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ABSTRACT
Consider a person who needs to assess a large amount of infor-
mation. For instance, think of a teacher of a massive open online
course with thousands of enrolled students, or a senior program
committee member in a large conference who needs to decide what
are the final marks of reviewed papers, or a buyer in an e-commerce
scenario who needs to build up her opinion about products. When
assessing a large number of objects, sometimes it is simply unfea-
sible to evaluate them all and very often one needs to rely on the
opinions of others. In this paper, we provide a model that uses
peer assessments (assessments made by others) in an online com-
munity to approximate the assessments that a particular member of
the community would generate given the occasion to do so (e.g. the
tutor, the SPC member or the buyer—we refer to this person as the
leader). Furthermore, we provide a measure of the uncertainty of
the computed assessments and a ranking of the objects that should
be assessed next. The model, although inspired by human societies
is thought to be used in the organisation of agent communities.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multiagent systems

General Terms
Algorithms, Theory

Keywords
Trust and reputation, Collective intelligence, Community Assess-
ment, Educational Applications

1. INTRODUCTION
Consider a person who needs to assess a large amount of infor-

mation. For instance, think of a teacher of a massive open online
course with thousands of enrolled students, or a senior program
committee member in a large conference who needs to decide what
are the final marks of reviewed papers, or a buyer in an e-commerce
scenario who needs to build up her opinion about products. When
assessing a large number of objects, sometimes it is simply unfea-
sible to evaluate them all and very often one needs to rely on the
opinions of others. In the process of building up one’s opinion,
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there are some questions that need to be answered, such as: How
much should I trust the opinion of a peer? What should I believe
given a peer’s opinion? What should I believe when many peers
give divergent opinions? Which objects should I assess next, such
that the certainty of my beliefs improves? This paper seeks an-
swers to these questions through the Personalised Automated AS-
sessment model (PAAS).

PAAS uses peer assessments (assessments made by others) in
an online community to approximate the assessments that a par-
ticular member of the community would generate given the oc-
casion to do so (e.g. the tutor, the SPC member or the buyer).
The computed peer-based assessment of objects aims at matching
the perspective/view/opinion of a specific community member. We
will call this person the community leader or simply the leader.
PAAS aggregates peer assessments giving more weight to those
peers that are trusted by the leader. How much a leader trusts a
peer is based on the similarity between her (past) assessments and
the peer’s (past) assessments over the same objects.1 When such a
trust measure between the leader and a peer cannot be obtained—
that is, when no object was assessed by both of them—, an indirect
trust measure is built based on the reputation of the peer within the
community, where this reputation is computed from the perspective
of the leader. That is, the closer the peer’s opinions to the leader’s
opinions the higher her reputation. As such, our objective, differ-
ently from most previous approaches, is not consensus building.

Finally, we are also able to provide a measure of the uncertainty
of PAAS’s computed assessments and a ranking of the objects that
should be assessed next by the leader in order to decrease the over-
all uncertainty of those calculated assessments.

This paper is based on the work carried out in [3]. We take
from [3] the idea of biasing evaluations with respect to a leader.
However, the method described in this paper is completely new. In
particular, our improvements with respect to [3] include: (1) the
use of information theory: trust and assessments are represented
as probability distributions and not as just ordinal numbers; (2) the
use of the Eigentrust algorithm to calculate indirect trust instead of
a graph search; (3) the increased efficiency as we do not need to
maintain and update a graph of trust relations; and (4) the compu-
tation of the uncertainty of the automated assessments generated,
helping suggesting which objects should be evaluated next.

This paper is structured as follows. In Section 2 we do a quick
review of previous work. In Section 3 we present the model with
associated algorithms in Section 4. We experimentally evaluate the
model in Section 5. Finally, we conclude in Section 6.

1We could extend the approach by using semantic similarity and
thus using past experiences evaluating similar objects. This has
been explored in previous works [5, 11] and PAAS could be easily
extended to cover this case.



2. RELATED WORK
Previous works have proposed different methods for generating

assessments based on peer assessments.
CrowdGrader [1] is a framework which defines a crowdsourcing

algorithm for peer evaluation. The authors claim that, when per-
forming evaluations, relying on a single person is often impractical
and can be perceived as unfair. Their method aggregates the as-
sessments of an assignment made by several students into an over-
all assessment for the assignment, relying on a reputation system.
The reputation of each student (or their accuracy degree as they
call it) is measured by comparing the student’s assessments with
the assessments of their fellow students for the same assignments.
In other words, the reputation of a student describes how far are
her assessments from those of her fellow students. The overall as-
sessment (consensus grade) is calculated by aggregating all student
assessments weighted by the reputation of the students providing
them. The algorithm executes a fixed number of iterations using
the consensus grade to estimate the reputation (or accuracy degree)
of students, and in turn uses the updated student’s reputation to
compute more precise suggested assessments.

PeerRank [13] is based on the idea that the grade of an agent is
constructed from the grades it receives from other agents, and the
grade an agent gives to another agent is weighted by the grading
agent’s own grade. Thus, the grade of each agent α is calculated
as a weighted average of the grades of the agents evaluating α, and
thus the grades of α’s evaluators are themselves weighted averages
of the grades of other agents evaluating them, and so on. The final
grades are defined as a fixed point of an equation, similar to the
PageRank method where web-pages are ranked according to the
ranks of the web-pages that link to them.

Piech et al [6] proposes a method to estimate student reliability
and to correct student biases in an online learning scenario, present-
ing results over two Coursera courses. They assume the existence
of a true score for every assignment, which is unobserved and to
be estimated. Every grader is associated with a bias, which reflects
the grader’s tendency to inflate or deflate her assessments with re-
spect to the true score. Also, graders are associated with a reliabil-
ity which reflects how close the grader’s assessments tend to land
near the corresponding true score, after having them corrected for
bias. Authors infer the values of these unobserved variables using
known approximated inference methods such as Gibbs sampling.
The model proposed is therefore probabilistic and is compared to
the grade estimation algorithm used on Coursera’s platform, which
does not take into account individual biases and reliability.

Wu et al [14] investigates consensus building between a group
of experts in a trust network. New trust relationships are derived
from the trust network and the trust scores of such relationships are
calculated using an averaging operator that aggregates trust/distrust
values from multiple trust paths in the network. The trust score is
used to distinguish the most trusted expert from the group and, ulti-
mately, to drive the aggregation of the individual opinions in order
to arrive at a group consensual decision making solution. This work
also includes a visual consensus model to identify discordant opin-
ions, to produce recommendations to those experts that are furthest
from the group, and to show future consensus status if experts are
to follow the recommendations.

Collaborative Filtering (CF) [9] is a classical social information
filtering algorithm that recommends content to users based on their
previous ratings, exploiting the similarities between the tastes of
different users. The basic idea is as follows:

1. The system maintains a user profile, which is a record of the
user ratings over specific items.

2. Then, the system computes a similarity measure among users’
profiles.

3. Finally, the system recommends items to users with a rating
that is a weighted average of the ratings on that item given by
other users. The weights are the similarity measures between
the profiles of users rating the item and the profile of the user
receiving the recommendation.

What is fundamentally different between our PAAS model and
these works is that the computation of our automated assessments is
tuned to the perspective of a specific community member, a leader.
We clarify that our target is not consensus building to provide as-
sessments, but to accurately estimate those unknown assessments
from the leader’s point of view. Furthermore, PAAS aggregates
peer assessments giving more weight to those peers that are trusted
by the leader. Such trust metrics are built, as we will see shortly,
using probability distributions based on the history of past assess-
ments between the leader and his/her peers, rather than using ag-
gregations.

Some models allow agents to adapt the opinions expressed by
others when aggregating those to compute an overall trust value.
For instance, BLADE [7] is a Bayesian model that enables a buyer
agent to interpret the ratings of other buyers (aka advisors) over
sellers. Each buyer uses the advisors’ ratings to build a model of
the evaluation function of the advisor. Then, it adjusts the ratings
by comparing the advisor’s evaluation function and its own eval-
uation function. Similarly, HABIT [12] is another Bayesian trust
model which builds a two-layer hierarchical model in which the
opinions of different reputation sources are represented at the bot-
tom level, and their correlation with the actual trustee’s behaviour
is computed at the top level. Then, information sources with a low
correlation with the actual behaviour are considered unreliable and
filtered out from the reputation computation. Similarly to these
models, we reinterpret the opinions given by peers. However, in
our case, the reinterpretation is made based on the relation between
the opinions and a gold standard provided by an opinion leader
in the community and not by the observation of actual behaviour.
Also, differently from them, we use an approach based on informa-
tion theory and entropy measures to build trust, where with every
new observation the uncertainty of the model decreases.

In the experimental evaluation of our system, we compare PAAS
to CF since CF is the only one that biases the final computation
towards the opinion of a particular member of the community. Fur-
thermore, CF has been widely adopted by the industry. Typical rec-
ommendation services, as the ones provided by Amazon, Youtube
or Last.fm, are based on the CF algorithm.

3. THE PAAS MODEL

3.1 Notation and Problem Definition
Let ε represent the leader who needs to assess a large set of ob-

jects I, and let P be a set of peers able to assess objects in I.
We define a peer assessment eαµ (also referred to as evaluation or

opinion) as an element from an ordered discrete evaluation space
E , where α ∈ I is the object being evaluated and µ ∈ {ε} ∪ P
is the evaluating peer. We define an automated assessment eα_ for
object α as a metric (which could be the mean, the median, the
maximum, etc.) built from a probability distribution P over the
evaluation space E . We say P={x1 7→ v1, . . . , xn 7→ vn}, where
{x1, . . . , xn}=E and vi ∈ [0, 1] represents the value assigned to
each element xi ∈ E , with the condition that

∑
0<i≤|E| vi = 1.

For example, one can define the evaluation space of the quality of
an English classroom homework as E={poor, good, excellent}.



The distribution {poor 7→ 0, good 7→ 0, excellent 7→ 1} would
represent the best possible assessment, whereas the distribution
{poor 7→ 0, good 7→ 1/2, excellent 7→ 1/2} would represent that
the quality of the homework is most probably between good and
excellent, and so on.

Finally, we defineH as the history of all assessments performed,
and Oα ⊂ H as the set of past peer assessments over the object α.

The ultimate goal of our model is to compute the probability dis-
tribution of ε’s evaluation over a certain object α, given the evalua-
tions of several peers over that same object α. In other words, what
is the probability that ε’s evaluation of α is x given the set of peers’
evaluations Oα? Such expectation can be formalized with the fol-
lowing conditional probability: p(Xα=x | Oα). To calculate the
above conditional probability, we take into account every particular
evaluation in Oα. In other words, expectations (or probabilities)
are calculated for each individual evaluation in Oα, before those
expectations are aggregated into p(Xα=x | Oα). The probabil-
ity that ε’s assessment is x given a particular evaluation eαµ ∈ Oα
is p(Xα =x | eαµ) and then, p(Xα =x | Oα) is defined as an
aggregation of these individual probabilities, where our particular
aggregation is presented in Section 3.4.

We base the computation of the individual conditional probabil-
ities on the notion of trust between peers built from previous ex-
periences, where trust is understood as the similarity between the
assessments made by those peers for the same objects. In other
words, our intuition is that we expect ε will tend to agree with µ’s
assessment on an object if her trust on µ is high. Otherwise, ε’s
evaluation will probably be different. To build a trust measure be-
tween ε and µ we perform a sort of analogical reasoning: if in the
past µ gave opinions that were similar to ε’s opinions to a certain
degree (trust), then ε is likely to coincide with µ’s opinion again
now to the same degree.

The remainder of this section is divided as follows. We first de-
scribe in detail how the measure of trust between peers is calculated
(Section 3.2). Then, we illustrate how to calculate ε’s assessment of
an object α given µ’s assessment of α and ε’s trust on µ’s assess-
ments (Section 3.3), that is, we present our approach to calculate
the individual probability p(Xα=x | eαµ). We then illustrate how
to combine these probabilities to build the probability distribution
of ε’s assessments given the assessments of several peers (Section
3.4), that is, we present an approach for calculating the probabil-
ity p(Xα=x | Oα). Finally, we provide a measure of the uncer-
tainty of the computed assessments and a ranking of the objects that
should be assessed next by ε in order to decrease that uncertainty
(Section 3.5).

3.2 Step 1. How much should I trust a peer?
ε needs to decide how much can she trust the assessment of a

peer µ. We base this trust measure on two intuitions. First, if ε and
µ have both assessed the same object in the past, then the similarity
of their assessments for that object can give a hint on how close
their judgments/thinking are. When there are no objects evaluated
by both ε and µ, ε would not know how much to trust µ’s assess-
ments. Second, and to cover this latter situation, we approximate
the unknown trust between ε and µ by transitivity over the path
with direct trust links between ε and µ In the following, we make
these two intuitions concrete through two different types of trust
relations: direct trust and indirect trust.

3.2.1 Direct Trust
Direct trust is the trust relation that emerges between two peo-

ple or two agents that have already assessed the same objects in
the past. Our approach is to compute such relation as an aggre-

gation of their evaluations’ similarity. For instance, let the set
Ai,j = {α | eαi , eαj ∈ H} be the set of objects that have been
assessed by agents i and j. Then, different definitions for the direct
trust between i and j can be adopted based on different similarity
functions over objects in Ai,j , such as:

• The average of the similarities:

∑
α∈Ai,j

sim(eαi , e
α
j )

|Ai,j |

• The conjunction of the similarities:
∧

α∈Ai,j

sim(eαi , e
α
j )

• The linear correlation between i and j:∑
α∈Ai,j

sim(eαi , ēi) · sim(eαj , ēj)√ ∑
α∈Ai,j

sim(eαi , ēi)
2
√ ∑
α∈Ai,j

sim(eαj , ēj)
2

,

where ēi, ēj are the means of the evaluations performed over
the set Ai,j by i and j, respectively.

However, when we calculate such aggregations we loose relevant
information. For instance, we are not able to tell if j usually under
rates with respect to i, if it usually over rates, or neither. We are also
not able to tell if the dissimilarities between i and j’s evaluations
are highly variable or not.

To cope with such loss of information, we will define the direct
trust between two peers i and j as a probability distribution Ti,j
over evaluation differences built from the historical data of previous
evaluations performed by i and j.

DEFINITION 3.1. We define the evaluation difference between
two assessments performed by i and j as:

diff (eαi , e
α
j ) = eαi − eαj (1)

We use the euclidean distance between assessments as the mea-
sure of dissimilarity, as it is the most used distance in the literature
on similarity in metric spaces. If diff (eαi , e

α
j )=0, it means that i

and j provide the same evaluation for α. If diff (eαi , e
α
j ) > 0, it

means that i over rates α with respect to j, if diff (eαi , e
α
j ) < 0, it

means that i under ratesαwith respect to j. Note that diff (eαi , e
α
j ) 6=

diff (eαj , e
α
i ).

When defining Ti,j , we are interested in maintaining informa-
tion about whether a peer under rates or over rates with respect to
another peer. As such, the support of the distribution representing
i’s direct trust on j (i.e. the x-axis of Ti,j) consists of the possi-
ble evaluation difference values between i and j. Trust distribution
Ti,j(x) then describes the probability that i and j would assess an
object with an evaluation difference x. Therefore, the distribution
Ti,j(0) = 1 represents a trust distribution where i fully trusts on j’s
opinion, since the probability that their assessments are the same is
1.

DEFINITION 3.2. Given a numeric evaluation space E = [0, b],
a Trust Distribution is any probability distribution over the differ-
ences in E , that is over the interval [−b, b].

In what follows, we explain how we build direct trust distribu-
tions computationally, based on previous experiences. We use an
information theory approach where the behavior of the studied phe-
nomenon is modeled by probability distributions which are updated
with every new observation. This approach is inspired by [2].



Initially, the direct trust distribution between any two peers i and
j is the distribution describing ignorance (i.e. the uniform distri-
bution). Then, whenever j evaluates an object α that was already
evaluated by i we update Ti,j as follows:

1. We find the element x in Ti,j’s support whose probability
needs to be adjusted: x=diff (eαi , e

α
j ).

2. We increase the probability of x in Ti,j as follows:

p(Xα=x) = p(Xα=x) + γ · (1− p(Xα=x)) (2)

The update is based on increasing the current probability
p(Xα = x) by a fraction γ ∈ [0, 1] of the total potential
increase (1− p(Xα=x)). For instance, if the probability of
x is 0.6 and γ is 0.1, then the new probability of x becomes
0.6+0.1 ·(1−0.6) = 0.64. We note that the ideal value of γ
should be closer to 0 than to 1 so that one single experience
does not result in considerable changes in the distribution. In
other words, a single assessment cannot result in a significant
change in the probability distribution.

3. We normalize Ti,j by following the entropy based approach
of [10]. The entropy-based approach updates Ti,j such that:
(1) the value p(Xα=x) is maintained and (2) the resulting
distribution has a minimal relative entropy with respect to the
previous one. In other words, we look for a distribution that
contains the updated probability value p(Xα=x) and that is
at a minimal distance from the previous Ti,j :

Ti,j(X) = arg min
P′(X)

∑
x′

p(Xα=x′) log
p(Xα=x′)

p′(Xα=x′)

such that {p(Xα=x) = p′(Xα=x)}
(3)

where p(Xα=x′) is a probability value in the original dis-
tribution, p′(Xα=x′) is a probability value in the potential
new distribution P′, and {p(Xα=x) = p′(Xα=x)} spec-
ifies the constraint that needs to be satisfied by the resulting
distribution.

3.2.2 Indirect Trust
Indirect trust is the trust relation that is deduced between peers

when they have not assessed any objects in common and thus a di-
rect trust relation cannot be computed. The notion of indirect trust
is inspired in the eigentrust algorithm for reputation management
[4]. Eigentrust proposes a reputation system that aggregates the
local trust values of users in a peer-to-peer network, based on the
notion of transitive trust, that is: a peer i will have a high opinion
of those peers who have had a trustworthy behaviour. If they are
honest in their behaviour they are also likely to be honest in report-
ing their local trust values, so peer i is likely to trust them. Local
trust values are reported to i by community members. Then, the
trust that i places on a peer k is based on the trust values reported
by the community members and weighted by the trust i has on each
community member.

In eigentrust the transitivity in trust is based on products and
additions of positive real numbers. However, in our case we need
to define operators to compute the transitive trust distribution from
two distributions. That is, what is Ti,k given Ti,j and Tj,k. The
idea is that differences have to be combined in an additive way. We
define this next.

If we want to compute the distance distribution between the leader
and a peer α via an intermediary peer β we need to combine the
probability distribution representing the evaluation difference be-
tween β and α with the probability distribution representing the

evaluation difference between the leader and β. Thus, for a dif-
ference in opinion x between peers β and α and a difference in
opinion y between β and the leader, the overall difference between
the leader and α is z = x+ y, as we are in an ordinal space. When
we move to probabilities, we then say that P (z) = P (x) ∗ P (y),
as we assume independence between opinions. Following this in-
tuition, we define the combined distance distribution between two
peers as follows.

DEFINITION 3.3. Given Trust Distributions P and Q over the
numeric interval [−b, b] we define their Combined Distance Distri-
bution, noted R = P⊗Q, as:

r(X = x) =

∑
x1+x2=x

p(X = x1) ∗ q(X = x2) if x ∈ (−b, b)∑
x1+x2≤−b

p(X = x1) ∗ q(X = x2) if x ≤ −b∑
x1+x2≥b

p(X = x1) ∗ q(X = x2) if x ≥ b

(4)

This operation can be nicely applied to our case of evaluation dif-
ferences as the transitive trust is nothing else than the aggregation
(addition) of the combined probability (product) of given evalua-
tion differences happening.

The≤ and≥ are used to maintain the range of the evaluation dis-
tance within the [−b, b] limits. For example, assume P = {0, 0, 1}
and Q = {1, 0, 0}, over the support (x-axis) [-1,1]. Now as-
sume we need to calculate R(−1). We say R(−1) should ag-
gregate the product of the probabilities of P(−1) and Q(0) (since
(−1) + 0 = −1), the product of the probabilities of P(0) and
Q(−1) (since 0 + (−1) = −1), as well as the product of the prob-
abilities of P(−1) and Q(−1) (since (−1) + (−1) = −2, and
−2 is outside the limits of the numeric interval of the evaluation
distance).

Note that this operator, ⊗, is commutative. Its neutral element is
the distribution O for the ideal (or optimal) distribution where the
probability that the evaluation difference between two peers is 0 is
equal to 1, that is p(X = 0) = 1.

The other important operation needed is how to aggregate com-
bined distances calculated from different sources (different peers).
In this case, from several distance distributions, we select the one
that is closer to O, that is, the one that makes the leader and the
student closer in their judgments. In the eigentrust algorithm, this
would be equivalent to selecting the maximum combination (mod-
eled as the product of the values in the links) instead of the used
weighted sum of all the combinations. We note that other opera-
tors could be used here, for instance selecting the distribution with
minimum entropy. In the following we define this operator.

DEFINITION 3.4. Given probability distributions P and Q over
the numeric interval [a, b] we define P⊕Q, as:

P⊕Q = arg min
T∈{P,Q}

(emd(T,O)) (5)

with emd standing for the earth mover’s distance [8].

Note that this operator, ⊕, is commutative and associative so the
order in which we combine the trust distributions is irrelevant.

Next, we show how we use these operators following a similar
approach to eigentrust. First, we store the direct trust distributions
between ε’s peers in a matrix C, where at the position (i, j) we store
the current probability distribution between peers i and j: Ti,j . We



store the indirect trust distributions between the leader ε and each
community member in a vector tε, where at each position iwe have
Tε,i. Initially, tε contains the probability distributions describing
ignorance (i.e. the flat equiprobable distribution F) in all rows. Let
us call this initial vector t0ε . The tε vector is updated as follows:

tk+1
ε = CT ṫkε (6)

until ‖tk+1
ε −tkε ‖ < η, where η is a specified threshold to determine

that we have reached a fix point. As in the eigentrust algorithm, the
trust vector tε converges after a certain amount of iterations. In this
way, the trust that ε has on i is built aggregating the direct trust
distributions between community members and peer i weighted by
the trust (initially ignorance) that ε has on each community mem-
ber. The product between matrix CT and tkε is defined, recalling
previous definitions, as follows:

tk+1
ε,j =

⊕
0<i≤n

Ti,j ⊗ Tkε,i (7)

Finally, if a direct trust distribution is already built between ε
and j, Ti,j , then after each step of the algorithm, tk+1

ε,j is overwrit-
ten with Ti,j , since we prefer to preserve direct trust distributions,
which are built from the history of assessments.

3.2.3 Information Decay
An important notion in our proposal is the decay of information.

We say the integrity of information decreases with time. In other
words, the information provided by a trust probability distribution
should lose its value over time and decay towards a default value.
We refer to this default value as the decay limit distribution D. For
instance, D may be the ignorance distribution, which would mean
that trust information learned from past experiences tends to igno-
rance over time.

Information in a probability distribution T decays from t to t′

(where t′ > t) as follows:

Tt;t′ = Λ(D,Tt) (8)

where Λ is the decay function satisfying the property: lim
t′→∞

Tt;t′ =

D. One possible definition for Λ could be:

Tt;t′ = ν∆t,t′ · Tt + (1− ν∆t,t′ )D (9)

where ν is the decay rate, and:

∆t,t′ =

0 , if t′ − t < ω

1 +
t′ − t
tmax

, otherwise

The definition of ∆t,t′ above serves the purpose of establishing
a minimum grace period, determined by the parameter ω, during
which the information does not decay, and that once reached the
information starts decaying. The parameter tmax, which may be
defined in terms of multiples of ω, controls the pace of decay. The
main idea behind this is that after the grace period, the decay hap-
pens very slowly; in other words, ∆t,t′ decreases very slowly.

To implement such a decay mechanism in our model, we need
to:

1. Record all evaluations eαµ ∈ H made at time t with a times-
tamp t, noted eα

t

µ .

2. Record all direct trust distributions Ti,j with a timestamp t,
noted Tti,j , where t is the timestamp of the last evaluation

that modified the trust distribution (recall that direct trust dis-
tributions may be modified when a new assessment occurs).
The first time Ti,j is modified, t is the timestamp of the eval-
uation involved in the modification. Then, every time a new
evaluation with timestamp t′ > t is considered to update
Tti,j , Tti,j is first decayed from t to t′ before the distribution
is modified.

3. Record all indirect trust distributions Ti,j with a timestamp
t, noted Tti,j . Every time Ti,j is calculated, all probability
distributions involved in this calculation will first be decayed
to the time of calculation t, which will be the resulting times-
tamp of Ti,j .

3.3 Step 2: What to believe when a peer gives
an opinion?

Given a peer assessment eαµ , the question now is how to compute
the probability distribution of ε’s evaluation. In other words, what
is the probability that ε’s evaluation of α is x given that µ evaluated
αwith eαµ . As illustrated earlier, this is expressed as the conditional
probability:

P(Xα=x | eαµ)

To calculate this conditional probability, the intuition is that ε
would tend to agree with µ’s evaluation if his trust on µ is high (that
is, the expected evaluation difference between their assessments is
close to 0). Otherwise, ε’s evaluation would probably be different.
We perform then a sort of analogical reasoning: if in the past µ
gave assessments with a certain evaluation difference with respect
to ε, then this will probably happen again now.

We thus calculate the above conditional probability simply as:

p(Xα=x | eαµ) =



∑
y≤diff (x,eαµ)

Tε,µ(y) if x = 0∑
y≥diff (x,eαµ)

Tε,µ(y) if x = b

Tε,µ(diff (x, eαµ)) otherwise

(10)

Observe that in two cases the probabilities are computed as the
summation of the probability mass of Tε,µ for points below or over
the difference between the new opinion and the point x under con-
sideration. This is done to cope with the fact that we cannot under
rate or over rate more as we are at the extremes already and con-
sider that for instance past cases where we under rated more should
be taken into account when we are determining the probability that
the leader gives a 0 in the assessment. Similarly for b. For exam-
ple, assume µ’s assessment is 2 when the maximum mark is 3, we
are calculating the probability of ε’s assessment, and ε usually over
rates µ by 2 marks. The probability of ε’s assessment being 2 will
essentially be T(0) (since the difference 2− 2 = 0). However, the
probability of ε’s assessment being 3, cannot simply be T(1) (since
the difference 3 − 2 = 1), because it is the maximum value of the
evaluation space and so it also needs to consider all the over rat-
ing possibilities described by T(2) and T(3) as well. As such, the
probability of ε’s assessment being 3 aggregates T(1), T(2), and
T(3).

3.4 Step 3: What to believe when many give
opinions?

In the previous section we computed P(Xα | eαµ). That is, the
probability distribution of ε’s evaluation on α given the evaluation
of a peer µ on α. But what does ε do when there is more than one
peer assessing α?



Given the set of opinionsOα = {eαµ1
, eαµ2

, . . . , eαµn} of a group
of peers over the object α, we define the probability of ε’s assess-
ment being x as follows:

p(Xα=x | Oα) =
n∨
i=1

(I(Tε,µi) · p(X
α=x | eαµi))

n∑
i=1

I(Tε,µi) > δ

1/n otherwise

(11)

where ∨ is an operator that combines probabilities assuming the
sources are independent:2 a∨b = a+b−a∗b, and I(Tε,µ) measures
the information content of the probability distribution Tε,µ as the
earth mover’s distance to the ignorance distribution (the uniform
distribution F). In other words, the probability of ε’s assessment
being x given the set of opinions Oα is a disjunction of the proba-
bilities of ε’s assessment being x given each evaluation eαµi ∈ O

α

and diminished by the information content of the evaluation distri-
butions I(Tε,µi). We diminish the probability derived from a par-
ticular opinion when that opinion is actually not very informative
and thus very close to ignorance. In the case that most opinions are
close to ignorance,

∑n
i=1 I(Tε,µi) ≤ δ, the result of such combi-

nation might be too close to zero (for a small δ) and thus we prefer
to assume ignorance, 1/n, for the probability value.

Finally, for several purposes (give a mark to a student, rank ob-
jects to purchase, . . . ) it is practical to ‘summarise’ distributions
P(Xα | Oα) into a number. From the several methods that can be
used (centre of gravity, mean, median, . . . ) in the experiments we
use the mode value of the distribution.

3.5 Step 4: What should be evaluated next?
The previous three steps allow to compute assessments of objects

that have not been assessed by ε, based on peers opinions. The
level of uncertainty of the assessments so generated by our method
can be calculated as the uncertainty of the probability distribution
P(Xα | Oα). A classical method to measure this uncertainty is the
the distribution’s entropy:

H(P(Xα | Oα)) =
∑
x∈Xα

p(Xα=x | Oα) · ln p(Xα=x | Oα)

(12)
We will explore in the experiments a heuristic that aims at reduc-

ing the number of assessments made by the leader. In other words,
what object should be assessed next by ε in order to maximally de-
crease the overall uncertainty? For example, what assignments and
in which order should a tutor evaluate so that the uncertainty of the
computed assessments, i.e. the uncertainty on the students’ marks,
becomes acceptable. The heuristic is simple: we suggest that ε
evaluates objects by decreasing value of the entropy of their assess-
ment distribution, that is the next object α that the leader should
assess is:

α = argmax
α

H(P(Xα | Oα)

4. ALGORITHM
In this section we provide the pseudo-code of PAAS, which is a

straightforward implementation from the equations defined in Sec-
tion 3.

2This assumption is not very restrictive for the scenarios we are
considering: peer assessments in online education or e-commerce
as opinions are expressed by people that do not know each other.

Algorithm 1 defines the method to apply when a new assessment
is performed. In lines 1-14 direct trust distributions are updated in
matrix C and vector tε, as discussed in subsection 3.2.1. In lines
15-22, indirect trust distributions are updated using the adapted
eigentrust method, as discussed in subsection 3.2.2. Algorithm 2 is
the method that updates direct trust distributions given a new opin-
ion. Line 1 decays the distribution from time stamp t to t′. Line 2
updates the value in the distribution for the point representing the
distance in the observation. Line 3 normalizes this distribution by
computing the distribution with minimum relative entropy with re-
spect to the distribution before the observation and that respects the
updated value. Algorithm 3 deduces the overall assessment values
(i.e. P(Xα | Oα) after a number of assessments have been made.

Algorithm 1 newAssessment(eα
t

i )

Require: H = {} . This is the history of assessments
Require: F . This is a trust probability distribution describing ignorance
Require: t′ε . This is a vector where ε’s direct trust distributions are stored
1: for all eαj ∈ H do . Ordered by their timestamps
2: diffi,j = eαi − eαj
3: diffj ,i = eαj − eαi
4: if i = ε then
5: updateDirectDistribution(tε[j], t, diffi,j )
6: t′ε = t′ε ∪ tε[j]
7: else if j = ε then
8: updateDirectDistribution(tε[j], t, diffj ,i )
9: t′ε = t′ε ∪ tε[j]

10: else
11: updateDirectDistribution(Ci,j , t, diffi,j )
12: updateDirectDistribution(Cj,i, t, diffj ,i )
13: end if
14: end for
15: t0ε = F
16: repeat
17: tk+1

ε = CT ṫkε . Equations 6 and 7
18: error = ‖tk+1

ε − tkε ‖
19: tk+1

ε = tkε
20: tk+1

ε ← t′ε . Overwrite distributions for those peers with direct
trust

21: until error < η

22: H = H∪ {eαti }

Algorithm 2 updateDirectDistribution(Tt
′
, t, x)

Require: Λ . This is the decay function
Require: D . This is the default distribution
1: Tt′;t

i,j = Λ(D,Tti,j) . Equations 8 and 9
2: T(X=x) = T(X=x) + γ · (1− T(X=x))

3:
T(X) = arg min

P′(X)

∑
x′
p(X=x′) log

p(X=x′)

p′(X=x′)

such that {p(X=x) = p′(X=x)}

5. EVALUATION
We present experiments performed over real data coming from

two English language classrooms (30 14-years old students). Two
different tasks were given to the classroom: an English composition
task and a song vocabulary task. A total of 71 assignments were
submitted by the students and marked by the teacher (our leader).

Students assessed their fellow students during a 1 hour period.
A total of 168 student assessments were completed by the students
(each student assessed on average 2.4 assignments). Marks vary
from 1 (very bad) to 4 (very good). Students evaluated different



Algorithm 3 calculateAssessments()

Require: I . This is the set of objects to be assessed
Require: H . This is the history of assessments
1: result = {}
2: for all α ∈ I do
3: if eαε ∈ H then
4: result = result ∪ eαε
5: else
6: Oα = {eαµ |eαµ ∈ H}
7: eα_ = {x|P(Xα = x | Oα) is maximum}. Equations 11 and

10
8: result = result ∪ eα_
9: end if

10: end for
11: return result

criteria from the assignments: focus, coherence, grammar in the
composition task and in-time submission, requirements, lyrics in
the song vocabulary task.

Thus, E = {1, 2, 3, 4}, and the x-axis of our trust distributions
is {−4,−3,−2,−1, 0, 1, 2, 3, 4} (which are the possible evalua-
tion distance values between peers in this setting). We calculate
the error of the generated assessments, noted as eα_ , as the average
difference between them and the tutor assessments, that is:

error =

∑
α∈I

‖eα_ − eαε ‖

|I|
In addition to the error, we are also interested in plotting the

number of deduced assessments. We note that when there is no
peer or tutor assessment for a particular assignment, an automated
mark for that assignments can not be generated.

In the first experiment where we compare our model with the
well known Collaborative Filtering (CF) algorithm [9]. As dis-
cussed in Section 2, CF is a social information filtering algorithm
that recommends content to users based on their previous prefer-
ences. CF biases the final computation towards a particular mem-
ber: the person being recommended, as our algorithm does.

In this experiment, we randomly select a subset of 6 teacher as-
sessments to use as the leader’s opinion in both PAAS and CF (this
subset represents 8.4% of the total number of assessments, the rest
of teacher assessments are used to calculate the error). Then, sev-
eral iterations are performed, one for each student assessment. On
each iteration:

• One student assessment is selected randomly from the set of
student assessments and added to PAAS and CF

• Automated assessments are generated by PAAS and CF and
the error is calculated. To calculate the error, our groundtruth
is the set of all tutor assessments.

Results are averaged over 50 executions. When an assessment for
a particular assignment could not be deduced, a default mark (ig-
norance) 2 is given, since this value is situated more or less in the
middle of the evaluation space. Default marks are used in both
PAAS and CF error calculations.

Figure 1 shows the results of PAAS and CF on three cases. As
the assignments are different with different evaluation criteria we
choose a criterion per group, necessarily different, so that we can
have a larger number of assignments in the experiments. Three
such pairings of criteria are shown in the figure. It is clear in the
three cases the remarkable improvement of PAAS over CF consid-
ering the number of final marks generated (see the right column of
graphics in the figure). PAAS has an added capability with respect

to CF in using indirect trust measures to generate assessments. In
CF the opinion of someone without any similarity in her profile
with the leader (in our case, without any common assignment be-
ing assessed) cannot be used to suggest a recommendation (an as-
sessement). Thus, PAAS is capable of generating many more as-
sessments, specially once the graph of indirect trust relationships
becomes more and more connected. This highlights PAAS’s first
point of strength: PAAS increases the number of assessments that
can be calculated. On the left, we show the improvement of PAAS
over CF in terms of the error with respect to the ground truth that we
know (the actual teacher assessments). The error is calculated over
the entire set of assignments, including assignments that receive
the default mark. This highlights PAAS’s second point of strength
in outperforming CF: PAAS decreases the error of the assessments
calculated. We note that when the number of peer assessments
increases PAAS and CF’s error get closer because the effect of in-
direct trust diminishes. However, we are much better than CF for a
small effort per peer (for instance, think of 5 or 6 assessments per
peer instead of hundreds).

We perform a second experiment where we assess the impact of
using the heuristic that informs the teacher of which assignment
to select next to assess, see section 3.5 for details. In this case,
we designed an experiment where we simulate a classroom of 200
students with 200 submitted assignments, where each assignment
is evaluated by 5 students (1000 peer assessments performed). To
show a critical case, we simulate that half of the assignments are
evaluated accurately by half of the students (that is, those students
provided the same mark as the tutor) and the other half of the as-
signments are evaluated poorly (that is, randomly) by the other half
of the students. In the simulation, we have two instances of the
PAAS model: PAAS Random and PAAS Ranking. First, all the stu-
dent assessments are added to both instances of the PAAS model.
Then, several iterations are performed, one for each tutor assess-
ment. On each iteration:

• We randomly select a tutor assessment for an assignment that
has not been assessed yet, and we add this tutor assessment
to PAAS Random.

• We select a tutor assessment for an assignment not yet as-
sessed following the suggestion of the entropy heuristic, and
we add this tutor assessment to PAAS Ranking.

• Automated assessments are generated by PAAS Random and
PAAS Ranking and the error is calculated.

Figure 2 (a) shows the error which of course decreases with ev-
ery new tutor assessment. We also see how ranking the assess-
ments with the entropy heuristic decreases the error faster. Figure
2 (b) shows the same experiments but with the real data. In this
case, there is no clear advantage in ranking assessments over sim-
ply assessing randomly. This is an indicator that the students from
these two groups where closely aligned with the tutor’s opinion.
In other words, all the assignments where performed with more or
less the same quality (in contrast with the scenario presented in
(a) with simulated data). Figure 2 (c) shows the same experiment
presented in (b) but in this case the assessments of half of the as-
signments were overwritten providing a random mark. Such noise
introduced, even in this rough manner, produces that the ranking
strategy becomes slightly more effective. We also highlight the
fact that the error of the PAAS model does not change drastically
when noise is introduced, since PAAS is able to distinguish which
assessments are trustworthy and which are not very quickly. We
conclude from this second experiment that although in some cases,



e.g. when the students are good ‘recommenders’, the heuristic may
not be needed, in general it can improve the results when such rec-
ommendation quality is missing.

(a) focus and in-time submission criteria

(b) coherence and requirements criteria

(c) grammar and lyrics criteria

Figure 1: Experiments with Real Data: PAAS vs CF. We show
the results for opinions on two criteria, one for each assignment.
For instance in (a) we combine opinions on focus in the compo-
sition task and submission on time in the song vocabulary task.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have presented the Personalised Automated AS-

sessments model (PAAS), a trust-based assessment service that helps
compute automated assessments from the perspective of a specific
community member: a community leader. This computation es-
sentially aggregates peer assessments, giving more weight to those
peers that are trusted by the leader. How much the leader trusts
a peer is based on the similarity between her (past) assessments

(a) Synthetic data

(b) Real data

(c) Randomised Real data

Figure 2: Experiments considering the entropy heuristic

and the peer’s (past) assessments over the same objects. The ap-
plication of this model is specially useful in the context of online
communities, where community members interact providing feed-
back or when the number of objects to be assessed is so large that
it would be very costly to assess them on an individual basis.

We have experimentally shown that the algorithm works well in
a real setting, and outperforms the well-known CF algorithm in two
different ways: (1) by remarkably increasing the number of assess-
ments that can be calculated, and (2) by remarkably decreasing the
error of the assessments calculated.

Plans for future work include: 1) evaluating the model with more
extensive real datasets that are currently being collected; 2) testing
the model in real settings by a company specialised in online learn-
ing solutions; and 3) applying the model to a domain other than on-
line learning, where the direct and indirect trust relations can help
community members decide who to trust in a given context. An-
other question to study is how the results would change when other
similarity measures for the differences between peers are used.
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