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ABSTRACT
Cash management decision making can be handled from a multiobjective perspective
by optimizing not only cost but also risk. Nevertheless, choosing the best policies
under a changing context is by no means straightforward. To this end, we rely on
compromise programming to incorporate robustness as an additional goal to cost
and risk within a multiobjective framework. As a result, we propose to calculate
robustness as a multiple criteria distance index that is able to identify the best
compromise policies in terms of cost and risk. Such policies are also robust to cash
flow regime changes. We show its utility by transforming the Miller and Orr’s cash
management model into its robust counterpart using real data from an industrial
company.
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1. Introduction

Financial and economic methods are constantly driven by expectations. Decision mak-
ers usually have to deal with a set of relevant variables subject to regime changes
because of the economic cycle or other sources of instability. From a macro-economic
approach, international economic crises, credit restrictions, or monetary policies are
notably influential on decision makers. Meanwhile, from the micro-economic approach,
market changes are usually the rule rather than the exception. Cash flow management
is particularly affected by regime changes. A cash manager must make daily decisions
about her firm’s optimal cash level for operational and precautionary purposes. The
focus is placed on finding the balance between cash holdings and short-term invest-
ments. A number of cash management models have been proposed to control cash
balances based on a set of levels or bounds. A comprehensive review of cash manage-
ment models, from the first proposals to the most recent contributions can be found
in da Costa Moraes et al. (2015); Gregory (1976); Srinivasan and Kim (1986).

The particular characteristics of cash flows (or cash balances) are an important
dimension of the CMP. In this sense, cash flows used in the literature range from de-
terministic (Baumol 1952) to completely uncertain (Miller and Orr 1966). The most
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usual cash flow probability distribution in the literature is the Gaussian either in the
form of a Wiener process (Constantinides and Richard 1978; Premachandra 2004; Bac-
carin 2009), or as a number of samples drawn from normal distributions with known
mean and standard deviation (da Costa Moraes and Nagano 2012, 2014). However,
empirical distributions obtained from real data sets are hardly used with the exception
of Gormley and Meade (2007). Beyond the discussion about the most appropriate dis-
tribution, cash management models are usually designed from a stationary perspective
without considering possible cash flow regime changes. However, economic cycles, mar-
ket evolution and customer behavior make cash flow a random variable. Thus, optimal
solutions to mathematical programming models can be importantly affected by slight
perturbations in the input data (Ben-Tal and Nemirovski 1999). Hence, we say that a
system is robust when it is relatively insensitive to changes in environmental factors
that can negatively affect its performance (Montgomery 2013). However, whether cash
management models are robust to regime changes remains a question unanswered by
previous cash management contributions in the literature.

In order to provide robust solutions to optimization problems, stochastic program-
ming and robust optimization represent two alternative approaches. Stochastic pro-
gramming assumes that randomness in problem parameters is restricted to a particular
probability distribution (Sahinidis 2004; Abdelaziz et al. 2007; Aouni and La Torre
2010). As an alternative approach to stochastic programming, Soyster (1973) intro-
duced the concept of interval uncertainty within the framework of a linear program
and its robust counterpart. Later on, Ben-Tal and Nemirovski (1999); Ben-Tal et al.
(2009), established a sound framework for robust optimization. Briefly, robust opti-
mization aims to solve optimization problems in which input data is uncertain. Both
approaches, stochastic programming and robust optimization, aim to transform any
optimization problem under uncertainty to a collection of deterministic problems that
can be solved using state-of-the-art mathematical programming solvers. However, the
underlying assumption on the stationarity of probability distributions and uncertainty
sets represents an important limitation.

A suitable technique to validate the utility of solutions in a varying (non-stationary)
context is the widely used practice in machine learning known as hold-out validation
(Mitchell 1997; Hastie et al. 2005; Provost and Fawcett 2013). Hold-out validation es-
timates the accuracy of predictive models on a data set different from the original data
sample. On the other hand, compromise programming (Ballestero and Romero 1998;
Yu 2013), allows a two-step decision making process in which alternative solutions are
presented before selection according to their particular preferences.

As a result, we rely on hold-out validation and compromise programming to ensure
the robustness of cash management models. More precisely, we follow a data-driven
approach to incorporate robustness as an additional goal to cost and risk within a mul-
tiobjective decision making framework. To this end, we assume that regime changes
(if any) are contained in a test data set of past cash flows. We later compute a ro-
bustness index for cash management policies that is finally used to select the best one.
Our procedure departs from previous approaches to deal with uncertainty in the sense
that:

(1) we learn uncertainty from experience through a data set of past observations;
(2) we propose a data-driven approach to test robustness in cash management when

possible regime changes are contained in a test data set;
(3) we introduce robustness as an additional goal to cost and risk within a multiob-

jective optimization framework.
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For illustrative purposes, we use a real cash flow data set to select the best compro-
mise policies in terms of cost, risk and robustness using an extended version of the one
by Miller and Orr (1966). By following our procedure, we show how to transform the
simple Miller-Orr’s model into its robust counterpart. Summarizing, we support cash
managers aiming to analyze cost and risk of cash policies in a changing environment by
providing a procedure to ensure robustness in real world applications. More precisely,
our contribution:

(1) follows a novel data-driven approach to deal with uncertainty in cash manage-
ment without assuming any theoretical probability distribution;

(2) tests robustness of cash management models within a changing environment;
(3) transforms a cash management model into its robust counterpart.

This paper is organized as follows. We first provide in Section 2 basic background
about the Miller and Orr’s cash management model that will be later applied to
our case study. We describe in Section 3 our multiobjective approach to the cash
management problem. Section 4 introduces distance indexes as a measure of robustness
and justifies its utility. Section 5 presents an illustrative example of our data-driven
approach to find robust policies using real data from a Spanish industrial company.
Furthermore, we discuss the advantages of our procedure with respect to alternative
approaches in Section 6. Finally, we conclude and discuss further research in Section 7.

2. The Miller-Orr’s cash management model

The first approach to the cash management problem considering stochastic cash flows
was formulated by Miller and Orr (1966). They developed a simple model in which cash
flow is characterized as a sequence of independent and symmetric Bernoulli trials. They
assumed that cash balance either increases or decreases by m dollars with probability
p = 1/2. Main assumptions of this approach are independence, stationarity, zero-
drift, and the absence of regular swings in the daily cash flow. Moreover they ignored
shortage and variable transaction costs. The rationale for selecting the Miller-Orr
model in our study is double. First, its relevance. It constitutes a widely known and
referenced stochastic approach that has been used as a foundation for the construction
of many modern cash management models. Second, its simplicity. It allows us to
illustrate that our proposal is able to transform a simple cash management model into
a robust one.

The Miller-Orr model sets its policy based on equation (1) below. The transfer (xt)
occurring at day t is computed by comparing the cash balance at the beginning of the
day (bt−1) to a low and a high bound, denoted as l and h, respectively. Although Miller
and Orr initially obtained optimal values setting the low bound to zero, a version of
the model with a low bound distinct from zero can be found in Ross et al. (2002) as
follows:

xt =

 z − bt−1, if bt−1 > h
0, if l ≤ bt−1 ≤ h
z − bt−1, if bt−1 < l

(1)

where z is a target cash balance. As shown in Figure 1, cash balance is allowed to
wander around between bounds l and h. When h is reached a withdrawal transfer is
made to restore the balance to target level z. Analogously, when cash balance reaches

3



l, a positive transfer is made to restore again the balance to z.
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Figure 1 Example of cash balance evolution over time.

By relaxing most of Miller and Orr’s assumptions, such as the use of shortage and
variable transaction costs, we will later use their model in order to select robust policies
determined by some control limits h, z, and l.

3. The multiobjective cash management problem definition

In this section, we formulate the multiobjective cash management problem (MOCMP)
as proposed by Salas-Molina et al. (2016). Within a single objective framework, the
cash management problem (CMP) is defined as an optimization problem whose goal
is to find the best sequence of transactions X = 〈x1, x2, . . . , xT 〉 ∈ R, what is called
a policy, that minimizes a cost function C(X,T ) over a time horizon of T days. The
CMP is characterized by its particular cost structure (Penttinen 1991; Gormley and
Meade 2007). Any ordering transaction into a cash account may have a cost, which
may include a fixed part (γ+

0 ) and a variable part (γ+
1 ). On the other hand, a return

transaction from a cash account may also have a cost with a fixed part (γ−0 ) and a
variable part (γ−1 ). Furthermore, at the end of the day, a holding cost v per money
unit is charged if a positive cash balance occurs, or a penalty cost u per money unit is
charged if a negative cash balance occurs. According to this cost structure, a general
daily cost function can be defined as:

Ct(xt, bt) = Γ(xt) + L(bt) (2)

where xt is the transaction made at day t, bt is the cash balance at the end of day
t, Γ(xt) is a transfer cost function, and L(bt) a holding/shortage cost function. The
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transfer cost function Γ(xt) is defined as:

Γ(xt) =

 γ−0 − γ
−
1 · xt if xt < 0,

0 if xt = 0,
γ+

0 + γ+
1 · xt if xt > 0.

(3)

Additionally, the holding/shortage cost function is expressed as:

L(bt) =

{
−u · bt if bt < 0;u > 0,
v · bt if bt > 0; v > 0

(4)

Under this cost structure, the ultimate goal of the MOCMP is to find the policy X
that minimizes the expected cost and risk over the time horizon T . To this end, cost
C(X,T ) is measured by the average daily cost:

C(X,T ) =
1

T

T∑
t=1

Ct(xt, bt) =
1

T

T∑
t=1

[Γ(xt) + L(bt)] (5)

and risk R(X,T ) is measured by the standard deviation of the daily cost:

R(X,T ) =

(
1

T

T∑
t=1

(C(X,T )− Ct(xt, bt))2

)1/2

. (6)

Once the objective functions for cost and risk are defined, Salas-Molina et al. (2016)
rely on compromise programming (Zeleny 1982; Ballestero and Romero 1998; Yu 2013),
to solve the MOCMP by deriving an efficient frontier with the set of not-dominated
policies evaluated in terms of cost and risk. Indeed, all policies are dominated by
the policy with the lowest risk from the cost perspective. Likewise, from the risk
perspective, all policies are dominated by the policy with the lowest cost. Then, cash
managers have to choose a policy from the efficient frontier according to their risk/cost
preferences. This is attained through the use of two normalized indexes as suggested
by Ballestero and Romero (1998). First, a cost index θ1, defined as:

θ1(X,T ) =
C(X,T )− Cmin
Cmax − Cmin

(7)

where C(X,T ) is the expected daily cost over T days computed for a particular pol-
icy X using equation (5), and Cmax and Cmin are, respectively, the maximum and
minimum daily costs. Second, a risk index, θ2, defined as:

θ2(X,T ) =
R(X,T )−Rmin
Rmax −Rmin

(8)

where R(X,T ) is a risk measure over T days computed for a particular policy X using
equation (6), and Rmax, Rmin are, respectively, the maximum and minimum values
for R. Note that θ1 and θ2 range in the interval [0,1], and that the ideal point with
minimum cost and risk, (θ1, θ2) = (0, 0), is usually unfeasible. However, the closer to
this ideal point, the better the solution. A family of normalized distance functions to
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the ideal point that includes weights determining the decision maker’s risk preferences
can be expressed as:

Lh =
[
wh1 · θh1 + wh2 · θh2

]1/h
. (9)

Note that L1 is the Manhattan distance, L2 is the Euclidean distance, and L∞ is the
Chebyshev distance. In addition, weights w1, w2 ∈ [0, 1] reflect the particular prefer-
ences of cash managers when w1 +w2 = 1. Then, under the framework of compromise
programming for L1, the goal is to find the policy X that minimizes the weighted
Manhattan distance to the ideal point (0, 0):

min [w1 · θ1(X,T ) + w2 · θ2(X,T )] (10)

subject to the following cash balance state equation:

b̂t−1 + f̂t + xt = b̂t (11)

where f̂t and b̂t denote predicted cash flows and balances, respectively. Since cash
managers make decisions in advance, predicted instead of actual values are used for
random cash flows and balances resulting in an uncertain optimization problem. How-
ever, since neither θ1 nor θ2 are able to assess robustness of alternative cash policies,
we require a new measure to do so. Next, we consider such a measure.

4. On the use of distances as a measure of robustness

A system or a process is robust when it is relatively insensitive to changes in en-
vironmental factors, operating conditions and components that can negatively affect
its performance (Montgomery 2013). Therefore, cash management models considering
cost and risk objectives must also be evaluated in terms of robustness to deal with
changing conditions. Let us illustrate this concept with an example. Consider that
an empirical probability distribution p(b) of a cash balance b can be derived from an
initial cash balance and a set F of observed past values of cash flows. A usual as-
sumption is that the stochastic cash balance is stationary, i.e., the main attributes of
p(b), such as its mean and its standard deviation, do not vary with time. However,
chances are that cash flow regime changes lead to variations in both cost and risk of a
particular cash policy. For example, assume that some p(b) for a particular company
is characterized by a mean value of 80 and a standard deviation of 20. Also assume
that, under the framework of the Miller and Orr’s cash management model, the low
bound of the best policy is set to 30. This policy clearly becomes suboptimal if the
standard deviation rises to 40 due to, for example, a negative market evolution in the
last 6 months. In what follows, we first describe our data-driven procedure to ensure
robustness of cash policies. Second, we propose the use of a robustness index as a key
input to the previous procedure.

4.1. A data-driven procedure to ensure robustness

Within the MOCMP in Salas-Molina et al. (2016), policies are evaluated through cost
and risk indexes θ1 and θ2, introduced in Section 3. However, these indexes do not
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provide information about policy robustness. In order to ensure robustness in cash
management, we here rely on a data-driven procedure. More precisely, we apply the
widely used practice in the field of machine learning consisting of dividing the available
data in a training set and a test set (Mitchell 1997; Hastie et al. 2005; Provost and
Fawcett 2013). The utility of predictive models is then assessed by estimating the
accuracy of forecasts on a data set (test set) different from the original data sample
(training set). In the context of the MOCMP, we propose to use a training data set as
a business-as-usual situation, and a test set that may contain changes in the context
faced by cash managers. As long as the training set is statistically different to the test
set (but possibly many others), we are in a position to measure policy robustness as the
change in performance over two different data sets. Thus, we define policy performance
as follows:

Definition 1. (Policy performance). The performance Pi of a cash policy i in a
normalized cost-risk space is given by the pair of points Pi = (θ1i, θ2i), computed using
(7) and (8), over a given cash flow data set.

Recall that we do not assume any cash flow probability distribution but we are
provided with a data set of past observations. Since we are dealing with cash flow
time-series, we may be reasonably interested in evaluating the effect of recent cash
flow data on policy performance. Thus, we perform an empirical performance test
with the most up-to-date data. If any regime change occurred in recent past, it will be
reflected in the performance of policies derived from solving the MOCMP. A feasible
solution to the MOCMP is a policy derived from a cash management model (e.g., a
policy of the form in equation (1) for the Miller and Orr 1966 model), that satisfies the
cash balance state equation (11). Hence, given a feasible policy derived from a partic-
ular cash management model, we assess its robustness by computing the difference in
performance over a training set (e.g., with the first 80 % of the observations), and over
a test set (with the remaining 20% of the observations). Summarizing, our data-driven
procedure to ensure robustness in cash management comprises the following steps:

(1) Select a cash management model.
(2) Generate a set of alternative feasible policies.
(3) Divide the cash flow data set in a training set and a test set.
(4) Evaluate policy performance in the training set.
(5) Evaluate policy performance in the test set.
(6) Measure robustness through a new index that considers policy performance with

respect to the training and test sets.
(7) Select the best policies using a robustness index.

Next, we propose a collection of distances to measure policy robustness in a multi-
objective framework in which cost and risk are goals to minimize.

4.2. Measuring robustness through distance indexes

In order to derive a robustness index for cash policies, we rely on the concept of
distance. A comprehensive work on distances can be found in Deza and Deza (2014).
We here define distance as a function in a normalized cost-risk space:

Definition 2. (Distance). In a normalized cost-risk space S = [0, 1]2, a distance is
a function D : S × S → R+, with the following properties:
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(1) D(P, P ′) ≥ 0 (non-negativity);
(2) D(P, P ′) = D(P ′, P ) (symmetry);
(3) D(P, P ) = 0 (reflexivity);
(4) D(P, P ′′) ≤ D(P, P ′) +D(P ′, P ′′) (triangle inequality);

for all points P, P ′, P ′′ ∈ S.

Hereafter, we propose to test the robustness of policies to cash flow regime changes
by computing distances between performance points derived from policies in a training
set denoted as Pi = (θ1, θ2), and performance points derived from policies in a test set
denoted as P ′i = (θ′1, θ

′
2). Thus, we propose to use the following collection of distances

to measure robustness of policies that we illustrate in Figure 2. In the business-as-
usual context, policy performance can be synthetically evaluated in terms of cost and
risk by means of the (training) distance to the ideal performance (0, 0).

Definition 3. (Training distance). The training distance δi of policy i is the Eu-
clidean distance between performance Pi and the ideal policy performance (0, 0).

The shorter the training distance the better the policy within a business-as-usual
context. However, regime perturbations may result in performance changes of alter-
native policies. Then, we introduce the concept of deviation as the difference in per-
formance between policies over the training and test sets in a normalized cost-risk
space.

Definition 4. (Deviation). The deviation di of policy i is the Euclidean distance
between performance Pi and performance P ′i , namely:

di =
√

(θ1i − θ′1i)2 + (θ2i − θ′2i)2. (12)

According only to the magnitude of deviation, we can initially state that policy
2 in Figure 2, with deviation d2, is more robust than policy 3, with deviation d3,
because d2 < d3. However, although d1 and d2 have the same magnitude, a rational
cash manager should select policy 2 instead of 1 because the former is closer to the
ideal point (0, 0) than the latter. This motivates the need for an additional distance
measure.

Definition 5. (Proximity or test distance). The proximity δ′i of policy i is the
Euclidean distance between performance P ′i and the ideal policy performance (0, 0).

In addition, a policy that improves its performance after a context change is pre-
ferred to a policy that worsens its performance. For example, policy 2 in Figure 2 is
an even better policy than policy 1 because, after the evaluation over the test set,
performance P ′2 moves closer to the ideal point while P ′1 moves away from the ideal
point. Thus, we should also measure movement of policies.

Definition 6. (Movement). The movement of policy i is the difference in distance
to the ideal performance between policy performance P ′i and Pi, computed as δ′i − δi.

We next summarize how each of the aforementioned distances to measure robustness
rank policies when the rest of factors (distances) are equal:

• Deviation: policy i is better than policy j if di < dj .
• Proximity: policy i is better than policy j if δ′i < δ′j .
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• Movement: policy i is better than policy j if δ′i − δi < δ′j − δj .
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Figure 2 Distances between cash policies evaluated over two data sets.

The collection of distances mentioned above allows us to introduce different mea-
sures of robustness according to the particular preferences of cash managers. Next,
we introduce two alternative distance functions to measure robustness that we later
compare in a numerical example:

D1(Pi, P
′
i ) =

{
2α(δi − δ′i) if δi > δ′i,
2(1− α)(δ′i − δi) if δi ≤ δ′i

(13)

as a linear asymmetric loss function, with α ∈ [0, 1], and:

D2(Pi, P
′
i ) = αdi + βδ′i + (1− α− β)(

√
2 + δ′i − δi) (14)

as a synthetic loss function where α, β ∈ [0, 1] are weights to set preferences objectives,
and
√

2 is only added to ensure non-negativity. Notice that (13) considers only move-
ment but (14) takes into account deviation, proximity and movement. Cash managers
can also consider their particular preferences by tuning parameters α and β. In (13),
parameter α can be tuned to weigh movement. Alternatively, in (14), parameter α is
linked to deviation in performance between regimes so that the higher the value of
α the higher the importance of deviation. Parameter β is linked to the proximity of
policies to the ideal point so that the higher the value of β the higher the importance
of proximity. Finally, the values given to α and β determine the importance of the
movement, since it is weighed by 1− α− β.

Next, we apply compromise programming (Ballestero and Romero 1998) to find
robust policies. Recall that this approach is based on the concept of ideal point where
both the minimum cost and the minimum risk occur simultaneously, i.e., (0, 0). This
point is usually unfeasible and it is necessary to look for compromise solutions that
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can be evaluated by computing the distance to the ideal point. Thus, once an entire
cash flow data set is divided in a training set and a test set, we first evaluate a given
set of feasible policies over the training set to obtain performance points Pi = (θ1i, θ2i).
However, when selecting a policy from the whole cost-risk space, cash managers may
be interested in testing the robustness to cash flow regime changes. To this end, we
propose the use of a third index θ3, namely, a distance index as a measure of robustness
when applied to data not considered in the first selection of policies. As a result, given
a policy Xi, with expected performance Pi = (θ1i, θ2i), obtained from the training set,
and with empirically tested performance P ′i = (θ′1i, θ

′
2i), obtained from the test set, we

use a distance function (e.g., (14)), to compute the following distance index:

θ3(Xi) =
D(Pi, P

′
i )−Dmin

Dmax −Dmin
(15)

where Dmax and Dmin are, respectively, the maximum and minimum values of perfor-
mance distances D(Pi, P

′
i ) between the training and the test set for each policy i. At

this point, we are in a position to derive an efficient frontier with the set of policies that
are not dominated by any other policy in terms of cost and robustness. Graphically,
the efficient frontier in the normalized cost-robustness space, is built from a set of
two-dimensional points (θ1, θ3), as in Figure 3. Note that since we compute robustness
using both cost and risk indexes, we are implicitly considering risk in the selection of
policies. As a result, by following our distance-based procedure, cash managers aiming
to analyze cost and risk of cash management policies in a changing environment are
able to ensure robustness in real world applications. Next, we illustrate our procedure
and its benefits through a numerical example.

5. An illustrative example using the Miller and Orr’s model

In this section, we follow the procedure described in Section 4.1 to determine the best
compromise cash policies in terms of cost and risk that are also robust to cash flow
regime changes.

5.1. Empirical settings

In what follows, we use the Miller and Orr’s cash management model introduced in
Section 2 to obtain control limits h, z and l, that determine policies according to
equation (1). In our case study, we use a real data set from a Spanish industrial
company composed by 1000 observations of cash flows at non-bank-holidays for a
period of about 4 years. We divide the entire data set in a training set with the first
80% of the observations, as the expected conditions, and a test set with the remaining
20%, as representative of changes in current conditions.

For illustrative purposes, we make computations using a cost structure adjusted to
current bank practices in Spain, summarized as follows: daily holding cost, v = 0.1%;
daily shortage cost, u = 30%, to be used in equation (4); fixed transfer cost into
account, γ+

0 = 5 e; fixed transfer from account γ−0 = 5 e; variable transfer cost into
account, γ+

1 = 0 e, and variable transfer cost from account, γ−1 = 0 e, to be used
in equation (3). It is important to note that γ−1 < v and γ+

1 < u. Otherwise, no
transaction would be made since the unitary costs of transferring money are higher
than those of holding the same amount of money.
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5.2. Selecting robust policies

In order to derive the efficient frontier in the cost-robustness space, shown in Figure 3,
we develop a complete grid search over different policies derived from the Miller and
Orr’s model. These policies are determined by the control limits h, z, and l. Since our
cost structure presents a high shortage cost, we expect better policies to be given by
high control limits. Consequently, we iterate over feasible combinations of h, z, and l
subject to h ≥ z ≥ l, ranging in [h− σ, h+ 3σ], [z − σ, z + 3σ], [l − σ, l + 3σ], in steps
of 100000 e, where σ is the standard deviation of cash flows in the training set.
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Figure 3 Efficient frontier in the cost-robustness space (θ1, θ3).

In this paper, we present alternative policies before selection. Therefore, we evaluate
all possible policies in terms of cost and risk. Under the compromise programming
framework, the closer to the ideal point (0, 0), the better the policy. A sample of
the best policies of the efficient frontier, in terms of Euclidean distance to the ideal
is shown in Table 1. To compute θ3 we use distance function (14) with parameters
α = 0.33 and β = 0.33, to equally weigh deviation, proximity and movement. Then,
a cash manager would select either policy 35, 38, 39 or 40 to minimize the distance
to the ideal (0, 0). However, the particular preferences of cash managers should be
considered to select other policies. A risky cash manager may select one of the policies
with larger distances (e.g., policy number 32), in order to reduce daily cost. On the
other hand, a conservative cash manager may consider accepting a higher expected
cost (e.g., by selecting policy 45), in order to maximize robustness.

5.3. Analysis

In this example, we use a robustness index to select the best compromise policy in
terms of cost and robustness to regime changes. However, an additional evaluation in
terms of cost and risk may be useful for comparative purposes. Such an evaluation over
the test set in our illustrative example is shown in Table 2. As a baseline, we use the
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Table 1 Central sample of the efficient frontier (Id=policy id; Bounds h, z and l in thousands of euros;

D2(Pi, P
′
i ) = distance function; θ1 = cost index; θ3 = robustness index; Dist=Euclidean distance to the ideal

point (θ1, θ3) = (0, 0)).

Id High(h) Target(z) Low(l) D2(Pi, P
′
i ) θ1 θ3 Dist

32 6310 4760 1780 0,05 0,18 0,28 0,33
33 6410 4760 1780 0,05 0,18 0,28 0,33
34 6510 4760 1780 0,05 0,18 0,28 0,33
35 6210 4660 1580 0,05 0,18 0,24 0,30
36 6310 4660 1580 0,04 0,19 0,24 0,31
37 6410 4660 1580 0,04 0,19 0,24 0,31
38 6110 4560 1480 0,04 0,22 0,20 0,30
39 6210 4560 1480 0,04 0,23 0,20 0,30
40 6310 4560 1480 0,04 0,23 0,20 0,30
41 6010 4460 1380 0,03 0,27 0,16 0,31
42 6110 4460 1380 0,03 0,27 0,16 0,31
43 6210 4460 1380 0,03 0,27 0,16 0,31
44 6010 4460 1480 0,03 0,31 0,15 0,34
45 6110 4460 1480 0,03 0,32 0,15 0,35

best compromise policy obtained using the entire data set but without any robustness
index as in Salas-Molina et al. 2016. In addition, we evaluate three different distance
measures: (i) the asymmetric loss function in (13) with α = 0.4 to slightly underweigh
the loss of policies that move closer to the ideal point and yield an improvement in
cost; (ii) the synthetic loss function in (14) considering both deviation and proximity
leading to a smaller improvement than the asymmetric function and an increase in
risk; (iii) the synthetic loss function in (14) but considering deviation, proximity and
movement, resulting in a reduction in cost but an increase in risk. Summarizing, the
use of a robustness index in our example results in a cost reduction of policies. In
addition, considering deviation, proximity and movement produces the best results in
terms of cost. However, this cost reduction is only possible by accepting a higher level
of risk.

Table 2 Evaluation of policies using different distance measures. Bounds h, z and l in thousands of euros.
Distance High(h) Target(z) Low(l) α β Cost(%) Risk(%)
Salas-Molina et al. (2016) 6570 4910 3930 - - 100 100
Asymmetric loss D1 in (13) 6010 4460 3580 0,4 - 91 99
Synthetic loss D2 in (14) 6610 4960 3380 0,5 0,5 94 112
Synthetic loss D2 in (14) 6110 4560 1480 0,33 0,33 75 132

6. Discussion

In this section, we discuss our distance-based procedure in comparison to alternative
approaches to obtain robust solutions to optimization problems such as stochastic
programming and robust optimization. In this paper, we handle uncertainty from
an empirical or data-driven approach which considerably departs from previous ap-
proaches. More precisely, the use of a distance index as a measure of robustness of cash
policies allows to include an additional goal to cost and risk within the framework of
multiobjective decision making. This additional goal can be designed according to the
particular preferences of decision makers. Furthermore, since the selection of the best
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compromise policies is affected by the uncertainty in cash flows, our approach is spe-
cially designed to deal with input data that can be learned from experience through
a data set of past observations such as cash flows. At the same time, we follow a
hold-out validation procedure based on the comparative analysis of a training data set
and a test set that may contain a context change. Finally, we allow practitioners to
transform any cash management model into its robust counterpart by following our
distance-based approach to find robust cash management policies.

For comparative purposes, let us consider two different approaches to deal with
uncertain optimization problems, namely, stochastic programming and robust opti-
mization. Under a general stochastic programming approach (Prékopa 2013), a deter-
ministic counterpart of the program (10)-(11) can be considered as follows:

min [w1 · E (θ1(X,T )) + w2 · E (θ2(X,T ))] (16)

subject to:

P (b̂t−1 + f̂t + xt ≥ b̂t) ≥ ζ (17)

where E is the common expectation operator, P denotes probability and ζ is a safety
threshold determined by a cash manager. A typical value for ζ is 95%, meaning that
cash balances are above the expected values at least 95% of the times, reducing then
the possibility of an overdraft. In other words, by solving the previous program we are
forcing cash balances to be above a certain level determined by the safety threshold ζ.
However, the introduction of probabilities implies the assumption of a particular distri-
bution for cash flows resulting in two serious limitations due to: (i) the lack of empirical
evidence on the common assumption of normally distributed cash flows (Emery 1981;
Pindado and Vico 1996); (ii) the additional assumption on the stationarity of cash
flow distributions (Constantinides and Richard 1978; Premachandra 2004; Baccarin
2009).

An alternative approach was proposed by Soyster (1973) and, later on, by Ben-Tal
and Nemirovski (1999); Ben-Tal et al. (2009), who tackled uncertainty by proposing a
robust counterpart to an optimization problem when uncertainty is determined either
by a system of linear inequality constraints or by a system of conic quadratic inequal-
ities. For instance, a robust counterpart of the program (10)-(11), when uncertainty

in cash flows is determined by f̂ − ε ≤ f ≤ f̂ + ε, being ε the maximum forecasting
error, is given by:

min [w1 · θ1(X,T ) + w2 · θ2(X,T )] (18)

subject to:

b̂t−1 + f̂t + xt ≥ b̂t + ε. (19)

The assumption of a maximum forecasting error ε may lead either to unrealistic or
ultraconservative problem formulations. For instance, consider a data set of empirical
errors ranging in [−100, 100], in which the maximum negative error −100 occurred only
once out of 1 million times. Setting ε to 100 results in an ultraconservative strategy.
In addition, two important issues remain unsolved: (i) the stationarity assumption,
meaning that estimation errors keep unaltered; and (ii) the possibility of adapting cash
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policies to different scenarios according to the particular preferences of decision makers.
These limitations are solved by our data-driven distance procedure as described above.

7. Conclusions

In the cash management problem, decision making can be enhanced by focusing on
optimizing cost, risk and robustness of the available policies rather than just cost.
This is particularly true under the realistic assumption of time-varying circumstances.
Usual approaches to deal with uncertainty within the framework of optimization prob-
lems such as stochastic programming or robust optimization present limitations such
as imposing a theoretical probability distribution or the stationarity assumption. To
overcome these limitations, we propose a data-driven procedure to test the robustness
of cash policies in a multicriteria decision making process. Particularly, we introduce
the use of a distance-based robustness index to select the best compromise set of cash
policies when cash flow regime changes are learned from experience through the use
of a data set of past observations. As a result, we argue that our procedure is able to
transform a cash management model into its robust counterpart when a data set of
past cash flow observations is available through:

• the validation estimated cost-risk results from cash policies when possible regime
changes are contained in a test set;
• the use of distance indexes to measure policy robustness;
• the selection of the best compromise policies in terms of cost and risk that are

also robust to regime changes through compromise programming.

A final remark must be done in the sense that we claim that a new procedure is
available to optimize cost and robustness by using two different data sets, a training set
and a test set. Our procedure can be replicated as many times as needed by considering
alternative (and possibly very different) test sets to incorporate a number of future
scenarios. In addition, our procedure can be straightforwardly extended to the use of
any other cross-validation method. However, further research would be needed to test
the ability in reducing both cost and risk in a systematic way by reducing distances
as a measure of robustness. In that case, the procedure presented in this paper could
help.
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