programming techniques in the SADDE methodology to tune the parameters of
the agent populations that best accomplished the global properties specified at
design stages by the electronic institution. Their approach differs from our ap-
proach because they search the best population of agents by a desired institution
and we adapt the institution to the population of agents.

Regarding the traffic domain, MAS has been previously applied to it [15] [16],
[17]. For example, Camurri et al. [18] propose two field-based mechanisms to con-
trol cars and traffic-lights in order to manage to avoid deadlocks and congestion.
Traffic has been also widely studied outside the scope of MAS, for example, the
preliminary work by [19] used Strongly Typed Genetic Programming (STGP) to
control the timings of traffic signals within a network of orthogonal intersections.
Their evaluation function computed the overall delay.

Additionally, Case-Based Reasoning has been applied before in multi-agent
systems where agents use different CBR approaches to individual learning and
to cooperative learning for distributed systems [20, 21]. For example, Ros and
Veloso [22] propose a case-based coordination mechanism where they use a case-
based reasoning approach to coordinate a multi-robot system.

This paper presents a Case-Base Reasoning approach as an extension of pre-
vious work which allows an AEI to self-configure its regulations. We have pre-
sented the initial step towards a Case-Based Reasoning system, centering our



work on the retrieval and usage processes. We have proposed a case descrip-
tion and the similarity function to be used by a generic AEI. We have tested
the retrieval process of our approach in the traffic AEI case study, where the
AEI learns two traffic norms and the number of institutional agents in order to
adapt the norms and the performative structure to dynamical changes of agent
populations. We have done statistical analysis about the time (in steps of 2000
ticks) the AEI needs to adapt its parameters to a high percentage of populations.
We also have computed a statistical measure of the error. Preliminary results
in this paper are promising, they show that our traffic AEI can adapt to a new
population in five steps. They also show that our traffic AEI is able to adapt its
parameters when a change of populations occurs. Results also show our traffic
AEI does a percentage of error, however the maximum statistical error is low
(around 11%). We plan to continue our experiments on the retrieval process by
changing more populations between steps and using heterogeneous populations.
We also plan to continue on finishing the learning by focusing our work in the
other CBR processes (e.g., revise and retain). As future work, and since this
basically represents a centralized scenario, we plan to develop a more complex
traffic network, allowing us to propose a decentralized approach where different
areas (i.e., junctions) are regulated by a distributed institution.

Acknowledgments. The authors want to thank Pere Garćıa and Lluis Godo
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