

MONOGRAFIES DE L’I[\ISTITUT D'INVESTIGACIO
EN INTEL-LIGENCIA ARTIFICIAL
Number 19

Institut d’Investigacié
en Intel-ligencia Artificial

Consell Superior
d’Investigacions Cientifiques

Monografies de ’Institut d’Investigaci6 en

Num.

Num.

Num.

Num.

Num.

Num.
Num.

Num.

Num.

Num.

Num.

Num.
Num.

Num.

Num.

Num.

Num.

Num.

Num.

Num.

10

11

12
13

14

15

16

17

18

19

20

Intel-ligencia Artificial

J. Puyol, MILORD II: A Language for Knowledge—Based Sys-
tems

J. Levy, The Cualculus of Refinements, a Formal Specification
Model Based on Inclusions

Ll. Vila, On Temporal Representation and Reasoning in
Knowledge—Based Systems

M. Domingo, An Ezpert System Architecture for Identification
in Biology

E. Armengol, A Framework for Integrating Learning and Prob-
lem Solving

J. L1. Arcos, The Noos Representation Language

J. Larrosa, Algorithms and Heuristics for Total and Partial Con-
straint Satisfaction

P. Noriega, Agent Mediated Auctions: The Fishmarket
Metaphor

F. Manya, Proof Procedures for Multiple-Valued Propositional
Logics

W. M. Schorlemmer, On Specifying and Reasoning with Special
Relations

M. Lépez-Sanchez, Approaches to Map Generation by means of
Collaborative Autonomous Robots

D. Robertson, Pragmatics in the Synthesis of Logic Programs
P. Faratin, Automated Service Negotiation between Autonomous
Computational Agents

J. A. Rodriguez, On the Design and Construction of Agent-
mediated Electronic Institutions

T. Alsinet, Logic Programming with Fuzzy Unification and Im-
precise Constants: Possibilistic Semantics and Automated De-
duction

A. Zapico, On Aziomatic Foundations for Qualitative Decision
Theory - A Possibilistic Approach

A. Valls, ClusDM: A multiple criteria decision method for het-
erogeneous data sets

D. Busquets, A Multiagent Approach to Qualitative Navigation
in Robotics

M. Esteva, Electronic Institutions: from specification to devel-
opment

J. Sabater, Trust and reputation for agent societies

Electronic Institutions:
from specification to development

Marc Esteva

Foreword by Carles Sierra

2003 Consell Superior d’Investigacions Cientifiques
Institut d’Investigacié en Intel-ligéncia Artificial
Bellaterra, Catalonia, Spain.

Series Editor
Institut d’Investigacié en Intel-ligencia Artificial
Consell Superior d’'Investigacions Cientifiques

Foreword by

Carles Sierra

Institut d’Investigacié en Intel-ligencia Artificial
Consell Superior d’'Investigacions Cientifiques

Volume Author

Marc Esteva

Institut d’Investigacié en Intel-ligencia Artificial
Consell Superior d'Investigacions Cientifiques

il
7 Institut d’Investigaci6 %‘ Consell Superior
en Intelligencia Artificial q_@; ~o| d’Investigacions Cientifiques
CSIC

(© 2003 by Marc Esteva
NIPO: 403-03-084-2
ISBN: 84-00-08156-0
Dip. Legal: B.43078-2003

All rights reserved. No part of this book may be reproduced in any form or by
any electronic or mechanical means (including photocopying, recording, or infor-
mation storage and retrieval) without permission in writing from the publisher.
Ordering Information: Text orders should be addressed to the Library of the
ITTA, Institut d’Investigacié en Intel-ligencia Artificial, Campus de la Universitat
Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.

Contents

Foreword
Abstract
Acknowledgements

1 Introduction

1.1 Motivation
1.2 Contributions e
1.3 Strucutre

2 State of the Art

2.1 Multi-agent Systems
2.2 Agent Communication
2.3 Agent Platforms
3 Electronic Institutions

3.1 Dialogic Framework
3.2 Scene ... e e e e

3.2.1 Variables

3.2.2 Constraints e
3.3 Performative Structure
3.4 NOrms e e e
3.5 Electronic Institution
3.6 Conclusions e e

4 Formalising Institutions in Process Algebras

4.1 Distributed winner determination process
4.1.1 Organization of the auction room
4.1.2 The w-calculus in brief
4.1.3 Leader Election
4.1.4 The Governor v i i
4.1.5 First-Price/Sealed-Bid
4.1.6 Vickrey’sauction oL
4.1.7 Dutch auction

xi

xiii

XV

W =

4.1.8 Englishauction

4.2 Conclusions e e

Islander

5.1 ISLANDER language definition
5.1.1 Electronic Institution
5.1.2 Dialogic Framework
5.1.3 Ontology
5.1.4 Performative Structure.
5.1.5 Scene e e
51.6 Norms

5.2 ISLANDER editor
5.2.1 Islander editor modules
5.2.2 Graphic User Interface

5.3 Verificationo
5.3.1 Imtegrity
5.3.2 Liveness
5.3.3 Protocol correctness
5.3.4 Norm correctness. o . v
5.3.5 Model Checking Scenes

54 Conclusionso

Social Layer for Electronic Institutions

6.1 Institution architecture.
6.2 JADEin briefo
6.3 Social layero
6.3.1 GOVernor
6.3.2 Scene Management
6.3.3 Transition management
6.3.4 Norm management
6.4 Development of agents for electronic institutions
6.4.1 Agoric Market L.
6.4.2 Logical formalism for Electronic institutions
6.4.3 Synthesisof Agents.
6.4.4 Customising Synthesised Agents
6.5 Conclusions
Applications
7.1 Auction house federation L.
7.1.1 Dialogic Framework
7.1.2 Performative Structure
7.1.3 Auction Scene oL
7.2 Conference Centre
7.2.1 Dialogic framework o oL
7.2.2 Performative Structureo L.
7.2.3 Appointment Proposal Scene

vi

724 Norms e
7.3 Conclusions

8 Conclusions
81 Future Work

A ISLANDER specifications
A.1 Auction house federation
A.2 Conferen Centre v

vii

List of Figures

3.1 Specification of the sealed-bid auction protocol 28
3.2 Graphical Elements of a Performative Structure 36
4.1 Organization of the agents in the auction room 44
4.2 Specification of the generic bidding resolution protocol 50
4.3 Example of collision resolution 51
4.4 The four steps of a bidding round 52
4.5 Specification of the processes FP-WaitingBid, FP-bid and
FP-WaitingMessage. 54
4.6 Specification of the process FP-ResolveBids 56
4.7 Specification of the process DA-bid 57
4.8 Specification of the process EA-WaitingMessage 58
4.9 Specification of the process EA-ResolveBid 59
5.1 ISLANDER editor modules 70
5.2 ISLANDER Data Flow Diagram 71
5.3 ISLANDER Graphic User Interface 74
5.4 Fish Market Performative Structure 82
5.5 Depth-first search of the Fish Market performative structure . . 83
5.6 Auction scene following a Dutch protocol 87
5.7 Depth-first search for the acution scene 88
6.1 Institution architecture. 95
6.2 Architecture of the JADE platform 98
6.3 Governor architecture. oL oL 102
6.4 Algorithm for saying an agent message 109
6.5 Examples of transitions. 115
6.6 Performative structure of the agoric market. 120
6.7 Simple Agora Room Scene L. 121
6.8 Representation of Agora Room Scene 122
6.9 Representation of Agoric Market electronic institution 122
6.10 Synthesised Agent from Agoric Market institution 124
6.11 Augmented Agent 125
6.12 Fragment of GenericSeller Agent 126

ix

7.1

7.2
7.3

74
7.5

Graphical Specification of the aucton house federation performa-

tive structure. Lo o 132
Specification of the auction room scene 136
Graphical specification of the conference centre performative

structure. 141
Specification of the Appointment Proposal Scene. 143
Specification of a norm in the conference centre. 144

Foreword

Marc Esteva has managed to materialise the ideas of a very active research group
within the IITA during the last eight years. He has completed the formalisation
of the Electronic Institution concept and has implemented a powerful tool called
ISLANDER. that helps engineers on the difficult process of specifying, verifying,
and deploying multi-agent system applications. This tool has received several
awards, among them the 'Best prototype paper’ during the AAMAS02 Confer-
ence in Bologna. Also, the tool has been successfully applied to the development,
of a real application: a federation of concurrent fish auctions houses. It is a nice
wrapping up for a period of research that started eight years ago with the Fish-
Market idea materialised in Pablo Noriega’s Ph. D. and that was fully developed
in Juan Antonio Rodriguez’s Ph. D. Multi-Agent systems development urgently
requires well founded specification methodologies; during the last years we have
witnessed the proposal of several such methodologies. In my opinion, Electronic
Institutions, supported by the tool ISLANDER, are among the most solid ways
of approaching the engineering of these systems. The reader will find in this
book a detailed description of how to use the methodology together with com-
plete examples and some initial steps towards a formal view of the underpinning
ideas.

Marc’s personality, always co-operative with his colleagues, has permitted
the gathering of efforts, including several Master Thesis, around the develop-
ment of the software that is presented in the book. His solid computer science
background permitted him to drive the development without surprises, with-
out errors, and steadily. I hope the reader enjoys the book and becomes an
ISLANDER. user as soon as ends the reading of it.

Bellaterra, October 2003

Carles Sierra
IITA, CSIC

xi

Abstract

This thesis focuses on the analysis, design and development of open multi agent
systems. We argue that open multi agent can be designed and implemented as
electronic institutions that define the rules that govern agent societies. Electronic
institutions define what each agents are permitted and forbidden to do. At
this aim, an institution defines the roles that participants can play, their valid
interactions and their consequences. Furthermore, institutions enforce social
and individual behaviour by obliguing everybody to act according to the norms.
This thesis continues previous work on electronic institutions presented in Pablo
Noriega’s and Juan Antonio Rodriguez’s PhDs.

Due to the complexity of open multi agent systems we advocate for a for-
mal approach on their design and development. For this purpose we present a
formalisation of electronic institution that permits a sound definition of all its
components. The formalisation is the basis for the specification, verification and
execution of institutions.

An important effort on this thesis has been devoted to the development of
software tools that facilitate institution designers’ work from the specification to
the subsequent development of institutions. Firstly, we have defined a textual
specification language for institutions based on the formalisation, the so-called
ISLANDER, and more importantly, the ISLANDER editor, a tool for the speci-
fication and verification of institutions. On the one hand, it permits a complete
specification of an institution allowing when possible to specify some of the ele-
ments graphically. Once specified an institution the tool is capable of verifying
it, permitting to detect errors at an early stage.

We argue that the execution of an electronic institution requires an infras-
tructure that facilitates agents to participate in the institution while controlling
that they behave according to the institution rules. Since open multi agent sys-
tems will be populated by heterogeneous and self-interested agents we can not
assume that those agents will behave according to the institutional rules. Hence,
we have developed a social layer middleware on top of a FIPA-compliant platform
that facilitates participating agents the information they need to successfully
participate within the institution, mediates agent interactions, and enforces the
institutional rules to participating agents. The social layer middleware is generic
in the sense that it can be used in the deployment of different institutions with
no extra programming.

xiii

Acknowledgements

This thesis has been mainly supported by the doctoral CIRIT grant (1999FI-
00012) and the elnstitutor project(TIC2000-1414).

First of all, I would like to thank Carles Sierra for accepting and supervising
my PhD. This thesis would not have been possible without his support and
advice. To work with him has been an invaluable experience.Furthermore,he
has offered me the opportunity to collaborate with other researchers, as well as,
to visit other research labs. Both activities have been extremely useful in my
scientific career.

Parts of this thesis correspond to papers jointly elaborated with other re-
searchers. I'd like to thank the co-authors of several of my papers that have
authorised the use of parts of them as material to include in this dissertation
monography.

The work on institutions’ formalisation was done in collaboration with Juan
Antonio Rodriguez, Pere Garcia and Josep Lluis Arcos. Special mention is de-
voted to Juan Antonio Rodriguez for his support, valuable advices and friendship
during these years.

I want to thank the researchers working in the EU funded SLIE project for
their interest in the work and software tools presented in this thesis. Although I
was not, directly involved in the project, I had the opportunity to collaborate with
them being parts of this thesis the resukt of these collaborations. Concretely,
the section on agents development in chapter 6 mainly corresponds to work and
ideas developed by Wamberto Vasconcelos. The work on institutions’ model
checking was principally carried out by Mike Wooldridge, Marc-Philippe Huguet
and Steve Phelps of the University of Liverpool.

I want to specially thank Julian Padget for hosting me at the University
of Bath,as an ERASMUS student, and for giving me the possibility to write
my first paper. The paper reported in chapter 4 would not have been possible
without his help and in-depth knowledge on process algebras.

The software presented in this thesis would not have been possible without
the work of Bruno Rosell and David de la Cruz. They have developed an im-
portant part of the software components presented here. I want also to thank
Lucia Ramoén for the grammar checking of an important part of this document.

The MASFIT project has been a perfect environment to use the ideas and
software presented in this thesis. I want to specially mention the developers
of the project, namely Guifre Cuni and Eloi Puertas for their patience and
feedback. Since they where the first users of the software, they were its testers.
They feedback and comments have been very valuable to improve it.

To work at the IITA during these years has been a very exciting scientific and

XV

personal experience. Apart from doing my PhD I have had the opportunity to
meet very interesting people and to make a lot of friends. I want to thank all
of them, staff researchers, PhD. students, administrative staff and visitors, for
making the IITA a nice place to work.

During my Phd. I have also had the possibility of visiting the ”Laborato-
rio Nacional de Informatica Avanzada” in Mexico and the Computer Science
Department of the University of Lisbon. I want to thank the people in both
places for their hospitality and friendship, specially Christian Lemaitre and Luis
Antunes.

Finalment, els meus agraiments sén per a tota la meva familia i amics.
Sense el seu suport i anims aquesta tesi no hagués estat possible. A la meva
mare i al meu pare per haver-me donat la vida, haver.me cuidat i sempre haver
estat al meu costat. Al meu germa per ser el meu millor amic. A la meva
avia i a la meva tia per la seva estimacio i haver-me cuidat mentre escrivia la tesi.

Marc Esteva
ITTA CSIC
Bellaterra, 23 d’ octubre de 2003

xvi

Chapter 1

Introduction

This thesis focuses on the analysis, design and development of open multi-agent
systems. We argue that open multi-agent systems can be effectively designed
and implemented as agent mediated electronic institutions where heterogeneous
(human and software) agents can participate playing different roles and inter-
acting by means of illocutions.

1.1 Motivation

Multi agent systems (MAS) are systems composed of autonomous agents which
interact in order to satisfy the common and/or individual goals. MAS rep-
resent an appropriate solution for those problems in which knowledge, re-
sources, and control, are partially and geographically distributed, and when
some legacy systems must be made to network [Wooldridge and Jennings, 1999].
MAS technologies have been applied successfully to different areas, as for in-
stance, air traffic control, electronic commerce, information management, etc
(reviews of agent applications can be found in [Jennings and Wooldridge, 1998]
and [Parunak, 2000]).

A main feature of MAS is that they communication occurs at knowledge level
and that they use flexible and complex interactions among their components.
Thus, the design and development of MAS have all the problems associated to
the development of distributed, concurrent systems and the additional problems
which arise of having flexible and complex interactions among autonomous en-
tities [Jennings et al., 1998]. In order to cope with these problems appropriate
methodologies which allow the analysis and design of agent systems and soft-
ware tools which give support to all the stages of their development life cycle
are needed [Jennings et al., 1998, Iglesias et al., 1999].

An important distinction when designing a multi agent system should be
done between the macro-level (social) and micro-level (agent) aspects of the
system. On the one hand, macro-level aspects focus on the social aspects of
agents, that is, how the multi agent system should be structured defining the

2 Chapter 1. Introduction

relationships and interactions among the agents. On the other hand, micro level
aspects focus on the internal aspects of agents, that is, which architecture the
agents should have, and the reasoning mechanisms that agents should use to
take their decisions. Early work in Distributed Artificial Intelligence identified
the advantages of organisational structuring as a main issue to cope with the
complexity of designing DAI systems [Gasser et al., 1987, Pattison et al., 1987,
Corkill and Lesser, 1983, Werner, 1987]. Organizational approaches address the
problem of designing a MAS from a macro level perspective defining the roles
that participating agents may play and structuring the valid interactions that
they may have. Nonetheless, agent researchers have spent more time and ef-
fort defining and developing agent architectures theories and languages, than
in defining general methodologies which allow to formalise agent systems from
their macro level perspective and which should give support to all the stages of
their development [Iglesias et al., 1999].

The complexity on designing multi agent systems increases when we focus
on open systems [Hewitt, 1986]. Open multi agent systems are those in which
the participants are unknown in advance and can change over time. These sys-
tems are populated by heterogeneous agents, normally developed by different
people using different languages and architectures, representing different parties
and acting to maximise their own utility. Furthermore, participants in open
multi agent systems change over time, new agents can appear and some of the
participants can disappear. Obviously, this type of systems must be designed
taking a macro level view of the system as all the agents are not known at de-
signing time. Open multi agent systems represent arguably the most important
area of application of multi agent systems [Wooldridge et al., 1999]. The goal of
the methodologies for open multi agent systems should not be to obtain a set
of agents which interact following the defined interaction protocols to achieve
a common objective, it should be to define a normative environment which
will determine agent possible behaviours within the system. In other words, the
methodologies for agent systems should focus on identifing the different roles that
agents can play within the system, the relationships among them and structure
their possible interactions. Thus, methodologies which commit to a concrete
agent architectures or focus on the internal aspects of the agents, as for instance
Tropos [Giunchiglia et al., 2002] or Prometheus [Padgham and Winikoff, 2002],
are not, appropriate for open multi agent systems.

Human societies have coped with similar problems to those associated to
open multi agent systems by following conventions and deploying institutions.
Human interactions very often follow conventions, that is, general agreements on
language, meaning, and behaviour. By following conventions humans decrease
uncertainties about the behaviour of others, reduce conflicts of meaning, create
expectations about the outcome of the interaction and simplify the decision
process by restricting to a limited set the potential actions that may be taken.
These benefits explain why conventions have been so widely used in many aspects
of human interaction: trade, law, games, etc.

On some occasions, conventions become foundational and, more importantly,

1.2. Contributions 3

some of them become norms. They establish how interactions of a certain
sort will and must be structured within an organization. These conventions,
or norms, become therefore the essence of what is understood as human institu-
tions [North, 1990]. This is so for instance in the case of auction houses, courts,
parliaments or the stock exchange. Human institutions not only structure hu-
man interactions but also enforce individual and social behaviour by obliging
everybody to act according to the norms.

The benefits obtained in human organizations by following conventions be-
come even more apparent when we move into an electronic world where human
interactions are mediated by computer programs, or agents. Conventions seem
necessary to avoid conflicts in meaning, to structure interaction protocols, and to
limit the action repertoire in a setting where the acting components, the agents,
are endowed with limited rationality. The notion of electronic institution be-
comes thus a natural extension of human institutions by permitting not only
humans but also autonomous agents to interact with one another. Thus, elec-
tronic institutions are thought to define the rules of the game in agents societies.

Due to the nature of multi-agents systems composed by autonomous and
distributed entities which interact an important part of the effort in its de-
velopment is spent on building basic communication and coordination mech-
anisms [Jennings et al., 1998]. Since most of this communication and coordi-
nation mechanisms are domain independent, they can be grouped together in
generic infrastructures that can be used to deploy multiple MAS and avoiding
to develop each agent based system from scratch. Hence, the development of
generic infrastructures which allows the rapid development of multi-agent ap-
plications has been identified as a main issue for the succeed and expansion of
multi-agent technologies [Ashri and Luck, 2001]. The development of generic
infrastructures intends to facilitate the work of system and agent designers allow-
ing them to primarily focus on domain dependent issues and on agent decision
making mechanisms. The resulting infrastructure should ideally provide par-
ticipating agents with the services they need in order to successfully fulfil their
goals. Furthermore, in the case of open multi agent systems as they will be pop-
ulated by self interested agents, they should be composed by the agents taking
part in the system and the computational mechanisms realising the rules of the
society [Rodriguez-Aguilar, 2001]. In other words, the computational mecha-
nisms which enforce the rules of the society to participating agents or which
detect agents violations of them.

1.2 Contributions

This thesis is a continuation of the work on electronic institutions already pre-
sented in [Noriega, 1997, Rodriguez-Aguilar, 2001]. The idea of agent mediated
electronic institution, as the electronic counterpart of human institutions, was
introduced in [Noriega, 1997]. Using as a motivation example a typical trading
institution, fish market auction houses, Noriega introduces the different com-
ponents of an institution. He proposes that an institution is defined by a set

4 Chapter 1. Introduction

of roles and relationships among them, a common ontology and communication
language which allow heterogeneous agents to exchange knowledge, the valid
interactions that agent may have structured in conversations, and a set of rules
of behaviour which determine the actions that agents must do under certain
circumstances.

The formalisation of institutions presented by Noriega was extended and
refined in Rodriguez’s thesis [Rodriguez-Aguilar, 2001]. Furthermore, an im-
portant effort on Rodriguez’s thesis is devoted on the realisation of electronic
institutions. He discusses how electronic institutions can be realised and as a
proof of concept presents a detailed description of the fish market implementa-
tion.

Taking into account their previous work the objectives at the beginning of
this thesis were: to continue the work on the institutions’ formalisation; to give
support to institution specifications and their automatic verification; and the
development of a generic infrastructure which could be used for the deployment
of the specified institutions. Chapter 3 focuses on the institution formalisation,
chapter 5 on their specification and verification, and chapter 6 focuses on the
realisation of institutions.

Due to the complexity of designing electronic institutions, we advocate
for a formal approach which should guide their analysis, design and develop-
ment. For this purpose and continuing the previous work on electronic institu-
tions [Noriega, 1997, Rodriguez-Aguilar, 2001, Esteva et al., 2001], we present,
in chapter 3, a formalisation of electronic institutions where we have refined and
extended some of their components. From our point of view an electronic insti-
tution is defined by a set of roles, a common language, the activities that can
be done within the institution and the consequences of agents’ actions within
the institution. First of all, each role defines a pattern of behaviour within an
institution and allows us to abstract from the concrete agents that will popu-
late the institution at execution time. As actions are associated to roles, what
a participating agent may do within an institution is determined by the roles
that it can play. Obviously, in order to allow heterogeneous agents to exchange
knowledge, a common language and ontology must be defined which are used to
define agent interactions. Agent activities within the institution are structured
in conversations which determine the valid interaction that agents may have and
represent the context where exchanged illocutions must be interpreted. Further-
more, the institution defines the valid conversations that agents may have and
how depending on their roles they can move among them including the definition
of when new conversations can be created. Finally, the institution defines the
consequences of agents’ actions within the different conversations which can ei-
ther limit or expand future agent acting possibilities and can impose obligations
to participating agents.

Taking as a basis the institution formalisation we advocate that the develop-
ment of electronic institutions must be preceded by a formal specification which
permits to identify and formalise all their components. For this purpose, we
have defined a textual specification language, the so called ISLANDER, based

1.2. Contributions 5

on the institutions formalisation, and more important we have developed the
ISLANDER editor, a tool for the specification and verification of institutions.
The language and the tool are both presented in chapter 5. The ISLANDER
editor permits the complete specification of an electronic institution allowing,
whenever possible, to specify elements graphically. We believe that graphical
specifications are extremely useful as they facilitate the designer work and they
are also much easier to understand. Qutputs of the tool are the specified in-
stitution on the defined textual specification language and on XML. Moreover,
the tool also verifies the correctness of specifications. For instance, that within
a conversation protocol a final state is always reachable.

The institution formalisation and the specification language focus on the
macro-level aspects of the system and not on micro-level (internal) aspects of
participating agents. Since no assumptions are made and no restrictions are
imposed on the internal characteristics of participating agents, the specified in-
stitutions are architecturally neutral and agent designers can choose the language
and architecture which better fits their goals.

Notice that we take the view that all interactions among agents are carried
out by means of message interchanges. Thus, we take a strong dialogical stance
in the sense that we understand a multi-agent system as a type of dialogical
system. The interaction between agents within an institution becomes an illocu-
tion exchange. In accordance with the classic understanding of illocutions (e.g.
[Austin, 1962] or [Searle, 1969)]), illocutions are not simply propositions that are
true or false, but attempts on the part of the speaker that succeed or fail.

The institution specification defines a normative environment which restricts
agents possible behaviours structuring their interactions and defining what
agents are permitted and forbidden to do depending on their roles. Since elec-
tronic institutions, and open multi agent systems in general, will be populated
by heterogeneous and self interested agents representing different parties, it can
not be assumed that these agents will behave according to the institutional rules.
For this reason, we take the view that agents participation within an institution
should be mediated by an infrastructure which provides agents with the informa-
tion they require to successfully participate in the institution, facilitates agents
communication with other agents within the different conversations, keeps track
of each agent pending obligations and guarantee the correct evolution of institu-
tion execution by enforcing the institutional rules encoded in the specification.

Instead of developing an infrastructure from scratch we have opted
for developing a social layer middleware on top of the JADE platform
[Bellifemine et al., 2001] which we use as a communication layer among agents.
The social layer is thought to cope with the institution concepts at execution
time. That is to say, the agents of the social layer control the roles that partici-
pating agents are playing, the current conversations that are taking place within
the institution, and keep track of each agent pending obligations. Furthermore,
they coordinate to guarantee the correct evolution of each conversation and agent
movements among them, and verify that agents’ actions within the institution
are correct with respect to the institution specification and the current execu-

6 Chapter 1. Introduction

tion. The developed social layer is generic in the sense that it can be used for
the deployment of different institutions as the agents composing it are capable
of loading institution specification as generated by the ISLANDER editor. The
infrastructure architecture, the different agents that compose the social layer
and how they manage institution concepts at execution time are presented in
chapter 6.

Furthermore, the last part of the chapter is devoted to show how agents for
electronic institutions can be developed. Since institution specifications does
not contain information about how agent have to take their decisions, they
can not be automatically generated from institution specifications. However,
we show how agent skeletons can be generated from the institution specifica-
tions. Skeletons are basic programs with the capacity to navigate among the
different institution conversations. In order to develop the agents engineers
should customise the skeletons by selecting the roles that the agent is going to
play, the conversations in which it will participate and defining the agent de-
cision making mechanisms [Vasconcelos et al., 2002a, Vasconcelos et al., 2002b,
Vasconcelos et al., 2003].

Process algebras is a research area focussed on the formal analysis of concur-
rent and distributed systems. Thus, they can be used to specify, analyse and ver-
ify multi agent systems from a distributed point of view. In chapter 4, we present
an alternative architecture for agents in an auction and a distributed mechanism
for the bidding resolution process, formalised and implemented using w-calculus
[Esteva and Padget, 2000]. For a formalisation of electronic institutions in am-
bient calculus and sale calculus reader is referred to in [Esteva et al., 2002b)
and [Padget, 2001].

In order to illustrate how electronic institutions can be practically specified
we present two examples on chapter 7, an auction house federation and a con-
ference centre. The auction house federation is an institution which permits
buyer agents to participate in real fish markets in the same conditions as human
buyers. Several fish markets can be connected to the federation allowing buyer
agents to receive information from all of them and decide which is the better
place to buy. For this purpose, the institution is connected to the software sys-
tem in charge of each real auction house from which it receives information of the
events occurring in the auction house and to which it sends the bids submitted by
buyer agents. The auction house federation is a continuation of the fish market
institution already presented in [Noriega, 1997, Rodriguez-Aguilar, 2001].

The second example corresponds to the conference centre institution
[Arcos and Plaza, 2002]. Complementary to the physical space where the con-
ference takes place it is defined an institution where agents representing the
conference attendees interact in order to look for interesting activities for them.
Each attendee can customise different Personal Representative Agents (PRA)
which participate in the institution on behalf of it. PRAs devote their time
within the institution to look for interesting events or activities for their atten-
dees and negotiating appointments with other PRAs representing attendees with
similar interests.

1.3. Strucutre 7

1.3 Strucutre

This thesis is divided in eight chapters including this one and one appendix:

Chapter 2 presents an overview among the research areas relevant for this thesis.
The chapter is divided in an overview on agent oriented methodologies,
design mechanisms of agent interactions and agent platforms.

Chapter 3 focuses on the formal model for electronic institutions. It presents
the different components of our electronic institution model and a formal
definition of each one of them.

Chapter 4 presents a formalisation of an alternative architecture for an auction
room and a distributed mechanism for the bidding resolution process. The
system has been formalised and implemented using m-calculus.

Chapter 5 describes the ISLANDER specification language and the ISLANDER
editor. ISLANDER is a textual specification language for electronic in-
stitutions that we have defined based on the institutions formalisation
presented in chapter 3. Furthermore, we have developed an ISLANDER
editor, a tool for the specification and verification of electronic institutions.
We describe the ISLANDER editor and the verifications that it does on
the specified institutions.

Chapter 6 focuses on the execution of electronic institution. We propose a
multi-layered architecture for electronic institutions composed by a com-
munication layer, a social layer and an autonomous agent layer composed
by the agents taking part in the institution. Principally the chapter is de-
voted to explain the agents composing the social layer and how they handle
institution concepts at execution time. Furthermore, the last part of the
chapter focuses on how agents for electronic institutions can be developed.

Chapter 7 presents two examples of electronic institutions: the auction house
federation and the conference centre institutions.

Chapter 8 outlines the conclusions of this thesis and future research.

Appendix A presents the complete specification of the institution examples
presented in chapter 7 in the ISLANDER language.

Chapter 2

State of the Art

Distributed Artificial Intelligence (DAI) is a subfield of Artificial Intelligence
concerned with distributing and coordinating knowledge and actions. DAT sys-
tems consist on several entities with certain degree of autonomy and intelligence
which interact to achieve their common and/or independent goals.

There is no agreement on a concrete agent definition but here we adhere to
the definition proposed in [Jennings et al., 1998]: “an agent is a computer sys-
tem, situated in some environment, that is capable of flexible autonomous action
in order to meet its design objectives”. Situated means that it can receive inputs
from its environment and it can perform actions that change the environment.
Autonomy means that the system should be able to act without the direct inter-
vention of humans and it should have control over its own actions and internal
state. Finally flexible means that the system is responsive, pro-active and so-
cial, where: responsive means that agents should respond in a timely fashion
to changes that occur in their environment; pro-active means that they should
be able to take the initiative and exhibit a goal-directed behaviour; and social
means that agents should be able to interact.

Next we present a short description of the state of the art in the areas related
to the thesis: Multi-Agent Systems, Agent Communication and Agent Platforms.

2.1 Multi-agent Systems

Multi-agent systems(MAS) are systems composed by several autonomous agents
which interact in order to achieve some goals. One of the main characteris-
tics of MAS is the use of sophisticated interaction patterns, as for instance
[Jennings et al., 1998]: cooperation (working together towards a common aim);
coordination (organising problem solving activity so that harmful interactions
are avoided or beneficial interactions are exploited); and negotiation (coming to
an agreement which is acceptable to all the parties involved). It is the flexibility
and high-level nature of these interactions which distinguishes multi-agent sys-
tems from other forms of software and which provides an underlying power of

10 Chapter 2. State of the Art

the paradigm.

Agent-based systems are adequate for those problems where data, control,
expertise or resources are distributed; agents are a natural approach for deliver-
ing system functionality; and where a number of legacy systems must be made
to network [Wooldridge and Jennings, 1999]. An important feature of an agent-
based approach is that it can incorporate legacy software systems. This can be
done by wrapping legacy systems by an agent layer in charge of communicat-
ing it with the other entities or by a transducer, a program which receives the
messages addressed to the legacy system and translates it in a format which can
be understood by it and realises the inverse operation when the legacy system
wants to send a message through the network [Genesereth and Ketchpel, 1994].
Another important advantage of agent-based approaches is reusability of agent
architectures and interaction protocols in different applications [Jennings, 2000].
For instance, agents with BDI architecture and general interaction protocols as
for instance, resource allocations protocols as Vickrey or English protocols, have
been used in many applications.

The complexity of designing and developing MAS arise from their distributed
nature and from having high level and flexible interactions among autonomous
entities [Jennings et al., 1998]. Then, appropriate methodologies which permit
the analysis and formalisation of the system taking into account agent char-
acteristics and which give support to all the phases of their development are
needed [Iglesias et al., 1999]. Furthermore, the complexity inherent to multi
agent systems increases when we consider open multi-agents systems. These are
systems whose components are not known in advance and they can change over
time. Open MAS are populated by heterogeneous and self interested agents,
which represent different parties and act to maximise their own utilities. The
former means that open MAS should accept agents developed using different
languages and architectures. The second means that open MAS should imple-
ment the mechanism to react and protect from agents deviating and fraudulent
behaviours, allowing agents only to perform the actions which are authorised for
[Dellarocas and Klein, 1999, Rodriguez-Aguilar, 2001].

The expansion of Internet with an exponential increase on the number of com-
panies and people who has access to the networks demands for new applications
which allow them to interact in order to satisfy their goals. We believe that this
represent a challenge for MAS technologies which can handle with the require-
ments of this type of applications. Hence, open MAS represent arguably the most
important application area of multi-agent systems [Wooldridge et al., 1999].
A typical example of open multi-agent systems are marketplaces over Internet
where agents on behalf of users sell and buy products. Nonetheless, the success
of MAS technologies and their expansion depends on the existence of appro-
priate methodologies and software tools which facilitate their design and rapid
development.

In order to cope with the complexity of designing MAS systems
the idea of modelling multi agent systems as organisations was early
proposed [Gasser et al., 1987, Pattison et al., 1987, Corkill and Lesser, 1983,

2.1. Multi-agent Systems 11

Werner, 1987]. Organizational approaches propose to analyse MAS from a global
perspective structuring the agent society by identifying the roles that partici-
pating agents may play and the relationships among them. They consider or-
ganizations as first class citizens of MAS and defend that any agent interaction
occurs in the context of an organisation.

However, organisational approaches have not been a common use in MAS
where most systems have been designed without analysing the system as a whole
and taking an agent-centred view. In these latter cases, the modelling of the
system consists on identifying the different agents, assigning the tasks to them
and defining the set of interactions that they need in order to accomplish the
tasks. They usually see a multi agent system as a pure aggregation of agents.
Furthermore, in many of the systems following an agent-centred approach there
are strong assumptions of agents’ benevolence and cooperation which can not
be taken in open systems. Agent-centred approaches can be useful for closed
systems composed of a small number of agents but they fail to design open
systems [Rodriguez-Aguilar, 2001, Esteva et al., 2001].

Different methodologies and approaches has been proposed for the design and
development of MAS. Extended revisions of existing agent-oriented methodolo-
gies can be found in [Iglesias et al., 1999, Wooldridge and P.Ciancarini, 2001].
We can see that most of them are extensions of existing methodologies in other
fields to include relevant aspects of agents. These extensions have been carried
out mainly from two areas: object oriented and knowledge engineering. But
these approaches do not conveniently cover all the aspects needed on the de-
sign of MAS. As it is defended in both revisions, we believe that it is necessary
to develop specific methodologies to cope with the complexity of MAS design
and development. Next we describe some of the methodologies and approaches
proposed for MAS.

Gaia [Wooldridge et al., 2000, Wooldridge et al., 1999] is a methodology for
the analysis and design of multi-agent systems as computational organisations
consisting on various interacting roles. At analysis stage the role and interaction
models are defined. Each role is defined by four attributes: responsibilities, per-
missions, activities and protocols. Responsibilities determine the functionality
of the role which can be divided in liveness and safety responsibilities. Liveness
responsibilities are expressed as regular expressions over the role activities and
interactions, and define the role life-cycle. Safety responsibilities express con-
ditions that a role must preserve and are specified as predicates over variables
in the role permissions. Permissions determine the resources available for a role
in order to realise its responsibilities while activities represent private agent ac-
tions carried out without interaction with other agents. Complementary, the
interaction model defines the protocols among roles capturing role dependencies
and relationships. Protocols are specified at high level defining the purpose of
the interaction but not the concrete sequence of messages. Thus, each role has
also a set of protocols associated which determine how it can interact with other
roles.

At design stage the role and interaction models are used to define the agent

12 Chapter 2. State of the Art

model, the service model and the acquitance model. The agent model defines
the agent types that will compose the system and the cardinality of each one.
Concretely, agent types are defined by assigning them one or more roles. The
service model defines the services associated to agent types where a service is
a coherent block of functionality and derives from the activities and protocols
of the roles. Finally, the acquitance model defines the communication links
among agent types. The objective of the design stage in Gaia is to reach a
level of detail that can be directly implemented by engineers. Major criticisms
to Gaia methodology is that the organisational structure is only implicitly (not
explicitly) defined and that it is not defined for designing open systems as there
is an assumption of a common goal among agents.

The ROADMAP methodology [Juan et al., 2002] extends the Gaia method-
ology for the analysis and design of complex open systems. As a first extension
a use case model is introduced to support requirements gathering. From the
use case model an environment and knowledge models, not present in Gaia, are
derived defining the execution environment and domain knowledge respectively.
The interaction model in Gaia is renamed to the protocol model and a new in-
teraction model is added which permits to specify the protocols in AUML. The
role model is extended with a role hierarchy represented as a tree where the leafs
are atomic roles defined as in Gaia, and the rest of the roles are defined as an
aggregation of its sub-roles. An interesting feature of the extended role model
is that it permits runtime reflection allowing to change the role model. That is,
a role can have permissions to change other role attributes.

A totally organisational approach is taken in [Ferber and Gutknetch, 1998]
where organisations are defined based on three main concepts: group, role and
agent. In order to abstract from the concrete agents that will compose the
system, each group is defined by the set of roles that can participate in it and the
interaction protocols that these roles may have specified as role-to-role protocols.
Agents within a group must play some of its roles. Furthermore, each agent can
participate in different groups at the same time. In order to validate the approach
the MadKit platform has been developed permitting the design and execution
of MAS organisations.

The Tropos methodology [Giunchiglia et al., 2002] covers the overall soft-
ware development process from the early requirements to their implementation.
They divide the construction of a MAS system in five phases: early requirements,
later requirements, architectural design, detailed design and implementation. In
the early requirements phase the relevant stakeholders, represented as actors,
and their goals are identified where an actor represents an agent (software or
physical), a role, or a group of roles, normally played by one agent. The system
to be developed is added as another actor in the later requirements phase and
its relationships with the environment are represented as dependencies among
the system and the actors identified in the previous phase. In the architectural
design phase the system is decomposed by adding new actors to which sub-goals
and sub-tasks of the system to develop are assigned. Next, in the detailed design
phase the systems’actors are defined in detail and the coordination and commu-

2.1. Multi-agent Systems 13

nication protocols using AUML are specified . At the implementation phase the
specification produced at the detailed design phase is transformed into agent
skeletons using a BDI architecture which are extended to completely develop
the agents. Concretely, skeletons for the JACK platform [Howden et al., 2001]
are obtained.

Prometheus [Padgham and Winikoff, 2002] is a methodology for specifying,
designing, and implementing multi agent systems. The methodology consists of
three phases: system specification, architectural design, and detailed design. In
the system specification phase the functionalities of the system are identified.
For each functionality, its actions, percepts (inputs), the data to which it has
access (write or read) and the other functionalities with which it interacts are
defined. The architectural design phase is devoted to decide which will be the
agents of the system taking into account the different functionalities identified
in the previous phase. A set of functionalities are assigned to each agent and the
interaction protocols among them are specified in AUML. The detailed design
phase focuses on developing the internal structure of the agents using a BDI
architecture, taking into account the functionalities assigned to each agent. In
order to facilitate the work of system engineers a software tool which gives sup-
port to the design of the system and generates agents skeletons for the JACK
platform which can then be then customised has been developed. This methodol-
ogy has been used successfully for the development of closed systems but results
inappropriate for open systems.

In [Dignum, 2002] it is proposed that institutions’ objectives, the values
which lead to the fulfilment of these objectives and institution norms should
be defined in a more abstract level than institution structures and procedures.
At this abstract level general regulations and laws can be incorporated into the
institution norms. For instance, a trading institution must respect trading laws
in the country where the trading takes place. They propose the use of deontic
logic for defining the abstract norms. In order to apply the norms to a concrete
institution they have to be translated into concrete norms expressed in similar
terms to which institution structures and procedures are specified. Finally, con-
crete norms are translated to rules that either specify the part of the procedures
that enforce them or specify the events and triggers that signal a violation. Based
on these ideas, HARMON/A [Vazquez-Salceda and Dignum, 2003] a framework
for the design of agent organisations has been defined.

As we have said most of the researchers have tried to adapt object-oriented
methodologies to design multi-agent systems including the relevant aspects of
agent systems. As Unified Modelling Language (UML) became a de facto
standard of object oriented modelling, many researchers have tried to adapt
their notation, diagrams, and models to agent systems [Odell et al., 2000,
Parunak and Odell, 2002, Bauer et al., 2001]. For those engineers familiar with
UML diagrams and tools, AUML represents a natural extension when moving
from the object oriented world to the agent world. Notice that UML, and as a
consequence AUML, is not a methodology, it is a language to define the system.
Different methodologies propose the use of extended UML diagrams and mod-

14 Chapter 2. State of the Art

els to define different components. For instance, ROADMAP proposes the use
of use cases to capture the requirement of the system and AUML interaction
diagrams to represent interactions among agents.

In [Dellarocas and Klein, 1999] they advocate to differentiate between the
social design and agents’ design, that is between the rules that govern the so-
ciety and the participants, the agents. Furthermore, they argue that it can not
be expected that participating agents in open MAS will behave according to
the rules. Then, they propose that agent societies have to contain several in-
stitutions, namely socialisation service, notary service and exception handling
service. The socialisation service is responsible to authorise agents to participate
in the society. The result of this process is a contract that gives participating
agents the authorisation to participate in the society identifying their rights and
capabilities. The notary service is in charge of verifying that agent interactions
are legal with respect to the rules of the society. Finally, the exception handling
service is in charge of anticipating, avoiding, detecting, and resolving all known
exception types. This is done by “sentinel” agents.

Obviously, we have to make reference to the previous work in electronic in-
stitutions [Noriega, 1997, Rodriguez-Aguilar, 2001] which constitute the starting
point of this thesis. In [Noriega, 1997] the notion of agent mediated electronic in-
stitution was introduced. Using as a metaphor, a traditional trading institution,
as the fish market, it defines the basic concepts that compose an electronic in-
stitution. In [Rodriguez-Aguilar, 2001] the ideas already presented are extended
and refined. Furthermore, an implementation of the fish market was presented
and a proposal of how the infrastructure used in it can be extended to be general
enough to be used in the deployment of any intitution.

Continuing their work we refine and extend the electronic institutions for-
malisation, we present a textual specification language, a specification and ver-
ification tool and a generic infrastructure which can be used in the deployment
of different institutions.

Analysing the different methodologies we can see that, except for
Prometheus, they consider the notion of role as fundamental in order to for-
malise MAS. Nonetheless, the functionalities identified in Prometheus can be
seen as roles. Thus, a fundamental aspect of any methodology is to identify the
roles and their relationships. In ROADMAP, Tropos, and Prometheus, protocols
are specified using AUML while we have opted for using finite state machines to
model conversations. But probably the main difference among them is the kind
of systems that each one can model and the final result of each methodology. The
objective of Tropos and Prometheus is to obtain a set of agents which behave
to achieve the different goals of the system and interacting when necessary fol-
lowing the defined protocols. They represent a perfect example of designing and
developing a multi agent system taking an agent-centred approach. There is no
notion of organisation, they commit to a concrete agent architecture and there
is an assumption of agents benevolence and cooperation among the resulting
agents. Although they can be useful on the design of closed systems, and they
offer different tools which generate agent skeletons reducing the development,

2.2. Agent Communication 15

time of the system, they are not appropriate for open systems.

The other approaches, as in our case, do not commit to any agent architecture
assuming that the system will be populated by heterogeneous agents. Further-
more, in Gaia the organisational structure is only implicitly defined and the final
result of the methodology is a level of detail from which the system can be imple-
mented and interaction protocols are only described but not specified. We believe
that the result of the design stage of methodologies for open systems should be a
complete and sound definition of the rules that govern the organization. In other
words, the definition of a normative environment which restrict agent possible
behaviours. For this purpose, similarly to [Ferber and Gutknetch, 1998] we take
a totally organisational approach by defining the structural organisation of the
system and without making any assumption about the internal characteristics
of the participating agents.

We see the work on abstract norms of [Dignum, 2002] at a higher level
of abstraction with respect to our model of institutions. Furthermore, they
advocate to transalate the abstract norms to a concrete norms expressed in
the same language of institutions strcuctures and procedures. We believe that
concrete norms can be used for checking if a designed institution implements the
abstract norms or if behaviours which violate the norms are possible within it.

Finally as [Dellarocas and Klein, 1999] we advocate that open multi agent
systems must contain computational mechanisms which are in charge of control-
ling that participating agents do not violate the rules governing the society at
execution time. That is, the final result of methodologies for open systems must
include the computer mechanism which imposes the normative environment to
participating agents. For this purpose, we propose an infrastructure which facil-
itates agents participation within the institution but enforcing the institutional
rules encoded in the system specification.

2.2 Agent Communication

Since interaction is one of the basis of multi-agent systems much of the effort
in multi-agent research has focused on agent communication. In order to allow
agents to communicate, the first step is to define a common language. Different
Agent Communication Languages (ACL) have been proposed based on speech
act theory [Austin, 1962, Searle, 1969]. Speech act theory is based on the ob-
servation that utterances must not be considered as simple propositions, but as
speaker’s attempts that succeed or fail [Austin, 1962].

ACLs have been defined to allow agents to exchange information
and knowledge, and what distinguishes them from other ways of com-
munication are the objects of discourse and their semantic complex-
ity [Labrou et al., 1999]. ACLs address communication at the intentional and
social level [Dignum and Greaves, 2000]. Generally an ACL is composed of
three main elements [Genesereth and Ketchpel, 1994]: a vocabulary, an inner-
language to encode the knowledge to be exchanged among agents using the
vocabulary offered by the ontology and an outer language to express agents’

16 Chapter 2. State of the Art

intentions. The vocabulary should be contained in ontologies shared by the
different agents engaged in an interaction. Examples of ACL’s are: FIPA
ACL [FIPA, 1997] and KQML [Finin et al., 1995]. But agents normally do
not engage in a single message exchange, similarly to human beings, they
engage in conversations which define the valid sequences of exchanged mes-
sages and define the context in which exchanged messages must be inter-
preted [Labrou et al., 1999]. Hence, the notion of conversation as the unit of
communication among agents has been promoted [Greaves et al., 2000].

An important decision when specifying conversations is to choose between
specifying the global protocol or the different agents view of the protocol. In the
first case the protocol is specified containing all the messages that agents can
exchange and the definition of the protocol contains information about who can
send the messages and to who can be addressed. If the conversation is specified
from an agent view point, the specification of the protocol contains only the
messages that an agent involved within the conversation send or receive. In this
case, a different vision of the protocol should be specified for each type of agent
that can be engaged in the conversation which corresponds to their view of the
conversation. Then, each agent engaged in the conversation manages a different
version of the protocol.

Assuming conversation as the unit of communication the next issue is de-
ciding how conversations have to be specified. Agent researchers have mainly
opted for specifying conversations using finite state machines (FSM), Petri nets,
or extensions of them.

Finite state machines offer a really intuitive way to specify conversation pro-
tocols. Normally, the different states of the FSM represent the different states of
the conversation and the arcs connecting the states are labelled with the actions
that make the conversation evolve from the source state of the arc to its target
state. Thus, FSM and different extensions of them, have been widely used for
specifying agent interactions. The main criticisms to the use of FSM is that they
are not adequate to express concurrency. In other words, they are adequate for
specifying sequential interactions but fail to model conversations where concur-
rency is allowed. Due to this reason the use of Petri nets and extensions of them
has been promoted for specifying agent conversations because:

e They have a graphical representation;

They support for concurrency;

They are well researched and understood and have been applied to many
real word applications; and

e There are many tools for the design and analysis of CPN-based systems.

On the contrary, the specification of protocols using Petri Nets is not as easy as
in the case of FSM approaches. Moreover, the major criticism to the use of Petri
nets is the combinatorial explosion on the size of the network as the complexity
of the protocol increases.

2.2. Agent Communication 17

Since FSM and Petri net approaches have been the more common used
for modelling agent interactions, in the last years, an important number of
researchers are opting for using AUML to specify agent interactions. Then,
in [Odell et al., 2000, Odell et al., 2000] it is reported how UML diagrams can
be extended and used to model agent interactions. As we have pointed out in the
previous section some of the methodologies have opted to specify several aspects
of MAS design by using AUML. The motivations for using AUML to specify
agent interactions are that they have an intuitive graphical representation, are
familiar to those researchers coming from the object oriented world and the ex-
istence of tools which permit their representation. The major criticism is that
they are not based on a formal model which permits their formal verification.
Hence, their verification requires to translate them to another formalism.

One of the main approaches using FSM is
COOL [Barbuceanu and Fox, 1995]. Conversation protocols in COOL are
specified from the agent view point by using a FSM where the states represent
the different states of the conversation and arcs are labelled with the utterance
or reception of a speech act. Each agent participating in a conversation manages
a different, version of the protocol. For each type of conversation that agents
may have, a conversation class is defined which includes: the definition of the
protocol; conversation rules which define what agents have to do when they
receive a message; and error rules which define how to recover from unexpected
events, as for instance, the reception of an unexpected message. Furthermore,
each agent has a set of continuation rules which define whether an agent
will accept requests to start new conversations or select one of the current
conversations to continue. An important feature of the system is that ongoing
conversations can be suspended to start a new conversation. When the new
conversation is finished the suspended conversation is resumed.

In [Nodine and Unruh, 1999] finite state machines are used to define con-
versations between two agents: an initiator which is the agent that starts the
conversation and a responder, within the InfoSleuth agent system. They also
present how conversations can be extended and concatenated. The extension
of a conversation consists on expanding a conversation to handle unexpected
events. This permits agents to discard a conversation at a intermediary state or
to handle erroneous messages with respect to the protocol definition. Extensions
are specified independently of the conversation and can be applied to some of
them. The concatenation of two conversations consists on connecting the final
state of one conversation to the initial state of the other. In order to enforce the
conversation, they have introduced a conversation layer into the agents generic
shell, which is in charge of guaranteeing the correct evolution of the conversation
within the local agent and the remote agent.

In Agentis [d’Inverno et al., 1998] protocols are specified as FSMs and are
associated to services and tasks. There is a set of protocols that agents can
instantiate depending on their goals. Once the specification is finished, protocols
are translated to Z language [Diller, 1990]. This allows the use of tools developed
for the verification and animation of Z specifications to verify and animate the

18 Chapter 2. State of the Art

protocols.

In [Martin et al., 2000] it is proposed the use of Pushdown Transducers
(PDT) a FSM extended with two tapes to specify and manage conversation
protocols. The input is given by a pair of symbols and the stack is used to
store and subsequently retrieve the context of the ongoing conversations. They
advocate for the use of a special type of agent, the so-called interagent, devoted
to guarantee that agents follow the specified protocol. Concretely, each agent
engaged in a conversation is connected to an interagent which mediates its com-
munication with the rest of the agents. Protocols are specified from the point of
view of participating agents and interagents of agents engaged in the same con-
versation manage complementary conversations protocols. The main limitation
of their approach is that the presented version of interagents can only manage
conversation between two agents.

In the Java-based Agent Framework [Chauhan, 1997, Galan, 2000] the dif-
ferent agent views of the protocols are specified using FSMs and then, translated
into a Petri net. Existing tools in Petri net are used to verify safeness, liveness
and no dead lock properties for the specified conversation protocol. Concretely,
they have developed a software environment which permits the specification of
the protocols and which executes a Petri Net tool in order to verify the protocol.

In [Koning et al., 1998] it is proposed the use of Petri nets to specify and
verify agent interactions. Their proposal consists on building a Petri sub net for
each agent taking part in the conversation from a state transition diagram. Each
Petri sub net models an agent’s view point of the conversation. The different
Petri sub nets are mixed to build the general Petri net for the conversation
which is used to verify the protocol. This process is done by using a Petri net
simulation and verification tool which allow for the graphical specification of the
Petri nets and their subsequent verification by the simulation of the specified
Petri nets.

The use of a particular type of Petri nets, hierarchical Colour Petri Nets,
to specify agent interactions in which concurrency is needed is proposed in
[Cost et al., 1999]. In order to specify the conversations they use the DesignCPN
modelling tool.

In [Sibertin et al., 2000] it is proposed that agent interactions should be me-
diated by a Moderator which is in charge of guaranteeing the correct evolution
of the protocol. Moderators are specified, validated, and implemented using Co-
Operative Objects [Sibertin-Blanc, 2001] a High-Level Petri Net language. Each
CoOperative Object instance is a process which executes the multi-threaded be-
haviour defined by its Petri net. When a conversation is created, a moderator
for it is launched and each agent wanting to perform a speech act sends it to
the moderator who verifies that the action is correct with respect to the pro-
tocol definition. The moderator has a thread for each agent taking part in the
conversation in order to keep track of its state within the conversation. Finally,
when the conversation finishes the moderator disappears.

In [Mazoui et al., 2002] protocols are specified in AUML [Odell et al., 2000]
and then translated into Coloured Petri Nets (CPN). The generated Petri net

2.3. Agent Platforms 19

contains one sub-net for each role taking part in the system and can be used
to verify different properties of the protocol. For instance, that the protocol is
deadlock free, that all the operations are executable, and that final transitions
are always reachable form any mark accessible from the initial one. They also
propose the study of interaction executions among a group of agents. For this
purpose traces of agent interactions are stored which are then used to construct
a global causal graph containing all the events produced during the system ex-
ecution. The global causal graph is analysed in order to discover which of the
specified protocols, stored in a CPN library, have occurred among agents and to
analyse each one of them.

Since we do not allow concurrency within a conversation we have opted for
specifying agent conversations using a FSM model and for specifying the global
protocol of the conversation. Hence, some properties of the specified protocol
can be verified by adapting search graph algorithms. Furthermore, we have
explored how model checking can be used to verify some of the properties.
We advocate for the enforcement of conversations to participating agents as
in [Nodine and Unruh, 1999, Martin et al., 2000, Sibertin et al., 2000]. In this
sense we advocate for a similar approach to the one used in [Martin et al., 2000],
instead of incorporating a communication layer to agents as it is done in
[Nodine and Unruh, 1999] or to have a single entity in charge of controlling the
conversation evolution as it is done in [Sibertin et al., 2000]. In order to guaran-
tee the correct evolution of a conversation each agent engaged in it, is connected
a special type of mediator agent which we call governor ! in charge of guaran-
teeing that agents engaged in a conversation follow the specified protocol.

2.3 Agent Platforms

Although the use of a methodology permits the analysis, specification and veri-
fication of the system the process that leads from the system specification to the
real implementation is still a hard task. In this sense the development of generic
infrastructures and software tools which give suport to agent based systems de-
velopment are needed.

The development of multi agent systems is a hard and difficult task as it
includes the development of each agent internal behaviour and the communica-
tion and coordination mechanisms needed to allow agents to interact. On the
one hand, for each agent it should be implemented their behaviour, that is the
computer mechanisms in charge of deciding the actions that the agent should do
in each moment in order to satisfy its goals and how the agent should react to
external events, as for instance the reception of a message from other agents or a
change in the external environment. Complementary, it should be implemented
the computer mechanisms that allow agents to communicate and coordinate,
covering from low level communication issues, as providing a reliable transport
service, to the high level issues, as for instance, the coordination mechanisms

LReader is referred to section 6.1 for an extended discussion about the differences between
interagents and governors in the management of conversations

20 Chapter 2. State of the Art

to ensure the correct evolution of conversation protocols to which agents are
engaged.

Since some of the communication and coordination mechanisms are domain
independent they can be grouped together in generic infrastructures which can
be used in the deployment of multiple MAS. Unfortunately, this has not been the
case and most of the agent aplications have developed their own infrastructure
with the consequence that an important part of its development time is spent in
building basic communication and coordination blocks, and that they can not
be reused [Jennings et al., 1998]. Furthermore, another problem in the devel-
opment of infrastructures is that each agent group have developed their own
infrastructure in isolation making impossible the connection and the communi-
cation among agents using different infrastructures. The development of generic
infrastructures which can be reused in the deployment of different systems and
permit the rapid development of agent applications has been identified as a fun-
damental issue for the succed of agent technologies [Ashri and Luck, 2001].

In the last years, several agent platforms have been developed with the aim
of solving these problems and facilitating the development of multi-agent ap-
plications. In general they offer generic agents with basic functionalities which
users should extend and an execution environment which facilitates agent com-
munication at execution time. Most of them follow the standard proposed by
the Foundation for Intelligent Physical Agents (FIPA) which defines a set of
roles that are mandatory for an agent platform [FIPA, 2001, FIPA, 2002]. Con-
cretely, FIPA proposes that an agent platform must contain at least the following
mandatory roles:

e Agent Management System (AMS): controls agents access and use of the
platform. The AMS keeps information of all the agents within the platform
including their identifiers and transport addresses and it gives a white
pages service to the agents connected to the platform. The AMS has
control over the lifecycle of the different agents connected to the platform.
Agents must register to the AMS when they are connected to the platform
in order to obtain a valid identifier within the platform and each agent has
a unique identifier within the platform which is normally composed by its
name and its home platform address. There is one AMS per platform.

e Directory Facilitator (DF): provides yellow page services to the agent plat-
form. Agents within the platform can register their services to the directory
facilitator and can query it in order to know the services offered by other
agents.

e Agent Communication channel (ACC): is the default communication
method which offers a reliable, orderly and accurate message transport
service. The ACC provides agent communication inside and outside the
platform.

The principal FIPA-compliant platforms are FIPA-OS [Poslad et al., 2000],
JADE [Bellifemine et al., 2001] and ZEUS [Nwana et al., 1999]. Apart from the

2.3. Agent Platforms 21

services specified by FIPA these platforms offer other facilities such as: tools
to develop agents, execution monitoring tools, etc. We believe that the most
important contribution of FIPA-compliant platforms to the development of agent
applications is that agents on top of any of them can communicate in the same
manner independently of which platform each agent is running in. Although
they give some support to the use of conversation protocols among agents they
fail in managing organisational concepts at execution time.which is necessary in
the development of open MAS. For instance, to have control on the roles that
agents are playing or on the conversations in which they can engage at each
moment.

From our point of view, FIPA-compliant platforms, as they are today, repre-
sent a communication layer. On top of them other layers taking into account the
organisational structure of multi-agent system must be developed. That is to
say, layers which coordinate agents interactions, impose the organizational struc-
ture to participating agents and prevent the system from fraudulent behaviours.
In our case we have opted for developing a social layer middleware on top of the
JADE platform and the participating agents within the institution. JADE is
used as a communication layer, making use of its reliable transport service. The
social layer is in charge of handling institution concepts at execution time and
enforcing the institutional rules to participating agents. For this purpose, the
social layer is in charge of controlling the roles that agents are playing, the con-
versations in which they are participating, and the obligations that each agent
has acquired.

We believe that the development of appropriate infrastructures for multi
agent systems remains in an earlier stage and a lot of work is needed to permit
the rapid development of agent systems. Although FIPA-compliant platforms
represent a first step in having standard infrastructures which allow heteroge-
neous agents to communicate, they fail in coping with the abstract concepts
offered by MAS methodologies.

Chapter 3

Electronic Institutions

In this chapter and following the work by [Noriega, 1997,
Rodriguez-Aguilar, 2001] we present a formalisation of electronic institu-
tions. We argue that open agent organisations can be modelled as electronic
institutions where a vast amount of heterogeneous software and human agents
can participate. Human institutions [North, 1990] have been succesfully medi-
ating among humans interactions for centuries and we advocate that electronic
institutions may cope with a similar job within agent societies. FElectronic
institutions define the rules of the game in agent societies in the same way as
human institutions do in human societies. That is to say, they define what
agents are permitted to do and the consequences of such actions. Furthermore,
institutions are in charge of enforcing their rules and punishing those agents
that violate them.

What is it needed to define an electronic institution? From our point of
view, it is necessary to define a common language, the activity, that is, what can
be done within the institution and the consequences that agent’ actions within
the institution have. As heterogeneous agents, probably developed by different
people in different languages and with different architectures, are allowed to par-
ticipate in the institution, a common language and ontology that permits agents
to understand each other must be defined. The activity within the institution is
structured in conversations which define the valid interactions that agents can
have and the context where the information exchanged must be interpreted. We
take a strong dialogical stance in the sense that we understand a multi-agent sys-
tem as a type of dialogical system. In the context of an institution some agent’s
actions may have consequences that limit or enlarge its acting possibilities. In
our case this is captured by the notion of obligation. Then some agent’ actions
imply the acquirement of some obligations that agents must fulfill later on. In
order to abstract from the concrete agents that will participate in the institu-
tion, its specification is based on the notion of role, where each role defines a
pattern of behaviour within the institution. Then, agents must participate in
the institution playing some of its role(s).

Taking into account these requirements our electronic institution model is

23

24 Chapter 3. Electronic Institutions

based on four elements: dialogic framework, scene, performative structure and
norm. The dialogic framework defines the valid illocutions that agents can ex-
change and which are the participant roles. The institution activity is defined
in the performative structure based on the notion of scene. A scene defines a
conversation protocol for a group of roles that can be multiply instantiated by
different groups of agents playing those roles. Note that all the interactions
between participating agents take place within the context of a scene. Thus, a
performative structure defines which are the institution scenes (conversations)
and how agents, depending on their role and their past actions, can move among
them. Finally, norms define the consequences that agents’ actions within scenes
will have in the future, expressed as obligations.

Before presenting the formalisation of all these elements we want to note
that we focus on macro-level (societal) aspects referring to the infrastructure of
electronic institutions instead of the micro-level (internal) aspects. We say that
we define architectural neutral institution in the sense that no restrictions are
imposed on participating agents. That is to say, no restrictions are imposed on
the language and architecture used to develop the agents allowing the designer
to choose the language and architecture that better fulfills its goals.

Next we present in detail the different elements of our electronic institution
model. We start focusing on the dialogic framework, followed by scene, perfor-
mative structure and finishing with norms.

3.1 Dialogic Framework

In the most general case, each agent immersed in a multi-agent environment is
endowed with its own inner language and ontology. In order to allow agents to
successfully interact with other agents we must address the fundamental issue of
putting their languages and ontologies in relation. For this purpose, we propose
that agents share, when communicating, what we call the dialogic framework
that contains the elements for the construction of the communication language
expressions. By sharing a dialogic framework, we enable heterogeneous agents
to exchange knowledge with other agents.

The dialogic framework determines the valid illocutions that can be ex-
changed between the participants. In order to do so, an ontology that fixes
what are the possible values for the concepts in a given domain is defined, e.g
goods, participants, locations, etc.

Moreover, the dialogic framework defines which are the roles that partici-
pating agents may play within the institution. The notion of role is central in
the specification of electronic institutions and each role defines a pattern of be-
haviour within the institution. Roles allow us to abstract from the individuals,
the agents, that get involved in an institution’s activities. This is specially im-
portant in open systems where it is impossible to know in advance which will
be the concrete agents that will participate in the institution. Furthermore,
the participating agents will change over time, that is, new agents will join the
institution and some of the participants will leave. Then, all the actions that

3.1. Dialogic Framework 25

can be done within an institution are associated to roles. Notice that we can
think of roles as agent types. More precisely, we define a role as a finite set of
actions. Such actions are intended to represent the capabilities of the role. For
instance, an agent playing the buyer role is capable of submitting bids and an
agent playing the auctioneer role can offer goods at auction. In order to take part
in an electronic institution, an agent is obliged to adopt some role(s). There-
after an agent playing a given role must conform to the pattern of behaviour
attached to that particular role. Therefore, all agents adopting a very same role
are guaranteed to have the same rights, duties and opportunities.

From the set of roles that can participate in an institution, we differentiate
between the internal and the external roles. The internal roles define a set of
roles that will be played by staff agents which are like the workers in a human
institution. Those agents are in charge of guaranteeing the correct execution
of an institution. For instance, an auctioneer is in charge of auctioning goods
following the specified protocol and the buyer admiter is in charge of guaran-
teeing that only buyers satisfying the admission conditions will be allowed to
participate with the buyer role within the institution. Then, never an external
agent will be allowed to play an internal role; they can only play external roles.
Finally, relations over roles can be specified, for instance, roles that can not be
played both at the same time.

Definition 3.1.1 We define a dialogic framework as a tuple DF = (O, L, 1, Ry,
Rg, Rs) where

e O stands for an ontology (vocabulary);

L stands for a content language to express the information exchanged
between agents;

I is the set of illocutionary particles;

Ry is the set of internal roles;

Rp is the set of external roles;

Rg is the set of relationships over roles.

Within a dialogic framework the content language allows for the encoding of
the knowledge to be exchanged among agents using the vocabulary offered by
the ontology. The propositions built with the aid of the content language are
embedded into an “outer language”, the communication language(CL), which
expresses the intentions of the utterance by means of the illocutionary particles.
We take this approach in accord to speech act theory [Searle, 1969], which pos-
tulates that utterances are not simply propositions that are true or false, but
attempts on the part of the speaker that succeed or fail.

We consider that the expressions of the communication language are con-
structed as formulae of the type (¢ (a;p;) (B) ¢7) where ¢ is an illocutionary
particle, a; is a term which can be either an agent variable or an agent identifier,

26 Chapter 3. Electronic Institutions

pi is a term which can be either a role variable or a role identifier, 5 represents
the addressee(s) of the message which can be an agent or a group of agents, ¢
is an expression of the content language and 7 is a term which can be either a
time variable or a time constant. The CL allows to express that an illocution is
addressed to an agent, to all the agents playing a role or to all the agents in the
scene. If the illocution is addressed to one agent, 3 is of the form «; p;, where
a; is a term which can be either an agent variable or an agent identifier and p;
is a term which can be either a role variable or a role identifier. If the illocution
is addressed to all the agents of a role, 3 is of the form p; where p; is a term
which can be either a role variable or a role identifier. Finally, if 5 is equal to
the particle “all” it means that the illocution is addressed to all the agents of the
scene. We say that a C'L expression is an illocution schema when some of the
terms contain variables. Otherwise, we say that a C'L expression is an illocution.
This distinction will be valuable when specifying scenes in the following section.

Variable identifiers appearing in the illocution schemes can start with either
‘77 or ‘. As we will see, in subsection 3.2.1, the starting symbol will serve to
differentiate when the variable can be bound to a new value or when it must be
replaced by its last bound value.

Finally, we would like to stress the importance of the dialogic framework as
the component containing the ontologic elements on the basis of which any agent
interaction can be specified, as illustrated next, when introducing the notion of
scene. Notice, that the dialogic framework determines the set of valid illocutions
defining the sets from which the different elements of the CL expressions can
take their values. Thus, a dialogic framework must be regarded as a necessary
ingredient to specify scenes.

3.2 Scene

As said before, a scene is, in broad terms, a conversation protocol played by a
group of agents. More precisely, a scene defines a generic pattern of conversation
protocol between roles. Any agent participating in a scene has to play one of
its roles. It is generic in the sense that it can be repeatedly played by different
groups of agents. In the same sense that the same theater scene can be performed
by different actors incarnating the same scene characters.

A scene protocol is specified by a finite state directed graph where the nodes
represent the different states of the conversation and the directed arcs connecting
the nodes are labelled with the actions that make the scene state evolve. These
are: illocution schemes and timeouts. The graph has a single initial state (non-
reachable once left) and a set of final states representing the different endings of
the conversation. There is no arc connecting a final state to some other state.

Apart from defining the valid sequences of illocutions that agents can ex-
change, a scene keeps the conversation context. Context is a fundamental aspect
that humans use in order to interpret the information they receive. The same
message in different context may certainly have a different meaning. Thus, a
scene keeps what has been said by who and to whom, and allows to specify how

3.2. Scene 27

past interactions may affect the future evolution of the conversation. The con-
textual information may restrict the valid messages in a certain moment (state)
of the conversation. That is to say, the same message in the same state may not
be valid because the context information has changed. For instance, imagine
a scene auctioning goods following the English auction protocol. As bids are
submitted by buyers the valid bids for them are reduced to bids greater than the
last one. That is to say, each submitted bid reduces the valid illocutions that
buyers can utter, although the scene may continue in the same state.

Because we aim at modeling multi-agent conversations whose set of partici-
pants may dynamically vary, scenes will allow that agents either join in or leave
at some particular moments (states) during an ongoing conversation depending
on their role. For this purpose, we differentiate, for each role, the sets of access
and exit states. Normally the correct evolution of a conversation protocol re-
quires a certain number of agents for each role involved in it. Thus, a minimum
and maximum number of agents per role is defined and the number of agents
playing each role has to be always between them. This restriction must be taken
into account in order to allow agents to join or leave the conversation. Obviously,
the final states have to be an exit state for each role, in order to allow all the
agents to leave when the scene is finished. On the other hand, the initial state
has to be an access state for the roles whose minimum is greater than zero, in
order to start the scene.

The information exchanged between agents is expressed in the form of illo-
cution schemes from the scene dialogic framework. In order for the protocol to
be generic some details have to be abstracted. This means that state transitions
cannot be labelled by grounded illocutions. Instead what shall be used are il-
locutions schemes where, at least, the terms referring to agents and time must
be variables while the other terms can be variables or constants'. As mentioned
above, we want the conversation protocols to be generic, that is, independent of
concrete agents and time instants.

The other element that can label an arc is a timeout. Timeouts allow to
provoke transitions after a given number of time units have passed since the state
was reached. This is specially important for robustness (to evolve from states
where agents dying and hence not talking any more or where agents trying to
foot-drag the other agents by remaining silent could block the scene execution).
One important point is that if there is an arc from one state to itself, this
transition does not affect the timeout. The timeout countdown starts when the
state is reached and stops only if there is a transition to a different state of
the scene. Using timeouts, you can for instance make the scene state evolve
from a state where bids are accepted to a state where the bidding time is over.
A timeout is a numeric expression composed by numeric constants and bound
numeric variables (that is, starting with ‘I’). This permits that timeouts may
change during the evolution of the scene as a consequence of agents’ interaction.
For instance, the bidding time can be different at each bidding round.

IThe variable refering to time will be omitted on this document as their usage is straight-
forward

28 Chapter 3. Electronic Institutions

d [=[>[pp[p]x (0] o <= B2

&0 Sealed-bid |
buyear
buye|
I
1 P T 2 = wa 4 =

auctionee
buyer

auctionee
buyar

[4]

Figure 3.1: Specification of the sealed-bid auction protocol

As an example of a scene Figure 3.1 presents the specification of the
conversation protocol of an auction scene realising a sealed-bid protocol. Next
you can see the value of the labels associated to the different arcs:

1 (inform (?z auctioneer) (buyer) open_auction(?r))

2 (inform (lx auctioneer) (buyer) start-round(?good_id, ?bidding-time,
Treserve_price))

(commit (7y buyer) (z auctioneer) bid(good_id,? offer))
bidding_time

(inform (lx auctioneer) (buyer) sold(!good_id, Tprice, Twinner))
(inform (lz auctioneer) (buyer) withdrawn(!good_id))

(inform (lz auctioneer) (buyer) end_auction(Ir))

N OOtk W

In this scene the participating agents can play the auctioneer and buyer roles.
Concretely, the scene specification requires the participation of exactly one agent
playing the auctioneer role and imposes no restriction on the number of buyers.
The graph depicts the states of the scene, along with the edges representing the
legal transitions between scene states which are labelled either with illocution
schemes of the communication language or with timeouts. The information
content, of such schemes is expressed in prolog. Notice that apart from the
initial and final states, the w1l state is labelled as an access and exit state for
buyers —meaning that between rounds buyers can leave and new buyers might
be admitted into the scene.

In a sealed-bid protocol buyers have a specified period of time to submit
their bids and after that period the auctioneer announces the winner who will
be the buyer who submitted the highest bid. A round starts at w1 with a broad-
cast message from the auctioneer to all the buyers. This illocution brings the
information of the good identifier expressed as a value for the ?good_id variable,
the time that buyers have to submit their bids expressed on the ?bidding_time

3.2. Scene 29

variable and the reserve price for this good expressed on the ?reserve_price vari-
able. The scene will remain in w2 until the timeout of label 4 expires and the
scene evolves to w3. This timeout corresponds to the bidding time announced
by the auctioneer in the previous illocution. During this time buyers can submit
their bids uttering illocutions matching the illocution schema of label 3. At state
w3 the auctioneer will announce the result of the round, labels 5 or 6, finishing
the round and evolving back to wl. Concretely, label 6 corresponds to the case
where no buyer has submitted a bid in this round and the auctioneer declares
the lot withdrawn, and label 5 corresponds to the case that buyers have sub-
mitted bids and then the auctioneer announces the winner and the price it has
to pay for the good. We want to remark that although the arc connecting w3
and wl has associated two labels 5 and 6 this is a disjunction and never both
can be uttered at the same round. In other words, the utterance of an illocution
matching the illocution scheme in label 5 or the illocution scheme in label 6 will
make the scene evolve to wl. At wl the auctioneer can start another round or
can declare the finalisation of the scene making the scene evolve to its final state
w4,

Next we focus on how the variables appearing in the specification of a scene
are handled when the scene is played.

3.2.1 Variables

Recall that the arcs connecting the states of a scene are labelled with illocution
schemes containing variables. During a scene conversation, the variables in illo-
cution schemes are bound to the values of the uttered illocutions. In order to
verify the correctness of subsequent illocutions we need to keep track of these
bindings because they represent the context of the interaction. Then, they may
restrict the values of the arguments of subsequent illocutions and the paths that
the scene execution can follow. These bindings change dynamically, that is, the
same variable may be bound to different values at different stages of the con-
versation within a scene. Notice that the type of a variable in the context of a
scene must be the same for all occurrences.

For instance, in a protocol for iterated negotiation between two agents we
might be interested to refer to the last proposal of each agent. To do this we
use the same variable for all transitions in the protocol referring to an agent’s
proposal. We need to distinguish when the variable occurrence is to be bound (to
the actual illocution uttered by an agent) and when the actual value appearing
in the agent’s uttered illocution has to match the variable’s last bound value.
For instance, when an agent makes a new proposal a new variable binding can be
created and when an agent accepts the last proposal of the other agent we want
the value of the variable in the accept illocution to be actually the value of the last
proposal of the other agent. This is, the last binding of the variable representing
the other agent’s proposal. In order to model this we use two different prefixing
symbols of the variable identifier. When the variable is preceded by a ‘7’ it
is a binding occurrence and it can be bound to any value of its type, when the
variable is preceded by a ‘!’ it is an application occurrence (we refer to its value).

30 Chapter 3. Electronic Institutions

An application occurrence must be preceded by at least one binding occurrence
for the protocol to be correct; at the beginning of the scene all variables are
unbound. Variable’s scope is the scene in which they appear.

The utterance of an actual illocution during the conversation will be matched
against the illocution schemes outgoing the current state. This matching will
generate a substitution o,,; for those variables in the scheme prefixed by
‘?’, where w; and w; stands for the source and target state of the transi-
tion. For instance, the submission of a bid in the sealed-bid scene of fig-
ure 3.1 by agent John playing the buyer role by means of the illocution
(commit (John buyer) (James auctioneer) bid(gl,25)) matching the illocu-
tion schema (commit (?y buyer) (lz auctioneer) bid(lgood_id, ?offer) of label
3 between the states w2 and w2, will generate the substitution 22 =
[?y/John,?offer [25]. Notice that for the illocution to be correct the last binding
for variables z and good_id must be James and g1 respectively. Thus, we can
define ¥ as the sequence of all the substitutions done during a conversation, i.e.
a sequence of o, each one corresponding to an uttered illocution.

As we have said, a variable prefixed by ‘!” denotes the last bound value of
the variable. This is easy to compute by searching backwards in X for the first
substitution in which the variable appears. Moreover, as we have in ¥ all the
bindings established during the conversation we can obtain a subset or all the
past bindings for a concrete variable. This will be valuable, as we will see in
next section, when specifying constraints.

3.2.2 Constraints

In this subsection we will explain the use of constraints to model how past
illocutions affect a scene’s future evolution. In practical terms, constraints will
be used to restrict the set of values to create new bindings of the variables in
the illocution schemes, as well as the paths that a scene conversation can follow.
Sometimes constraints can completely fix a concrete value and sometimes they
just restrict the set of possible values. For instance, in a sealed-bid scene the
value of any bid has to be higher or equal than the reserve price, or when the
auctioneer utters the illocution declaring the winner, the value of the variable
representing the winner has to be the identifier of the agent who has submitted
the highest bid. Constraints can also restrict or determine the paths that the
conversation can follow. For instance, an auctioneer is only allowed to declare
the lot withdrawn if no bids have been submitted in the current round.

As we said, we store in ¥ the sequence of substitutions produced during the
conversation. Prefix ‘I’ allows to obtain the last binding for a concrete variable.
But in some occasions we need to access several past bindings of a variable. For
instance, to check that the auctioneer announces the correct winner and price for
a bidding round. To do so we need to recover the bindings for each submitted
bid in the last round and look which is the highest bid and the buyer who
has submitted this bid. The expression !y, will return all the bindings for
variable z in the substitutions generated by the illocutions that lead from state
w; to w; including loops over w;, w; and any intermediary state. To compute

3.2. Scene 31

this we simply search backwards in ¥ looking for the first appearance of w; and
returning all the bindings for z from there and until the first transition to w;
from another state. In general we may be interested in obtaining the bindings
of the last ¢ times that the conversation evolved from w; to w;. We note that
with a super index: ‘!fuiwj ". Also, we permit to write conditions that restrict the
set of returned bindings. For instance, this allows to select from the bindings of
the variable denoting the buyer in bid illocutions, the one corresponding to the
highest bid.

We here summarise the meaning of the different prefixes of a variable iden-
tifier within constraints:

e 7x: stands for the value to be bound to variable x as a consequence of the
utterance of an illocution matching the illocution scheme labelling the arc
to which the constraint is associated. The illocution scheme labelling the
arc to which the constraint is associated must contain an occurrence ?z.

e !z: stands for the last binding of variable x.
i
Twiwy

subdialogues between w; and w;. I,

x: stands for the mulitset? of all the bindings of variable z in the 7 last
.w,; 1s noted as !y, 2 for simplicity.
Boiw, @+ stands for the multiset of the bindings of variable z in all subdia-
logues between w; and w; in X.

B, (cond): stands for the multiset of all the bindings of variable z in
the 7 last sub-dialogues between w; and w; such that the substitution o
where the binding appears satisfies the condition cond.

Let’s now concentrate on how to specify constraints. Constraints have this
form: op expr; expr; where expressions are formed as Lisp expressions over the
scene variables. The expressions must be of the following basic types: string,
numeric and boolean, or a multiset of any of these types, where the operations
are:

=,#,<, <=, >=, >: numeric X numeric — boolean

=, #: string X string — boolean

=,#,V : boolean x boolean — boolean

€,¢: a x amultiset — boolean, where « is any basic type.

o C,C: amultiset x amultiset — boolean, where « is any basic type.

There is a special type of sets that can be used on the constraints. This is
the sets of agents playing a role which are expressed by the role identifier. For
instance, this allows to specify that the auctioneer can not start a round if there

2A multiset is a set where elements can be repeated

32 Chapter 3. Electronic Institutions

are less than two buyers in the auction scene or that all the agents of a role have
uttered a concrete illocution.

Each arc labelled with an illocution scheme may have some constraints asso-
ciated to it that must be satisfied for the transition to happen. Next we present
the constraints associated to the labels of the arcs of the sealed-bid scene pre-
sented above specified by Figure 3.1:

e (> |buyer| 2): this constraint checks that there are at least two agents
playing the buyer role before starting a new round. This constraint is
associated to label 2.

e (>= 7offer Ireserve_price): forces buyers to submit bids higher or equal
than the reserve price uttered by the auctioneer. This constraint is asso-
ciated to label 3.

e (notin 7y y,w.y): this constraint checks that each buyer does not submit
more than one bid in a round. The variable 7y refers to the buyer which
tries to submit a bid while the second expression returns all the bindings
for the variable y in this round, i.e. all the buyers who submitted a bid.
This constraint is also associated to label 3.

o (= price (max ly,wsoffer): it controls that the price associated to the
winner corresponds to the greatest bid submitted by buyers in this round.
This constraint is associated to label 5.

o (in 2winner (ly,wsy (Toffer = maz(ly,ws offer)))): this constraint checks
that the buyer declared as the winner of the round represented by the
variable ?winner corresponds to a buyer who has submitted the great-
est bid, that is the substitution is of the type [?y/a,?offer/v] and v =
max(ly,ws 0ffer). This constraint is also associated to label 5.

o (> |lwswsy| 0): this constraint checks that at least one buyer has submitted
a bid in the last round. It must be satisfied in order to declare one of the
buyers as a winner of the round and it is associated to label 5.

o (= |lwswsy| 0): this constraint checks that no buyer has submitted a bid in
the last round. It must be satisfied in order to declare the lot withdrawn.
This constraint is associated to label 6.

In conclusion, for any illocution uttered by an agent to be valid it has to
match an illocution scheme of an outgoing arc of the current state, it has to
respect the bindings of bound variables, and it has to satisfy the constraints.
The matching process against the labels of the outgoing arcs can be viewed as
a sintactic verification of the illocution uttered by the agent, while the veri-
fication of the bindings with respect to the bound values and the satisfaction
of constraints can be seen as the semantic verification of the illocution. Next
definition summarises the components introduced so far.

3.3. Performative Structure 33

Definition 3.2.1 Formally, a scene is a tuple:
s =(R,DF,W,wo, Wy, (WA:)rer, WE,)rer, @, A\, min, Max)

where

e R is the set of roles of the scene;

e DF is a dialogic framework defined as in 3.1.1;

e IV is a finite, non-empty set of scene states;

e wy € W is the initial state;

e Wy C W is the non-empty set of final states;

e (WA,)rer C W is a family of non-empty sets such that WA, stands for
the set of access states for the role r € R;

e (WE,),cr C W is a family of non-empty sets such that W E, stands for
the set of exit states for the role r € R;

e O CW x W is a set of directed edges;

e \: 0O — Lis alabelling function, where L can be a timeout, an illocution
scheme or an illocutions scheme and a list of constraints;

e min,Maz : R — IN min(r) and Maz(r) return respectively the min-
imum and maximum number of agents that must and can play the role
r € R;

3.3 Performative Structure

While a scene models a particular multi-agent dialogic activity, more complex
activities can be specified by establishing relationships among scenes. This is-
sue arises when conversations are embedded in a broader context, such as, for
instance, organisations and institutions. If this is the case, it does make sense
to capture the relationships among scenes. For these purpose the performative
structure defines which are the conversations (scenes) of the electronic institution
and the role flow policy among them. That is to say, how the agents depending
on their role can move among the different scenes and when new conversations
will be started, taking into account the relationships among the different scenes.
In order to capture these relationships we use a special type of scenes called
transitions. The type of transition allows to express agents’ synchronisation,
chooses points where agents can decide which path to follow or parallelisation
points where agents are sent to more than one scene. Transitions can be seen as
a kind of routers in the context of a performative structure.

In general, the activity represented by a performative structure can be de-
picted as a collection of multiple, concurrent scenes. Agents navigate from scene

34 Chapter 3. Electronic Institutions

to scene constrained by the rules defining the relationships among scenes. More-
over, the very same agent can be possibly participating in multiple scenes at
the same time. Although this is usually impossible for humans in actual insti-
tutions it is very reasonable, and easy to implement, capability of autonomous
agents. Hence, it is our purpose to propose a formal specification of performative
structures expressive enough to facilitate the specification of such rules.

The way agents move from scene to scene depends on the type of relationship
holding among the source and target scenes. As mentioned above, sometimes we
might be interested in forcing agents to synchronise before jumping into either
new or existing scene executions, offer choice points so that an agent can decide
which path to follow or paralelisation points where agents are sent to more than
one scene. Summarising, in order to capture the type of relationships listed
above we consider that any performative structure contains a special element
that we call transition, devoted to mediate different types of connections among
scenes. Each scene may be connected to multiple transitions, and in turn each
transition may be connected to multiple scenes. In both cases, the connection
between a scene and a transition is made by means of a directed arc. Then we
can refer to the source and target of each arc. And given either a scene or a
transition, we shall distinguish between its incoming and outgoing arcs. Notice
that there is no direct connection between two scenes, or, in other words, all
connections between scenes are mediated by transitions. Also, we do not allow
the connection of transitions.

We define a set of different types of transitions and arcs whose semantics will
highly constrain the mobility of agents among the scene instances (the ongoing
activities) of a performative structure. The differences between the diverse types
of transitions that we consider are based on how they allow to progress the agents
that they receive towards other scenes. We have defined two types of transitions:

e And: They establish synchronisation and parallelism points since agents
are forced to synchronise at their input to subsequently follow the outgoing
arcs in parallel.

e Or: They behave in an asynchronous way at the input (agents are not
required to wait for others in order to progress through), and as choice
points at the output (agents are permitted to select which outgoing arc,
which path, to follow when leaving).

According to this classification, we define T = {And, Or} as the set of transition
types.

The arcs connecting transitions to scenes play a fundamental role. Notice
that as there might be multiple (or perhaps none) scene executions of a target
scene, it should be specified whether the agents following the arcs are allowed
to start a new scene execution, whether they can choose a single or a subset
of scenes to incorporate into, or whether they must enter all the available scene
executions. Thus, there are also different types of paths, arcs, for reaching scenes
after traversing transitions. We define & = {1, some, all,new} as the set of arc
types. Following a I-arc constrains agents to enter a single scene instance of

3.3. Performative Structure 35

the target scene, whereas a some-arc is less restrictive and allows the agents to
choose a subset of scene instances to enter, and an all arc forces the agents to
enter all the scene instances to which the paths lead. Finally, a new arc fires the
creation of a new scene instance of the target scene.

The label of each arc of the graph determines which agents depending on
their role can progress through the arc. This is expressed as conjunctions and
disjunctions of pairs of an agent variable and a role identifier. The role identifier
determines which agents will be allowed to follow the arc depending on their role
while the agent variables are used to differentiate among agents playing the same
role. For instance, a label (z Ry) A (y R2) means that this arc can be followed by
pairs of agents where one of them is playing the role R; and the other is playing
the role Ry. On the other hand, a label as (x R;y) V (y R2) means that any agent
playing one of the roles Ry or R, can progress through the arc alone. Concretely,
each arc is labeled with a disjunctive normal form of pairs of agent variable and
role identifier. In general if we have a label Ly V...V L, each L; determines a
set of agents playing the defined roles that can progress through the arc. The
scope of the agent variables is the incoming and outgoing arcs of the transition.
That is to say, if an agent reaches a transition following an arc labelled with
(z Ry) it can only leave the transition following those arcs which contain the
variable z in their label. On the contrary, there is no relation between the agent
variables labelling the incoming and the outgoing arcs of a scene. An important
point is that, when the arc is connecting a scene to a transition, a conjunction
means that agents have to leave the source scene together, meanwhile, when,
the conjunction labels an arc from transition to scene it means that agents must
incorporate to the same scene execution(s).

Agents will be moving from a scene instance (execution) to another by
traversing the transition connecting the scenes and following the arcs that con-
nect transitions and scenes. Transitions must be regarded as a kind of routers
within the performative structure. Therefore, instead of modelling some activity,
they are intended to route agents towards their destinations in different ways,
depending on the type of the transition. Thus, when in a transition agents can
ask about its possible destinations and request which path they want to fol-
low and/or which scene instance(s) they want to join. The possibilities that an
agent has, depend on the type of the transition and on the type and labels of
the transition outgoing arcs. For instance, in an Or transition if there is more
than one arc that an agent can follow it must choose only one to follow, while
in an And transition it has no choice, and the agent will follow all of them. On
the other hand, an outgoing arc of type new means that agent(s) will be incor-
porated to a newly created scene execution, while an outgoing arc of type one
means that agents must select one of the current executions of the target scene
to incorporate into. Thus, transitions constitute an intermediate state for agents
that move from scene to scene and the interaction whithin them is concerned to
agents’ destinations within the performative structure.

From a structural point of view, performative structures’ specifications must
be regarded as networks of scenes mediated by transitions. At execution time, a

36 Chapter 3. Electronic Institutions

SCENES

seene . @

Root Output

ARC TYPES TRANSITION TYPES

1
AND
new
-
some
-
all D OR

Figure 3.2: Graphical Elements of a Performative Structure

performative structure becomes populated by agents that make it evolve when-
ever these comply with the rules encoded in the specification. Concretely, an
agent participating in the execution of a performative structure devotes his time
to jointly start new scene executions, to enter active scenes where the agent
interacts with other agents, to leave active scenes to possibly enter other scenes,
and finally to abandon the performative structure.

Figure 3.2 depicts the graphical representations that we will employ to repre-
sent the performative structure’s components introduced so far. From the point
of view of the modeller, such graphical components are the pieces that serve to
construct graphical specifications of performative structures.

Before presenting the definition of performative structure, there is a last el-
ement to be considered. Notice that although two scenes may be connected
by a transition, the eventual migration of agents from a source scene instance
to a target scene instance not only depends on the role of the agents but also
on the results achieved by agents in previous scenes. Thus, for instance, in an
auction house, although a registration scene is connected to an auction scene,
the access of a buying agent to the execution of an auction scene is forbidden if
it has not successfully completed the registration process when going through a
registration scene. This fact motivates the introduction of constraints over the
arcs connecting scenes and transitions. The basic elements to define constraints
are illocution schemes and obligation predictaes. Then, a negation of them, a
disjunction or a conjunction of some of them can appear in a constraint defini-
tion. We will require that agents satisfy the constraints, conditions, over the arc
solicited to be followed when attempting to leave a scene. Therefore, conditions
must also appear in our formal definition of a performative structure.

We bundle all the elements introduced above to provide a formal definition
of a performative structure specification:

Definition 3.3.1 A performative structure is a tuple

PS = (S:T,SO;SQ,E;fL,fT,be;C,W

3.4. Norms 37

where

S is a finite, non-empty set of scenes defined as in 3.2.1;
T is a finite and non-empty set of transitions;

so € S is the initial scene;

sq € S is the final scene;

E = ET|JE© is a set of arc identifiers where Ef C S x T is a set of edges
from scenes to transitions and EC C T'x S is a set of edges from transitions
to scenes;

fr : E — FND,v,xr maps each arc to a disjunctive normal form of pairs
of agent variable and role identifier representing the arc label;

fr: T — T maps each transition to its type;
f9: EC — & maps each arc to its type;

C : E' — CONS maps each arc to a expression representing the arc’s
constraints®.

S — {0,1} sets if a scene can be multiply instantiated at execution
time;

Notice that we demand any performative structure to contain an initial and
a final scene. The final scene does not model any activity, and so it must be
regarded as the exit point of the performative structure. As to the initial scene,
it must be regarded as the starting point of any agent accessing the performative
structure. Departing from the initial scene, agents will make for other scenes
within the performative structure.

3.4 Norms

As described so far, the performative structure defines what participating agents
are permited to do within the institution depending on their role. The perfor-
mative structure constrains the behaviour of participating agents at two levels:

intra-scene: Scene protocols dictate for each agent role within a scene what
can be said, by whom, to whom, and when.

inter-scene: The connections between the scenes of a performative struc-
ture define the possible paths that agents may follow depending on their
roles. Furthermore, the constraints over output arcs impose additional
restrictions on agents attempting to reach a target scene.

3Reader is referred to 5.1.4 for a sintactical definition of the arc constraints expressions

38 Chapter 3. Electronic Institutions

But some agent’s actions within scenes may have consequences that either
limit or expand its possible subsequent actions, outside the scope of the scene.
The consequences we have identified can take two different forms. Some actions
create commitments for future actions, which may be interpreted as obligations.
Other actions may affect the paths an agent may take through the performative
structure because it may change which constraints are satisfied. For instance, a
trading agent winning a bidding round within an auction house is obliged to pay
later on for the acquired good before leaving the institution. In order to capture
these consequences, we use a special type of rules called norms.

Norms must define the actions that will provoke its activation, the obligations
that agents will have and the actions that agents must carry out in order to fulfil
the obligations. As we are specifying dialogical institutions, agents actions are
expressed as a pair of illocution scheme and scene where it is uttered. We need
both components because the same illocution could appear in more than one
scene. The scene gives the context in which the illocution must be interpreted
and of course, this affects the consequences that the utterance of the illocution
has. That is to say, the same illocution may have different consequences in
different scenes because it is uttered in a different context. As we have said
some of the terms of an illocution scheme are variables. The activation of a
norm may depend on the values of these variables in the uttered illocutions.
Then, some conditions on the value of these variables can be imposed. These
conditions are specified as boolean expressions over illocution scheme variables
and a norm will not be activated if they are not satisfied. The scope of the
variables is the complete norm.

In order to represent the deontic notion of obligation we set out the predicate
obl as follows:

obl(z,1,s) = agent x is obliged to dov in scenes.

where 1 is taken to be an illocution scheme. We denote the set of obligations
by Obl and any concrete obligation by obl; € Obl. Norms follow the schema:

(s1,M) Ao A(Sm,Ym) Aer Ao AepA

A= ((Smt1sYma1) A oo A (Smtns Ym+n)) —> 0bli A ... A obl,

where (s1,71),-+, (Sm4n, Ym+n) are pairs of scenes and illocution schemes,
e1,...e, are boolean expressions over illocution schemes’ variables, - is a de-
feasible negation, and obly, ..., obl, are obligations. The meaning of these rules
is that if the illocutions (s1,71),- - -, (Sm, Ym) have been uttered, the expressions
e1,...,e, are satisfied and the illocutions (S;41,Ym+1)s- -5 (Sm+n, Ym+n) have
not been uttered, the obligations obly, ..., obl, hold. Therefore, the rules have
two components, the first one is the causing of the obligations to be activated
(for instance winning an auction round by saying ‘mine’ in a downwards bid-
ding protocol, generating the obligation to pay) and the second is the part that
removes the obligations (for instance, paying the amount of money due for the
round which was won).

3.5. Electronic Institution 39

Clearly, an external agent might not fulfil its obligations. As agents are au-
tonomous and the institution accepts agents developed by other people, those
agents cannot be forced to utter particular illocutions. From this follows that in-
stitutions cannot force agents to fulfil their obligations. However, the institution
knows the obligations that each agent has acquired and can thus detect when
an agent does not fulfil its obligations and hence violates the norms. Moreover,
the institution can restrict the actions that an agent can carry out while it has
not fulfilled some or all of its obligations.

3.5 Electronic Institution

Taking into account the three main concepts, which we pointed out, as necessary
for defining an institution: language, activity and consequences, an institution
is defined by a dialogic framework, a performative structure and a list of norms.

Definition 3.5.1 An electronic institution is defined as a tuple
EI = (DF,PS,N)
where
e DF stands for a dialogic framework;
e PS stands for a performative structure;

e NN stands for a set of norms.

3.6 Conclusions

In this chapter we have presented how open multi-agent organizations can be
formalised as electronic insitution. Although organisational design is widely ad-
mitted as a fundamental issue in multi-agent systems, social concepts have been
introduced in a rather informal way [Ferber and Gutknetch, 1998]. Hence the
need for formally incorporating organisational terms and concepts into multi-
agent systems. Due to the complexity of this type of systems, we have adopted
a formal approach and we defend that the development of electronic institu-
tions must be preceded by a precise specification that fully characterise the
institution’s rules. In general, the presence of an underlying formal method
underpins the use of structured design techniques and formal analysis, facil-
itating development, composition and reuse. For this purpose, we have pre-
sented a formalisation of electronic institutions which continues the work of
[Noriega, 1997, Rodriguez-Aguilar, 2001] and where we have refined and ex-
tended the definition of some of the components. We believe that our principal
contribution to institutions’ formalisation has been done at scene level by the
introduction of time-outs and constraints. Since time-outs permits to make the

40 Chapter 3. Electronic Institutions

scene evolve when no agent is talking, constraints permit to capture the conse-
quences of the previous interaction whithin a scene in its furure evolution. The
analysis required for the complete formalisation of the system allows the mod-
eller to gain a dramatically improved understanding of the modelled institution
before developing it. Also, it permits to detect the critical points of the system
and detect errors at an early stage.

As we have said we focus on macro-level aspects of agents. That is, which
is the language that agents will use to communicate, the valid interactions they
may have and the consequences of these interactions. We structure all agent
interactions in conversations which define the valid interactions and give the
context where exchanged messages must be interpreted. Then, the formalisation
determines at every moment what can be done by each of the participants. That
is to say, what can be said, by who and to whom within each conversation and
the valid movements that agents can do among the different conversations.

In the light of the complexity of the whole process, it is apparent the need
of tools that assist the institution designer through the specification, validation,
and generation of infrastructures for the specified institutions. The formalisation
presented here will be the basis for the development of software tools that will
help institution designers. Thus, in chapter 5 we will focuss on the tool for
the specification and verification of electronic institutions while in chapter 6 we
will focuss on how infrstarucutres for the specified insitution are generated from
institution specifications.

Chapter 4

Formalising Institutions in
Process Algebras

Research on the formalisation of concurrent and distributed systems has
quite long history starting with Milner’s Calculus of Communicating Systems
(CCS) [Milner, 1980] and Hoare’s Communicating Sequential Processes (CSP)
[Hoare, 1985]. Their goal is to define a formal framework where concurrent and
distributed systems can be specified and then, analysed and verified. These lan-
guages and their successors focus on which processes compose a system and how
they communicate.

In the work reported in this chapter, we have used an extension of CCS
to formalise multi agent systems. Concretely we have used the m-calculus to
define a distributed bidding resolution mechanism within an auction room '
The m-calculus [Milner, 1999] extends CCS by allowing the definition of polyadic
channels and to pass channels over channels.

We advocate that each participating agent within an institution is connected
to a special type of agent, the so-called governor which mediates its communi-
cation with the rest of the agents. This permits agents to abstract from commu-
nication problems and concentrate on how to take their decisions. Furthermore
governors control that agents behave according to the institution rules. In order
to distribute the bidding resolution mechanism for the winner determination of
auction protocols we make use of the governors. For this purpose, the governors
of the buyers taking part in the auction are extended to be able to resolve the
winner determination process of auction rounds in a distributed way. So, the
governors of the buyers taking part in the auction coordinate to decide which
of them is the winner of each auction round. It is quite natural for electronic
institutions to follow the structure of their physical counterparts. However, this
is not always appropriate or desirable in a virtual setting. We report on the

IThe work presented in this chapter has been done in collaboration with Julian Padget and
has been extracted from [Esteva and Padget, 2000]. We want to thank him for authorising to
use material from the paper.

41

42 Chapter 4. Formalising Institutions in Process Algebras

prototyping of an alternative architecture for electronic auctions based around
the concept of a governor and building on the considerable body of work in the
distributed algorithms literature to plot a path toward resilient trading frame-
works. In particular, we have adapted the classical Leader Election algorithm
for resolving bids in a generic auction scheme as well as identifying the factors
which differentiate the physical auction protocols in such a way that new auc-
tion protocols can be plugged into the scheme by the specification of the relevant
(sub-)processes. We have used the 7-calculus to specify both the generic scheme
and the specific protocols of first-price, second-price, Dutch and English. The
bid resolution process has been prototyped in Pict [Pierce and Turner, 1997].

4.1 Distributed winner determination process

Electronic commerce has become more and more important with the growth
of the Internet. In particular, auctioning has become one of the most popular
mechanisms of electronic trading, as we can see from the proliferation of on-line
auctions on the Internet. Multi-agent systems appear to offer a convenient mech-
anism for automated trading, due mainly to the simplicity of their conventions
for interaction when multi-party negotiations are involved. AI researchers have
been interested in two areas: auction marketplaces and trading agents’ strategies
and heuristics [Garcia et al., 1998, Varian, 1995, Ygge and Akkermans, 1997].
Apart from web-based trading, auctions are the most prevalent co-
ordination mechanism for agent-mediated resource allocation prob-
lems such as energy management, [Ygge and Akkermans, 1997,
Ygge and Akkermans, 1996], climate control[Huberman and Clearwater, 1995],
flow problems[Huberman and Clearwater, 1995], computing resources
[Gagliano et al., 1995], public monopolies [Bushnell and Oren, 1993] and
many others [Clearwater, 1995].

From the point of view of multi-agent interactions in auction-based trading,
the situation is deceptively simple. Trading within an auction house demands
that buyers merely decide an appropriate price to bid, and that sellers essentially
only have to choose the time to submit their goods.

The work related here is a continuation of the FishMarket (FM)
project[Rodriguez-Aguilar et al., 1997, Rodriguez-Aguilar et al., 2000] and on
the work on formalising the auction house in w-calculus presented in
[Padget and Bradford, 1998]. In this work we focus on the auction room, and
especially the process used for the resolution of bids. In all the versions of
the FM to date, this process has been carried in a centralized manner. While
that corresponds to the physical reality of auctions, it is not necessarily an
appropriate model in a computing context due to two problems that are not
common in physical situations (pace telephone bidders!): breakdown of pro-
cesses or communications — so-called stopping failures — and intermittently
faulty processes or communications, leading to unreliable messages — so-called
Byzantine failures [Lamport et al., 1982]. As a first step for addressing these
problems we here present a distributed solution to which other techniques may

4.1. Distributed winner determination process 43

later be added to handle resilience issues, which effectively does away with the
auctioneer, thus removing a central single point of failure. In some sense the
governors — the market interfaces for the buyers —, as we shall see later, are
really replications of the auctioneer, in common with the architecture proposed
in [Franklin and Reiter, 1996].

In the current FM all the bids are submitted to an agent called the auctioneer
who controls the whole auctioning process and determines the result of the round.
From this point of view, the resolution of the bidding protocol is centralized.
What we do in this new version is to distribute this process among the buyers’
market interface agents (called governors) — see Figure 4.1. Thus, the auctioneer
sends the buyers (via the governors) the information about the lot and then waits
until one buyer governor sends it the result of the round. During the intervening
period the buyer governors resolve the bids using a distributed protocol. Thus,
the work of the auctioneer is reduced to:

e controlling which buyers participate in the auction,
e starting the rounds by sending the information on the lots

e waiting for the result of the round

We have two motivations: to have another way of applying auction protocols
and to have a way to avoid the auctioneer becoming a bottleneck. With this new
mechanism, the load of messages is distributed between all the governors. The
idea is that this algorithm can be applied to an existing auction house, providing
an alternative way to deliver different auction protocols.

The basis of the distributed approach is the Leader Election algorithm
[Lynch, 1996]. It can be understood simply as an algorithm for choosing one
processor in a network of many and the version we have adapted here derives
from that used in token ring networks, where it is used to regenerate the token.

In the next section 4.1.1 we explain the new organization of the auction room
in order to apply the algorithm. In section 4.1.2 we give a brief summary of 7-
calculus. In section 4.1.3 we outline how to apply the Leader Election algorithm
in auction protocols. Finally, in sections 4.1.4 to 4.1.8 we explain how to use
this algorithm for a range of auction protocols and we give their specification in
m-calculus too.

4.1.1 Organization of the auction room

There are two kind of agents taking part in the auction room scene: The auc-
tioneer is an institutional agent who controls the correct running of the auctions.
It controls when buyers enter and leave, starts the rounds and receives the result
of them. Finally, it declares the end of the auctions when it has no further lots
to auction.

We have added another kind of agent, the so-called governor, an autonomous
software agent which mediates interactions between a buyer and the agent society
wherein it is situated. A governor is connected to a buyer and abstracts it from

44 Chapter 4. Formalising Institutions in Process Algebras

Auctioneer

Figure 4.1: Organization of the agents in the auction room

communication problems. Thus, each buyer only has to communicate with its
governor so it can focus on its strategies for bidding. The use of a governor
also has advantages for the institutions, because the governor forces the buyer
to follow the auction room protocol. For example, the governor will prevent
the buyer from making a bid between rounds. The governors also implement
the resolution of the bidding protocol. Previously, this task was done by the
auctioneer, whereas now it is distributed among the governors, which are linked
in a ring in order to apply the particular version of Leader Election we have
chosen [Lynch, 1996].

An important point here, is that the change in the process of bidding reso-
lution does not affect the buyers. It is an internal change of the system. This
process is opaque to the buyers which cannot see the information passed be-
tween governors in order to resolve the bidding protocols. In other words, from
the point of view of the buyers there is no difference between centralized bid
resolution and the new scheme.

The buyers are the participants in the auctions and each one is connected
to one governor in order to communicate with the other agents. Of course, we
cannot specify the buyers here because each one is potentially unique. All we
can define are the channels with which the buyer will be supplied in order to
communicate with its governor, the messages that it will receive and when it
is allowed to submit a bid or leave the system. Therefore, in the auction room
there is one auctioneer, a set of buyers, and one governor for each buyer (see
Figure 4.1). The auctioneer is connected to all the governors, each buyer is
connected to a governor which is the only agent it can communicate with and

4.1. Distributed winner determination process 45

governors are structured in a ring. That is, apart from the auctioneer and its
buyer a governor is connected to its predecesor and succesor in the ring.

We will focus on the specification of the distributed resolution of the bidding
protocol. We omit the specification of the auctioneer but note that its principal
work now is to send the information about the lots at the start of each round.

4.1.2 The mw-calculus in brief

The main features of the m-calculus—and those necessary to read the remainder
of this chapter—are the means to read and write information over channels,
the creation of channels, and parallel, alternative and sequential composition.
Terms in the w-calculus are described as prefixes followed by terms, which is
intentionally a recursive definition. Syntactic details are outlined below?.

Summary of 7-calculus syntax and semantics

In this section we provide a short description of w-calculus. For more informa-
tion, the interested reader is referred to Pierce’s excellent article [Pierce, 1996]
and subsequently to Milner [Milner, 1991]. The basic operations in m-calculus
are:

z(y): reads an object from channel x and associates it with the name y. This
operation blocks until the writer is ready to transmit. The scope of y is
limited to the process definition in which y occurs. Channel names, on the
other hand may be local (see v below), parameters to process definitions
(see below), or global.

T (y): writes the object named by y to the channel z. This operation blocks
until the reader is ready to receive.

vz ... creates a new channel named z. The scope of z is limited to the v
expression, but the channel may be passed over another channel for being
used by another process. For example, a common idiom is to create a
channel using v, transmit it to another process and then wait for a reply
on that channel:

v (z) ¥ (x, question) . x(answer)
P | @Q: the terms P and) behave as if they are running in parallel. For example,
T (1) | 7 (2) outputs 1 on channel z and 2 on channel y simultaneously.

P + (@: either one or the other (non-deterministic choice) of P and) proceeds.
Normally, the prefixes of P and @) are operations which could block, such
as channel transactions, and this operation allows us to express the idea

2A word of warning: this description should not be taken as definitive, since there are
numerous interpretations which vary slightly in details of syntax, and sometimes of semantics.
It does however represent m-calculus adequately for the purposes of the discussion here.

46 Chapter 4. Formalising Institutions in Process Algebras

of waiting on several events and then proceeding to act upon one of them
when it occurs. For example, z(a) + y(a) waits for input on channels z
and y, associating the information in both cases with a. As soon as one
branch of such an alternative succeeds, the others can be considered to
have aborted (see discussion in section 4.1.2).

P . Q: the actions of term P precede those of term (). For example z(y) . Z (y)
reads y from z then writes y on 2.

In addition, we include an ability to associate a term with a name — that
is a definition — and furthermore, by doing that a global channel is declared
with that name, as in: P(z!,z2,z3) = ..., which defines a process P taking a
three-tuple. In practice this also means we have declared a channel P such that
we may invoke the process P by writing a three-tuple to the channel named P.
We will use this convention to obtain a form of parameterization, allowing us
to pass processes as arguments (high-order processes) by passing the channel by
which they are invoked. This syntactic convenience can be described primitively
in the m-calculus but we omit these details here.

Events and choice

Among the many variants of the m-calculus, we chose as a starting point, the
basic synchronous form as found in [Milner, 1991]. One of the essential properties
of the kinds of institutions we want to model is liveness, which in practical terms
means an event-based model. The non-deterministic choice (sum) operator has
therefore been invaluable—although it also raises some interesting questions. To
quote [Milner, 1991]:

The summation form Y 7;.P; represents a process able to take part in
one—but only one—of several alternatives for communication. The
choice is not made by the process; it can never commit to one al-
ternative until it occurs, and this occurrence precludes the other
alternatives.

When viewed as a mathematical description, for example, for the purpose
of determining bisimilarity, there is no problem. However, when viewed as a
program to run, there is an element of time and therefore sequence involved.
Consider the process ¢1.P; + ¢2.P»>. If a message arrives on ¢; just before one
arrives on ¢z, do we expect to become P;, or do we expect a non-deterministic
choice of P, or P»7 Certainly, we can become P, but most people (and the
quote above can be interpreted to support this), would say we should become
P;. If not, then the m-calculus would be a difficult tool indeed, requiring many
synchronizations to enforce this natural behaviour, and these synchronizations
would generally have no counterpart in a “real” program. In the following de-
scriptions we have assumed that the natural interpretation is the case, this is,
choices are determined as and when messages arrive on channels.

4.1. Distributed winner determination process 47

test/0(event, then, else) =
v (cl,c2,c3)
c3 ()
| event()

().c (then) + c2() . cl (else)
le3() . c2{

2().cl
). cl(z).T()

A further issue, of wanting prior further issue, of wanting prior, is addressed
by the definition of the test/0 process, which is much used later on. This process
is used to check if there is information waiting to be read on a channel but
without blocking the process attempting to read.

The function tries to read from the channel event and if it succeeds, it writes
on channel then, otherwise it writes on channel else. The version presented here
does not read any data from the channel event but we assume that we have other
versions that do, and writes it on channel then. We will differentiate the number
of arguments passed by adding arity to the name of the process (following a
Prolog convention). Then the function test/0 is the one that does not pass
information, the process test/1 is the one that passes one item and so on.

4.1.3 Leader Election

Leader election is a distributed algorithm used in some kinds of networks to elect
a leader. For example, it is used in a token ring network when the token is lost
and it is necessary to generate a new one. The algorithm assumes that all the
nodes are identical, except in each having an unique identifier and they have to
select one node to generate the token, but only one because there can only be
one token in the ring.

There are different versions for solving the Leader Election problem and we
have based our work on the LCR version [Lynch, 1996]. This algorithm uses
only unidirectional communication and does not rely on knowledge of the size
of the ring. Other algorithms use more knowledge (equals more constraints) to
reduce the complexity of the algorithm, but do not change it in essence.

It is presumed that the unique identifiers support an ordering so that the
leader will be the process with the largest identifier. First of all, each node
sends a message with its identifier around the ring. When a process receives a
message there are three possible actions:

1. if the identifier in the message is greater than its own, it passes the message
on.

2. if the identifier in the message is less than its own, it discards the message.

3. if the identifier in the message is equal to its own, it declares itself the
leader.

48 Chapter 4. Formalising Institutions in Process Algebras

Thus, only the process with the greatest identifier will receive again its mes-
sage and it will declare itself as a leader. We can see that all the other messages
will be eliminated because at some point they will arrive at a process with a
greater identifier.

The important point of the algorithm that we have to bear in mind is that it
only uses local information in each process and all of them are identical except
in their identifiers. The processes do not have global information.

The next step is to see how we can apply this strategy to the auction proto-
cols. The first and obvious point is that we have to compare the bids submitted
by the buyers. The winner will be the buyer with the greatest bid. When a
process receives a message, it will have to compare the bid in the message with
its bid. There is one aspect that makes processing bids trickier than straight
leader election: in classical leader election all the identifiers are different, but it
is quite possible that there will be equal (highest) bids posted. Namely, there is
a collision if there is more than one bid at the greatest price.

We have to define first when the messages are generated and what they should
contain. When to generate is obvious, the governors will send a new message
when the buyer makes a bid. For the second point is not enough just to send the
bid: we need to know who has generated the message because it may happen
that more than one buyer submits the same bid value and whether there are
more buyers that have made a bid at the same value.

Thus, the messages will have two fields:

1. a list of the identifiers of the buyers that have bid at price bid,
2. the bid itself

From the list we can learn who has contributed to the message and if there
is more than one buyer bidding at that price.

Now, we have to analyze what happens when a governor receives a message
from its neighbour. When the bid in the message is different from its own, it
acts as in the Leader Election algorithm: it passes the message on if the bid is
greater and discards it if it is lower than its own.

The important point is what happens when it receives a message with a bid
equal to its own. There are two possibilities:

1. This is the message generated by itself which implies that this governor’s
buyer has made the greatest bid. However, this is not enough to elect itself
as a winner because another buyer could have made a bid at the same value.
To distinguish this case, it has to look at the list of identifiers in the first
field of the message, and if there is only its identifier, it can declare itself
the winner. Otherwise there has been a collision, in which case it will
generate a collision message in order to inform the other governors. We
will explain later how collision messages are managed.

2. Or, it is a message generated by another governor which indicates that
another buyer has made a bid at the same price and it could be a collision.

4.1. Distributed winner determination process 49

This is not enough for declaring a collision yet because another governor,
further round the ring, could have made a greater bid. It will only be a
collision if this is the greatest bid. The problem is that the governor has
only local information and it only knows that it could be a collision. The
governor can only declare the collision when the message has made one
complete round and if so, it is sure that this is the greatest bid. All it can
do is to add its identifier to the list and pass on the message.

As we can see, no governor eliminates a message with a bid equal to its
own. Thus, when there is a collision, this will be detected for all the governors
involved in it and each one of them will generate a collision message. Thus,
after a collision, there will be one collision message for each buyer involved in
it. In the version that we propose here, the governors restart the round after a
collision. Important remaining issues are, how collision messages are eliminated
and how to ensure that each governor receives only one collision message. The
solution is that each collision message travels over the part of the ring from the
governor generating the message to the next governor involved in the collision.
Thus, each governor will receive one and only one collision message.

Another point is what should a governor do when it knows that it has won
a round. The answer is that it has to send a message around the ring in order
to inform all the other governors that the round is finished. An issue to note is
what information should be passed on to the buyers. They could just be notified
of the end of the round, but more likely they could be sent some information
about the result, such as the price and/or the identity of the winner. Precise
choices depend on the conventions of the institution being modelled, but they
are not important otherwise to the discussion here. This message synchronizes
all the governors and subsequently the winner’s governor sends a message to the
auctioneer to inform it about the result of the round and also that the round is
finished.

Now we have described all the possible cases when a governor receives a
message. Hence, we can give a generic variant of the Leader Election for the
resolution of bidding protocols (see Figure 4.2).

The last difficulty to address is what to do when no buyers make a bid. In
this situation, no messages would be generated, so leading to deadlock, because
each one of the governors will be waiting for messages. To avoid this, each
governor is required to generate a message for each round wunless its buyer has
not submitted a bid. These messages have a bid value of the negation of the
gpvernor identifier. Thus, if no buyer has submitted a bid, only the governor with
the lowest identifier will receive its message back. It will then detect that there
have been no bids and it will notify the auctioneer that the lot is withdrawn.

Before explaining the duties of the governor, we present an example in Fig-
ure 4.3. In this example there are three governors, two of them, governors G
and G5, which bid 10 and another, governor G2, which bids 8. The messages
with bid 10 make the complete round while the message with bid 8 is eliminated
as it reaches a governor that has made a greater bid. This provokes a collision
which is detected by both governors when they received back their messages

20 Chapter 4. Formalising Institutions in Process Algebras

1. if the governor receives an end of round message which it did not generate,
it passes the message to the next governor.

2. if it receives an end of round message which it did generate, it eliminates
the message and sends the result of the round to the auctioneer.

3. if it receives a collision message in which it was not involved, it passes the
message to the next governor and restarts the round.

4. if it receives a collision message in which it was involved, it eliminates the
message and restarts the round.

5. if it receives a message with a bid greater than its own, it passes the
message to the next governor.

6. if it receives a message with a bid equal to its own and it is not its message
it adds its identifier to the message and passes it to the next governor.

7. if it receives its own message back and it only contains its identifier in
the first field, it is the winner of the round and it sends an end of round
message.

8. if it receives its own message back but there is more than one identifier in
the first field, there is a collision and it generates a collision message.

9. if it receives a message with a bid lower than its own, it eliminates the
message.

Figure 4.2: Specification of the generic bidding resolution protocol

with more than one identifier. Then they generate a collision message, which
has identifier —1. We can see that each governor receives only one of them.
The governors which have participated in the collision wait until they receive
another collision message. At that point, they eliminate the collision message
and restart the round. The example finishes at that point but after the collision
the governors will restart the round. That is to say, buyers will be informed
about the collision and they will be requested to submit new bids.

In the next section we will give the specification of the governor in each
protocol. We will explain how to apply the algorithm outlined above to each
one and the modifications to take account of their individual characteristics.

4.1.4 The Governor

As we have said earlier, the governor has two important functions, handling
communication between buyers and the institution (external) and resolving the
bidding protocols (internal).

4.1. Distributed winner determination process 51

id = {1}, bid = 10 id = {3}, bid=8 id = {2}, bid = 10 id = {2,1}, bid = 10 id = {1,2}, bid = 10

id = {1}, bid = 10

id = {-1}, bid = 10

id = {-1}, bid = 10 : : ° ::

Figure 4.3: Example of collision resolution

The first function gives the buyer the communication infrastructure to enable
participation in the auctions by passing to the buyer the information that it
needs about the state of the auctions. For example, when a round starts, the
characteristics of the lot offered, if he has won a round, etc.. Furthermore, it
passes the buyer messages to the other institution agents. These are the bids
of the buyer and when it wants to leave the system. It also checks that the
messages of the buyer follow the protocol. For example, the buyer is not allowed
to submit a bid at the wrong time. The idea is to abstract buyer developers from
communication problems, allowing them to concentrate on bidding strategies.

The second function, which is independent of the buyers, consists of deciding
who won a round or whether a lot is withdrawn, using the modified Leader
Election protocol with some variations depending on the auction protocol. As
we have said before, buyers are not allowed to see the information passed between
governors in order to resolve a round. The governors have to be robust and have
to incorporate security measures in order to protect them from malicious buyers.
Otherwise, buyers could read the messages with the bids of the others buyers and
then generate new bids out of sequence with the help of additional information.
This is an important point to be borne in mind but here we focus just on the
algorithm.

From the point of view of a governor, an auction round is divided in four
steps as we can see in Figure 4.4.

1. Start round: This step corresponds to the period between two rounds. In
that period, new buyers are added to the auction and existing participants
can leave. The step finishes when the governor receives from the auctioneer
the information of the next lot to be auctioned. This step is the same for
each protocol.

2. Waiting for bids: This step can be seen as an initialization step. For
each round it has a pre-determined time expressed in the lot information.

92

Chapter 4. Formalising Institutions in Process Algebras

auctioneer(new_lot)
buyer(exit)

buyer(bid) —b@fcr bids
governor(msg) .
buyer(bid) Waiting for msg

auctioneer(result) Resolve bids

Start round

Figure 4.4: The four steps of a bidding round

The buyers have that time to make their first bid. Except in the English
auction, this is the only period that buyers are allowed to submit bids.
When this step is finished we can be sure that each governor has sent its
neighbour a message. It is for that reason that we say that this is an
initialization period.

. Waiting for next message: In this step a governor waits for a message

from its source governor (the previous one in the ring) or for a message
from the buyer with a new bid. In the first case it passes to the next step
in order to handle that message. If it receives a message for a new bid
from the buyer it generates a new message and sends it to its destination
governor (the next one in the ring). In the protocols that we specify here,
only in the English auction are the buyers allowed to submit bids at that
moment. In the other three they can only submit bids at the second
step and this step only consists in waiting for a message from the source
gOvernor.

. Resolve bids: This is the important part of the algorithm when a gover-

nor uses the cases explained before with the last message received and its
information to decide what it has to do.

As we can see, the first step is common for all the protocols and the others

present some differences between each one. The interesting thing is that all of
them follow the same pattern unless they have their own characteristics. We
will focus on these three steps for each protocol.

The first step receives the information of the next lot from the auctioneer

and calls the WaitingBid function of the corresponding protocol. It is during this
step when buyers can leave the auction and new buyers can join it.

Before presenting each protocol specification in m-calculus we define the chan-

nels used for communication between one governor and the other agents. These

4.1. Distributed winner determination process 53

are:
e in: reception of messages from its predecessor in the ring.
e out: transmission of messages to its successor in the ring.
e b/gov_bid: reception of the bids from the buyer.
e gou/auc-res: transmission of the result of the round to the auctioneer.
e gou/b: transmission of information to the buyer.

e b/gov_exit: reception of message from buyer with the desire of leaving the
auction room.

Apart from the channels, the governor also keeps information in order to
compare it with that in the incoming messages and the parameters of the current
lot. Normally, in the first case it keeps the last bid submitted by the buyer —
but in the English auction more information is needed as we will explain later.
The information of the current lot is used after a collision for restarting the
round.

Next, we give the specification of the protocols. We will begin with the
complete specification of the First-Price/Sealed-Bid protocol, being the simplest.
Then, we will explain the changes, by reference to that for the Vickrey and Dutch
protocols, because they are similar to the first one. Finally, we will explain in
more detail the last and more complex, the English auction protocol.

4.1.5 First-Price/Sealed-Bid

The main characteristic of this kind of auctions is that you can divide it in two
phases. There is a time for submission of bids and afterwards, analyzing the
bids it is decided the winner. That is to say, for each lot there is given a time for
the buyers to submit their bids and after that the governors decide who is the
winner. The winner will be the buyer who has submitted the greatest bid and
this is the price that he will pay for the lot. The lots auctioned in this protocol
are defined with one parameter which indicates the time that buyers have to
submit bids. Next, we explain the last three steps for this protocol:

1. Waiting for bids: This step corresponds to the time that buyers have
for submitting bids. In order to check if the buyer has submitted a bid in
the given time it uses an auxiliary process called FP-bid. Before passing to
the next step a message is generated whith the value returned from this
process.

The FP-bid process first waits for the time specified using the delay process
(definition not given here) which waits for the units of time that it receives
as a parameter. After that it uses the function test/1 in order to see if the
buyer has made a bid. If it has, it returns the value of the bid, otherwise
it returns the value —id which indicates that the buyer has not submitted
a bid.

o4 Chapter 4. Formalising Institutions in Process Algebras

FP-WaitingBid(id, in, out, b/gov_bid, gov/auc-res, gov/b, time) =
v (done,then, else)
gou/b (time)

FP-bid(b/gov_bid, time, done)
| done(bid)
. out (bid)

. FP-WaitingMessage(id, bid, in, out, b/gov_bid, gov/auc_res, gov/b,
time)

FP-bid(id, b/gov_-bid, time, done) =
v (then,else, done2)
delay(time, done2)
| done2()
test/1(b/gov_bid, then, else)
| then(bid) . done (bid) + else(junk) . done (—id)

FP-WaitingMessage(id, bid, in, out, b/gov_bid, gov/auc-res, gov/b, time) =
in(id;, n_bid)
. FP-ResolveBids(id, bid, id;, n_bid, in, out, b/gov_bid, gov/auc_res, gov/b,
time)

Figure 4.5: Specification of the processes FP-WaitingBid, FP-bid and
FP-WaitingMessage.

4.1. Distributed winner determination process 55

2. Waiting for next message: In this protocol during this step the governor
only waits for a message from its predecessor in the ring because buyers
are not allowed to submit multiple bids. After reading from channel in it
sends a message to the process FP-ResolveBids for further processing.

3. Resolve bids: This is the most complex and interesting function. It ap-
plies the algorithm explained before with its own bid and the last message
received. The algorithm in this case is exactly the same as explained above
without changes.

In figures 4.5 and 4.6 we present the specification in 7-calculus of the First-
Price/Sealed-Bid protocol. Concretely in figure 4.5 it is presented the specifica-
tion of the processes FP-WaitingBid, FP-bid and FP-WaitingMessage, while in
figure 4.6 it is presented the specification of the process FP-ResolveBids.

4.1.6 Vickrey’s auction

This protocol is very similar to the one before in the sense that it is also divided in
two phases and with the same processes as the previous one. The sole difference
is that the winner is the buyer who has submitted the highest bid but the price
that he has to pay corresponds to the second highest bid. Then, messages are
extended with a new field containing information about the second highest bid.

We do not give the specification because the only change from first-price is
that the messages have one additional field. This field, corresponding to the
second highest bid, is initialized to zero when a governor generates a message.
Then, when a governor passes a message on, it has to compare this field with
its bid and it updates it (if its own is higher). Then, the governor winnning
the round sends the auctioneer the value of the new field. That is, the second
highest bid because it is the price that the buyer has to pay for the lot.

4.1.7 Dutch auction

The main characteristic of this protocol is that it is a descending price auction.
The round starts with a high price descending until one buyer submits a bid.
In real Dutch auctions it is the auctioneer who calls out the offers until one
buyer bids. Here, each governor sends independently the offers to its buyer 2.
While this confers several advantages in a distributed setting that cannot arise
in the physical scenario, it does have the drawback that in contrast to a real
auction, where when a buyer sees an offer he knows that no one has submitted
a bid at a higher price, whereas here the buyer cannot be sure of this because
each governor is running independently from the others. This could change the
bidding strategy of the buyers.
The parameters of this kind of auction are slightly different, being:

e start_price: the starting price at which the governors start sending offers
to the buyers.

3This technique and its justification are presented in [Padget and Bradford, 1999]

Chapter 4. Formalising Institutions in Process Algebras

FP-ResolveBids(id, bid, id;, n_bid, in, out, b/gov_bid, gov/auc_res, gov/b, time) =
if car(id;) = —2
if n_bid = bid
if bid < 0
gov/auc_res (0, 0)
otherwise
gov/auc_res (id, bid) | gov/b (“Winner”)
otherwise
gov/b (“End of round”)
| out (—2, n_bid)
elseif car(id;) = —1
if n_bid = bid
gov/b (“Collision”)
| FP-WaitingBid(id, in, out, b/gov_bid, gov/auc_res, gov/b, time)
otherwise
gov/b (“Collision”)
| out (—1,n_bid)
| FP-WaitingBid(id, in, out, b/gov_bid, gov/auc-res, gov/b, time)

otherwise
if n_bid = bid
if car(id;) = id
if [id;| =1
out (—2, bid)
otherwise
out (—1, bid)

| FP-WaitingMessage(id, bid, in, out, b/gov_bid, gov/auc_res,
gou/b, time)

otherwise

out (id; U {id}, bid)

| FP-WaitingMessage(id, bid, in, out, b/gov_bid, gov/auc-res, gov/b,

time)

otherwise
if n_bid > bid

out (id;, n_bid)

| FP-WaitingMessage(id, bid, in, out, b/gov_bid, gov/auc_res, gov/b,

time)
otherwise
FP-WaitingMessage(id, bid, in, out, b/gov_bid, gov/auc_res, gov/b,
time)

Figure 4.6: Specification of the process FP-ResolveBids

4.1. Distributed winner determination process 57

DA-bid(id, b/gov_bid, actual_price, decrement, reserve_price, done) =

v (then, else, done2)
gov/bid (actual_price) . delay(1, done?2)
| done2()
. test/0(b/gov_bid, then, else)
| then() . done (bid)
+ else()
if actual_price — decrement > reserve_price
DA-bid(id, b/gov_bid, actual_price — decrement, decrement,

reserve_price, done)
otherwise

done (—id)

Figure 4.7: Specification of the process DA-bid

e reserve_price: the minimum price at which the lot may be sold. If that
price is reached the buyer loses the opportunity to bid for the lot. If all
the governors reach this price without a bid being made, then the lot is
withdrawn.

e decrement: the difference between successive offers.

The process that is different from First-Price/Sealed-Bid auction is FP-bid.
All the other processes are identical except that the time parameter is replaced
by the three parameters presented above. The DA-bid process, specified in figure
4.7, sends an offer to the buyer, then waits one unit of time and checks if the
buyer has submitted a bid. In that case it returns the actual price as the buyer
bid, otherwise it decrements the value of the offer sent to the buyer and if the
reserve price is not reached, it repeats the process again. This function stops
when the buyer submits a bid or the reserve_price is reached.

4.1.8 English auction

This protocol is the most complex that we have specified and the one that
presents the most differences with the others. Here bidding starts at a minimum
price and the buyers submit increasing bids until all of them stop. Each buyer
can submit as many bids as it wants before a winner is declared. In the real
auctions the auctioneer says going, going, gone after a bid before declaring a
winner. In order to model that here, before a governor either declares itself the
winner or detects a collision, its message has to make three rounds over governors
ring.

This protocol starts with a descending bidding protocol as in the Dutch
auction until one buyer submits a bid. After that, the auction follows the pattern
just described, with bids going up.

In order to count the laps of the message with the greatest bid received, each
governor has to keep more information than in the previous protocols. It has

o8 Chapter 4. Formalising Institutions in Process Algebras

EA-WaitingMessage(id, bid, in, out, b/gov_-bid, gov/auc_res, gov/b, I_id, I_bid,
count, start_price, decrement, reserve_price) =

if [_bid < 0V count = 2
in(id;, n_bid)
. EA-ResolveBid(id, bid, id;, n-bid, in, out, b/gov_bid, gov/auc_res, gov/b,
l_id, I_bid, count, start_price, decrement, reserve_price)
otherwise
in(id;, n_bid)
. EA-ResolveBid(id, bid, id;, n_bid, in, out, b/gov_bid, gov/auc_res, gov/b,
l_id, I_bid, count, start_price, decrement, reserve_price)
+ b/gov_bid(n_bid)
. out ({id}, n_bid)
. EA-WaitingMessage(id, n_bid, in, out, b/gov_bid, gov/auc_res, gov/b,
id, n_bid, 0, start_price, decrement, reserve_price)

Figure 4.8: Specification of the process EA-WaitingMessage

to keep the last message that it has passed on, because it is the one with the
greatest bid so far, and the number of times that it has received it in order to
count the laps.

There is another important point in which it differs from real auctions. There
are two situations where a buyer is not allowed to submit bids but where they
can be allowed later. The first one is when the buyer has not made a bid at
the waiting for bids step. After that, the buyer will be allowed to make bids
if the governor receives a bid from another one. The second situation is when
the governor receives a message for the third time. From the point of view of
this governor the round is over. Although there is one possibility it may not be:
if another buyer submits a greater bid before it has received the message three
times. In the real auctions this does not happen because the auctioneer declares
the end of the rounds in a centralized way. When the auctioneer declares that a
lot is withdrawn or that there is a winner, there is no possibility of continuing
the round.

So, when a governor receives a new message it has to compare it with the
one that it has kept. If the bid is lower it discards the new message. If the bid
in the new message is greater then it is kept, it sets the counter to zero and it
passes the message on.

If it receives a message with a bid value that equals to the one it has been
kept, different situations may arise. We have to bear in mind that there can be
more than one message in the ring with the same bid value because no governor
discards any message with a bid equal to its own. So, when a governor receives
a message with a bid equal to the one in the message that has been kept, it
compares the identifiers to see if they are the same message. If not, it passes the
message on and waits for another one. If they are the same and the counter is
less than two it passes the message on and increments the counter by one. If the
counter equals two, it checks if it is its own message. In that case, it declares

4.1.

Distributed winner determination process 59

EA-ResolveBid (id, bid, id;, n-bid, in, out, b/gov_bid, gov/auc_res, gov/b, l_id, I_bid,

count, start_price, decrement, reserve_price) =

if car(id;) = —2
if n_bid = bid

if bid < 0

gov/auc_res (0,0)

otherwise

gov/auc_res (id, bid) | gov/b (“Winner”)
otherwise

gov/b (“End of round”)
| out (—2, n_bid)
elseif car(id;) = —1
if n_bid = bid
EA-WaitBid(id, in, out, b/gov_bid, gov/auc-res, gov/b, start_price, decrement,
reserve_price)
otherwise
out (—1, n_bid)
| EA-WaitBid(id, in, out, b/gov_bid, gov/auc-res, gov/b, start_price,
decrement, reserve_price)
elseif car(id;) = l_id A n_bid = [_bid
if n_bid > bid
out (id;, n-bid)
| EA-WaitingMessage(id, bid, in, out, b/gov_bid, gov/auc-res, gov/b, l_id, I_bid
count + 1, start_price, decrement, reserve_price)
elseif count = 2
if Jid;| =1
out (=2, bid)
| EA-WaitingMessage(id, bid, in, out, b/gov_bid, gov/auc-res, gov/b, l_id,
I_bid, count, start_price, decrement, reserve_price)
otherwise
out (=1, bid)
| EA-WaitingMessage(id, in, out, bid, b/gov_bid, gov/auc-res, gov/b, l_id,
I_bid, count, start_price, decrement, reserve_price)
otherwise
out (id;, n-bid)
| EA-WaitingMessage(id, bid, in, out, b/gov_bid, gov/auc-res, gov/b, l_id, I_bid
count + 1, start_price, decrement, reserve_price)
elseif n_bid = [_bid A count > 0
‘out (id;, n_bid)
. EA-WaitingMessage(id, bid, in, out, b/gov_bid, gov/auc-res, gov/b, l_id, I_bid,
count, start_price, decrement, reserve_price)

elseif n_bid > bid
‘out (id;, n_bid)
. EA-WaitingMessage(id, bid, in, out, b/gov_bid, gov/auc-res, gov/b, car(id;),
n_bid, 0, start_price, decrement, reserve_price)
elseif n_bid = bid
out (id; U {id}, bid)
. EA-WaitingMessage(id, bid, in, out, b/gov_bid, gov/auc-res, gov/b, l_id, I_bid,
count, start_price, decrement, reserve_price)
otherwise
EA-WaitingMessage(id, bid, in, out, b/gov_bid, gov/auc-res, gov/b, I_id, I_bid,
count, start_price, decrement, reserve_price)

Figure 4.9: Specification of the process EA-ResolveBid

60 Chapter 4. Formalising Institutions in Process Algebras

itself as a winner, if there is only its identifier and the bid is greater than zero.
It declares the lot withdrawn if the bid is lower than zero, and a collision if there
is more than one identifier in the message. If it is not its message, then it passes
the message on but its buyer will not be allowed to make more bids unless it
receives a new message with a greater bid as we have explained above.

One important point is that the identifiers in the list are always added at the
end. So, in order to determine if two messages with the same bid are from the
same buyer, it is enough to compare the first identifier of each one.

The last point to consider is that a buyer has always to submit a greater
bid than the last that it received. Given this constraint, a governor can only
receive a message that it has not generated with an equal bid to its own when
its message is in the first lap around the ring. In this situation it has to add its
identifier to the list in the first field of the message.

The first step is the same as in the Dutch auction, starting at one price and
going down. Therefore, we will just specify the other two. In figure 4.8 it is
presented the specification of the process EA-WaitingMessage, while in figure 4.9
it is shown the specification of the process EA-ResolveBid.

4.2 Conclusions

In this chapter, we have presented a distributed method for the resolution of the
classic bidding protocols. For that purpose we have distributed the task from
the auctioneer to the governors. Thus, the load of messages is also distributed
because in the centralized versions all the messages go from the auctioneer to
each governor or from each of them to the auctioneer. The specification given
has been satisfactorily implemented using Pict [Pierce and Turner, 1997] , a 7-
calculus interpreter, giving some confidence in the validity of the method.

With the use of governors this very significant change can be done without
affecting the buyers which can run without any knowledge of the way in which the
bids are resolved. The governors also facilitate buyers communication allowing
them to focus on bidding strategies.

We have given the specification of four protocols but we have defined the
general steps in order to resolve bidding protocols in a distributed way. Thus it
may simplify the specification of new auction protocols in a distributed manner.
All what is necessary, is the definition of the three steps for the new protocol.

Another important point is that basing our algorithm on the Leader Elec-
tion, we can use theoretical results established for Leader Election. This includes
the algorithmic improvements mentioned in the introduction and, more impor-
tant, its combination with techniques for termination detection and handling of
stopping and Byzantine failure.

Chapter 5

Islander

In chapter 3 we have presented a formalisation of electronic institutions and
we have also pointed out the importance of software tools that help insti-
tution designers to specify institutions. As a first step in this direction we
have defined a textual specification language called ISLANDER based on the
institution formalisation. This textual language which uses a Lisp like syn-
tax, allows for a complete specification of all the components of an electronic
institution. We believe that to textually specify an institution without any
help is a really hard task. This is specially true for those elements which
can be represented as a graph. Thus, we have developed the ISLANDER ed-
itor [de la Cruz, 2001, ISLANDER, URL, Esteva et al., 2002a] a tool for the
specification and verification of electronic institutions. On the one hand, IS-
LANDER tries to make the work of the institution designer as easy as possible
combining textual and graphical elements for the specification and on the other
hand, it gives support to the verification of the specifications. This later point
is crucial due to the complexity of these type of systems. The tool checks the
correctness of the specifications before the engineer starts the development of
the infrastructure for the institution.

The chapter is structured as follows: first in section 5.1 the ISLANDER lan-
guage definition is presented; next in section 5.2, it is described the ISLANDER
editor; and finally, in section 5.3, we focus on the verifications done by the tool.

5.1 ISLANDER language definition

In this section we present how the different components of an electronic institu-
ion, introduced in chapter 3, are specified in ISLANDER.

5.1.1 Electronic Institution

As we explained before an electronic institution is specified by a dialogic frame-
work which defines the valid illocutions and the participant roles, a performative

61

62 Chapter 5. Islander

structure which defines the activities within the institution, and a set of norms,
that capture the consequences of agents’ actions.
Thus, an electronic institution is defined in ISLANDER as follows':

(define-institution institution-id as
dialogic-framework = dialogic-framework-id
performative-structure = performative-structure-id
[norms = (norm-id+)]

In the next subsections we explain how these and the rest of the components
in an electronic institution are specified in ISLANDER.

5.1.2 Dialogic Framework

The dialogic framework defines the valid illocutions that agents can exchange
and the participant roles. In order to do so, it is defined which is the ontology,
the content language used to encode the body of the messages, the set of valid
illocutionary particles and the set of roles.

The roles that participating agents can play are divided into internal and
external roles. The internal roles can only be played by the staff agents while
external agents will only be allowed to play the external roles. Finally, relations
over roles can be specified.

Thus, the definition of a dialogic framework contains the following elements:

e ontology: an identifier of a defined ontology that fixes which are the pos-
sible values for the concepts in a given domain.

e content-language: a language for the encoding of the knowledge to be
exchanged among agents using the vocabulary offered by the ontology.

Currently, only prolog and lisp are accepted as content languages.

e illocutionary-particles: a list of illocutionary particles to be used in the
illocutions.

e external-roles: a list of roles that external agents may play.
e internal-roles: a list of roles that internal (staff) agents may play.

e social-structure: a list of triples of two roles and the relationship among
them.

Next, we present the definition of the dialogic framework in ISLANDER:

IWhen an element is between brackets it means that it is optional, a >+’ after an expression
means 1 or more occurrences of the element, a ’*’ means from 0 to n occurrences of the element
and elements between ‘{}’ means that one of them must be choosen.

5.1. ISLANDER language definition 63

(define-dialogic-framework dialogic-framework-id as
ontology = ontology-id
content-language = {PROLOG,LISP}
illocutionary-particles = (illocutionary-particle-id+)
[external-roles = (role-id+)]
[internal-roles = (role-id+)]
[social-structure = ((role-id relation-id role-id)+)]

5.1.3 Ontology

The ontology defines the vocabulary that agents will use to exchange infor-
mation. It defines what agents may talk about, fixing the concepts and their
possible values in a concrete domain. The ontology is defined as a list of external
types (which are defined somewhere else), a list of data type definitions and a
list of function definitions. On the one hand, data types are defined by a name
for the new defined data type, a constructor and a list of types. On the other
hand, functions are defined by a name for the new defined function, a list of
types representing the types of the function parameters and the retuning type.
Functions returning a boolean can be considered as predicates where the type
of the function parameters define the type of the predicate terms. Then, these
predicates can be used to express the illocutions’ content. As we pointed out,
in chapter 3 we assume the following basic types: numeric, string and boolean.
In the case of the numeric type in ISLANDER we allow to differentiate between
integer (noted as int) and float. A special type is the agent identifier type, noted
as Agentld, which is a subtype of string. The valid values for a variable of this
type will be the identifier of an agent taking part in the scene. Also lists of any
basic type or defined type can be used on the ontology definition.
Then, an ontology is specified in ISLANDER, as follows:

(define-ontology ontology-id as
{(type type-id),
(datatype type-name = constructor-id of type-expression),
(function-id : type-expression -> type-id)}+

type-expression ::= type-id | type-id * type-expression |
type-id list | type-id list * type-expression

As the same illocution scheme can be used in different arcs of the same or
different scenes, we allow to define illocution schemes out of the context of a
scene. Thus, defined illocution schemes can be used to label different scene
arcs by labelling the arc with its identifier. Since we want the scene protocol
to be independent of concrete agents and time instants, scene arcs must be
labelled with illocution schemes where at least the terms referring to agents
and time are constants. Then, it is only allowed to specify illocution schemes

64 Chapter 5. Islander

satisfying this restriction. The specification of an illocution scheme defines the
illocutinary particle, the sender, the receiver, which can be a concrete agent, all
the agents playing a role or all the agents within a scene, the content of the
illocution specified as an expression in a content language and an optional time
variable. As previously mentioned, the allowed content languages are Prolog
and Lisp. If the content language is Prolog, the content is specified by the name
of the predicate and then, the predicate terms written between parenthesis and
separated by commas. If the content language is Lisp, the content is written
between parenthesis, first it is written the name of the predicate and then the
predicate terms separated by blanks. The arguments can be constants of the
type of the parameter, variables, which must start by the symbols ‘?” or ‘!, or
data type definitions if the parameter has been declared of a data type defined
in the ontology.

For instance, imagine an ontology which contains the following func-
tion and data type definitions: bid : string X price — boolean and
datatype price = Price of int. Then, a valid content language expression
in Prolog is bid(?good-id,?offer). The same expression in Lisp is written as
(bid ?good_id ?offer). We can also use a value from a data type definition
in the second parameter, as for instance in the following expression in lisp,
(bid ?good_id (Price ?offer)). A difference between the last two expressions is
that in the first expression variable offer is of type price, while in the second
expression it is of type int.

Notice that defined illocution schemas will be verified in the context of the
scenes where they will be used. That is to say, each defined illocution scheme
will be verified taking into account the dialogic framework and the ontology of
the scene where it is used. Illocution schemes are specified in ISLANDER, as
follows:

(define-illocution-scheme illocution-scheme-id as
illocutionary-particle = illocutionary-particle-id
sender = (agent-var {role-id, role-var})
receiver = {(agent-var {role-id, role-var}), all, role-id}
content = content-language-expr
[time = time-var]

)

content-language-expr ::= {prolog-expr, lisp-expr}
agent-var ::= {?7id, !id}

role-var = {7id, 'id}

time-var = 7id

5.1.4 Performative Structure

A performative structure defines the activities (conversations) that can take
place within an institution and how agents depending on their role can move
among them. As mentioned, it can be seen as a network of scenes mediated

5.1. ISLANDER language definition 65

by transitions. Then, the specification of a performive structure in ISLANDER
contains the definition of the graph nodes, that is the scenes and transitions that
compose the performative structure, and the connections among them. Scenes
and transitions are specified by an identifier within the performative structure
and by their class. This permits to have more than one scene and transition of
the same class within the same performative structure. In the case of scenes,
the class corresponds to a specified scene pattern which determines the scene
protocol and the roles that can take part in it. Furthermore, it can be specified
if multiple instances of the same scene running simultaneously will be allowed
at execution time. In the case of transitions, they can be either of one of the
transition classes, which are: And and Or.

The labels of the connections determine how agents, depending on their role,
can move among the different scenes and transitions. Labels are expressed as
conjunctions and disjunctions of pairs formed by an agent variable and a role
identifier. A conjunction of pairs of an agent variable and a role identifier means
that agents playing these roles must progress together through the arc, while
a disjunction means that they can progress independently. As we have said,
the labels of the arcs must be expressed in a disjunctive normal form. This
is specified as a list of lists of pairs of an agent variable and a role identifier.
Thus, each sublist defines a set of roles that can progress together through the
arc. Furthermore, the arcs connecting scenes and transitions might have some
constraints associated that must be satisfied by the agents in order to progress
through the arcs. As pointed out in chapter 3, the basic elements to construct
the constraints are illocution schemes and obligation predicates. Furtermore, it
can be expressed the negation, conjunctions or disjunctions of them. On the
other hand, the arcs connecting transitions and scenes determine if agents will
incorporate to one, some, or all the current executions of the target scene or
if agents will be incorporated to a newly created execution of the target scene.
Finally, from the set of scenes, it must be selected which will be the initial scene,
that will be the enter point of the institution, and the final scene which will be
the exit point.

Summarising, the definition of a performative structure contains the following
elements:

e scenes: list of the scenes of the performative structure containing for each
scene its name and its class. If there can be multiple instantiations of a
scene, this will be denoted by the word ‘list” after the class name.

e transitions: list of the transitions of the performative structure containing
for each transition its name and its class.

e connections: list containing the connections from scenes to transitions and
from transitions to scenes. In the first case, the connection is expressed by
the source scene, the target transition, a list of lists of pairs of an agent
variable and a role identifier, and a list of constraints that will restrict
agents’ movements. In the second case it is expressed by the source tran-
sition, the target scene, a list of lists of pairs of an agent variable and a

66 Chapter 5. Islander

role identifier, and the arc type. The arc type defines if a new execution
of the target scene will be created or if the agent(s) will go to one, some
or all current executions of the target scene.

e initial-scene: the initial scene — from one of those given in scenes.
e final-scene: the final scene — from one of those given in scenes.

Then, a performative structure is defined in ISLANDER as follows:

(define-performative-structure performative-structure-id as
scenes = ((scene-id scene-type-id [list])+)
transitions = ((transition-id transition-type-id)+)
connections =
({(scene-id transition-id (((agent-var role-id)+)+) [arc-constraints]),
(transition-id scene-id ((agent-var role-id)+)+) destination)}+)
initial-scene = scene-id
final-scene = scene-id

)

transition-type ::= {And,Or}

destination ::= {new,one,some,all}
arc-constraints ::= (not arc-constraint) |

(and arc-constraint arc-contraint) |
(or arc-constraint arc-constraint). |
obl-predicate |

illocution-scheme

illocution-scheme ::=
{illocution-scheme-id,
(illocutionary-particle-id (agent-var {role-id, role-var})
{(agent-var {role-id, role-var}), all, role-id}
content-language-expr [time-var]}

obl-predicate = (obl agent-var illocution-scheme scene-id)

5.1.5 Scene

A scene defines an interaction protocol for a group of agents. In order to define
a scene it is necessary to specify which are the participant roles, the dialogic
framework which determines the illocution schemes that can label scene arcs, and
the conversation protocol. The conversation protocol is specified by a directed

5.1. ISLANDER language definition 67

graph. The graph is specified by its nodes, which represent the conversation
states and the connections among them labelled with illocution schemes and
constraints, or timeouts. Furthermore, there is specified an initial state and a
set of final states.

For those arcs labelled with illocution schemes, the user can choose between
actually defining the illocution schema when the connection is defined or making
reference to a previously defined illocution scheme labelling the arc by its identi-
fier. As we explained above, in the illocution schemes labelling the arcs at least
the terms referring to agents and time must be variables; the rest of the terms
can be either variables or constants. Remember that we differentiate when an
occurrence of a variable is to be bound and when an occurrence of a variable is
to match its last bound value. When a variable is prefixed by the symbol ‘?’) it
is a binding occurence and a new binding will be created for the variable with
the value in the uttered illocution. When a variable is prefixed by symbol !’} it
is an application occurrence and the value on the uttered illocution must be the
last bound value of the variable.

Arcs labelled with illocution schemes may have some constraints attached to
them. Constraints can restrict the valid values of illocution schemes’ variables
and the paths that the scene evolution can follow, and are specified as boolean
expressions by an operator and two expressions as follows: (op expr expr). In
section 3.2.2 we have defined the operators that can be used within the con-
straints and expressions can be formed as Lisp expressions.

The basic elements to define constraints expressions are constants, scene
variables and lists. For this latter case, remember that when a scene is executed
the bindings of the variables for uttered illocutions are kept. Then, different
sets of bindings for a variable can be obtained. Concretely, we express it, in the
most general case, as !iul,wja:(cond) which returns all the bindings of variable x in
the ¢ last sub-dialogues between w; and w; such that the substitution where the
binding appears satisfies the condition cond. This is expressed in ISLANDER
as (! ¢ w; w; i (cond)).

Time-outs are specified as numeric expressions using numeric constants and
numeric variables. In order to avoid the possibility of having more than one
arc labelled with the same time-out value, from each state it can only be one
outgoing arc labelled with a timeout is permitted. Otherwise, it may provoke
an indeterminism in the path that the scene evolution must follow, as time-outs
may contain scene variables and their bound values can not be determined at
specification time. Alternatively, a time-out can be defined as the minimum
of a set of numeric expressions. Then, each time the state is reached all the
expressions are evaluated and the value of the timeout will be the minimum
value of the expressions.

In order to specify at which points agents can join and leave a scene, for
each role of the scene a set of access and exit states are defined which determine
respectively when agents playing that role can join or leave the scene. Also, the
minimum and maximum number of agents that can participate simultaneously
within the scene playing each role is defined. This last field is optional and if

68

Chapter 5. Islander

nothing it is said about the minimum or the maximum of a role it is understood
that its minimum is zero and that there is no limit on the number of agents that
can play the role within the scene.

Summarising, the definition of a scene contains the following elements:

roles: list of roles that may participate in the scene.

dialogic-framework: the dialogic framework to be used for communication
within the scene.

states: list of the states of the conversation graph.
initial-state: the initial state.
final-states: list of final states.

access-states: list of pairs of a role identifier and a list of states, identifying
which roles may join at which states.

exit-states: list of pairs of a role identifier and a list of states, identifying
which roles may leave at which states.

agents-per-role: list of triples of a role identifier, minimum and maximum,
defining the constraints on the population of a particular role. If nothing is
said about the minimum or maximum for a concrete role, it is understood
that the minimum is zero and that there is no maximum for this role.

connections: list of transitions between scene states. Each one comprises
one or a list of source state, a succeeding state, and either an illocution-
scheme with a list of constraints over scene variables, expressed by an
operator and two expressions, which must be satisfied to progress through
this arc or a timeout that will trigger the transition when expired..

Next you can see the definition of a scene in Islander:

(define-scene scene-class-id as

roles = (role-id+)

scene-dialogic-framework = dialogic-framework-id
states = (state-id+)

initial-state = state-id

final-states = (state-id+)

acces-states = ((role (state-id+))+)

exit-states = ((role (state-id+))+)
[agents-per-role = (([min <=] role-id [<= max])+)]
[connections =
(({state-id, (state-id+)} state-id {illocution-scheme

((op left-expr right-expr)*), time-outl})+)]

5.1. ISLANDER language definition 69

illocution-scheme ::=
{illocution-scheme-id,
(illocutionary-particle-id (agent-var {role-id, role-var})
{(agent-var {role-id, role-var}), all, role-id}
content-language-expr [time-var]}

time-out ::= (min numeric-expressions-list) | numeric-expression

op :: ={ <, >, !'=, <=, >=, <>, in, notin, subset, subseteq, or}

5.1.6 Norms

Norms capture the consequences of agents’ actions within institutions. These
consequences are expressed as obligations that agents will acquire or satisfy de-
pending on their actions within the different scenes. The actions are expressed
as pairs of illocution scheme and scene where the illocution must be uttered.
Norms are specified in the following form: the actions that provoke the acti-
vation of the norm and restrictions over illocution scheme variables expressed
in the antecedent, the actions that agents must carry out in order to fulfil the
obligations expressed in the defeasible antecedent, and the set of obligations ex-
pressed on the consequent. The antecedent defines the set of illocutions that
when uttered in the corresponding scene satisfying the boolean expressions will
trigger the norm making the set of obligations expressed in the consequent hold.
The defeasible antecedent defines the illocutions that must be uttered in the
defined scenes in order to fulfil the obligations.
Then the definition of a norm contains:

e antecedent: a list comprising an arbitrary number of pairs of scene and
illocution-scheme and a list of boolean expressions over illocution scheme
variables.

o defeasible-antecedent: a list comprising an arbitrary number of pairs of
scene and illocution-scheme.

e consequent: a list of obl predicate(s).
Norms are defined in Islander as follows:

(define-norm norm-id as
antecedent = {((scene-id illocution-scheme)+),
((scene-id illocution-scheme)+) ((bool-expr)+)}
defeasible-antecedent = {((scene-id illocution-scheme)+)}
consequent = {((obl agent-var illocution-scheme scene-id)+)}

)

70 Chapter 5. Islander

Textual
Spec
Save
Export
Files XML
Spec

\ A
Edition el =2

GraphEditor |
P W

Editi
ition Verification
Panels .\.

errors

Figure 5.1: ISLANDER editor modules

5.2 ISLANDER editor

The ISLANDER language presented above, allows to specify all the elements of
an electronic institution, but we think that it would be very hard for the designer
of an institution to specify all its components textually. This is specially true
for those elements represented as a graph. This is the case for the conversation
protocol in scenes, the relationship among roles in the dialogic framework, and
the performative structure. It is obvious that humans define and understand
better a graph in its graphical representation than as text. Thus, we decided to
develop an ISLANDER editor which combines graphical and textual specification
facilitating the designers work. One of the important parts of the application is
precisaly the graph editor that allows to specify the elements mentioned above.
One of the outputs of the tool is the specification of the institution in the textual
language presented in the previous section..

Apart from permiting institutions’ specification the tool permits the verifi-
cation of the specifications. Due to the complexity of this type of systems we
believe that the verification of specifications is fundamental before deploying the
system. In section 5.3 we focus on the properties verified by the tool and we
explain how the verification of these properties is done.

5.2.1 Islander editor modules

The ISLANDER editor [Esteva et al., 2002a, ISLANDER, URL,
de la Cruz, 2001] is divided in four main modules as we can see in fig-
ure 5.1: Import/Load, Export/Save, Edit and Verification. Next we describe
each of the modules. Also in figure 5.2 we can see the Data Flow Diagram of
the application.

5.2. ISLANDER editor 71

0 ‘ Islander Editor

activate import
textual file 1] Import File 4 Project Editor

add / remove project

N elements
User It analyses the file, add element It allows to add / remove User
looking for erors, < add/remove elements | ¢jemens to the main

Y (——| modifies the project data. project.
—» modi
D1| Elec.Institution Elec.Institution Editor modify Elec.Institution

Electronic Institution

specific Editor.
modi
D2| Perf.Structure 6 | Pert.Structure Editor modify Perf.Structure
Performative Structure
activate read specific Editor.
3 l—

error checking Error Check

> modify Scene
It verifies that project's D3 Scene modify | 7 Scene Editor fy

elements has been Scene specific Editor.
{1 specified correctly.

> modi
[04] p.Framework ["8 | D.Frameworks Editor
Is it correct? Dialogic Framework modify D Framework
specific Editor.

—> modif
D5| Ontology 9 Ontology Editor modify Ontology

yes /o Ontology specific Editor.
read

activate export to 2] Export File e

TEXTUALIXML P 156] oo Sanem modify [730 [illocut.Schemes Editor
It translates the project lllocution Scheme. modify
data to the specificated specific Editor.
language (XML, Textual)
TEXTUALIXML >
files Norm modi Norms Editor

Norms specific Editor. modify Norm

erfor
messages

Figure 5.2: ISLANDER Data Flow Diagram

File Management

In this subsection we explain the Load/Import and Save/Export modules. IS-
LANDER editor can certainly save the current specification and load previous
specifications. But apart from its own format files, ISLANDER can import and
export other formats as we can see in figure 5.1. The principal difference is that
the application files contain graphical information of those elements specified as
a graph while the other type of files only have a textual representation of the
graph. That is to say, the application files contain all the necessary information
to draw the graphs.

ISLANDER can import textual specifications. When a textual specification
file is imported it goes through the verification process which informs the user
of any error found. Moreover, for those elements with graphical representation
this representation is automatically generated allowing the user to interact with
it afterwards.

The ISLANDER editor permits to export two types of files: textual and
XML. On the one hand it permits to export the institution specified in the
previoulsy given language. On the other hand, it permits to export the specified
institution in XML. Before generating any of these type of files the specification
goes through the verification process to check if it contains any error. If this is
the case, the user is informed, and it can choose if she wants anyway to generate
the file or not. This is important because the exported files can be used in
subsequent steps of the development of the specified institutions.

Edition of electronic institutions

The edition module is the main module of the application as it permits users
to add, modify or remove all kind of elements of an institution specification.
Each element is specified in a different way depending on its characteristics.

72 Chapter 5. Islander

Thus, ontologies, illocutions and norms are specified textually. On the contrary,
dialogic frameworks, performative structures and scenes combine textual and
graphical components in their specification. As in any edition process, the user
interface is key in order to make as easy as possible the work of the institution
designer. In section 5.2.2 we explain in detail the graphic user interface of the
application.

One of the important parts of the edition is the graph editor used to specify
the relationship between roles in the dialogic framework, the scene protocol and
the performative structure. After studying our requirements and the available
tools, we decided to develop our own graph editor. Thus, we have developed
a graph editor that fulfils our requirements in the type of nodes, connections
and type and number of labels per arc. The graph editor has been developed
independently from the rest of the application. Thus, it can be updated with-
out having to change the components using it and it can be used in any other
application that needs a graph editor.

In our case, the graph editor is used by the components editing the dialogic
framework, the scene and the performative structure. The graph editor does
not have any information neither about the semantics of the graph which is
representing nor about which restrictions this imposes on the topology of the
graph. It has only information about which are the nodes of the graph, the
type of each node, the connections between them and the labels of the arcs.
Then, when the user wants to perform an operation over the graph the graph
editor informs the involved element and it is the element who authorises or
denies the operation. For instance, in the case of a performative structure we
do not allow a connection between two transitions or two scenes. Then, when a
user tries to create a new connection the graph editor informs the performative
structure which will deny the new connection if the user is trying to connect two
transitions or two scenes. Otherwise it will authorise the new connection. When
an operation over the graph has been done the graph editor communicates it to
the application interface that updates the information shown to the user.

The rest of the elements within an institution are specified textually. The tool
tries to structure the way in which the textual information is entered, to make the
work of the designer easier. Thus, for each element the required information is
divided into different fields that have to be filled in and each field is labelled by a
name identifying which information it contains. For instance, when the user has
to specify an illocution scheme it is required to fill in a set of fields corresponding
to the illocutionary particle, the sender, the receiver, the content expression and
the time variable. We believe that it is easier to enter the information in this
way that with a unique textual field where the user must enter the illocution
scheme in its ISLANDER textual representation. Whenever it is possible, pop-
down menus are used. This is used for fields that contain references to other
specification elements and for fields whose value is one of a predefined set. This
facilitates the designer work because he only has to select the element from a
list and it also reduces typing errors. Anyway, for those elements which are a
reference to another element the user can always opt for choosing one of the

5.2. ISLANDER editor 73

list or introduce a new value for the field. This permits the user to specify the
different elements in the prefered order.

Verification module

The verification module verifies whether the specification is correct. This is
a fundamental part of the application. As open multi-agent systems are very
complex it becomes crucial to be able to verify their specifications. Some verifi-
cations can be done while the user is editing the specification, but some of them
need to wait until the specification is finished. Moreover, this allows the user to
define the elements of the institution in the order that she wants. For example,
she can make references to elements not yet defined without being constantly
interrupted by error messages. The user can activate the verification of the cur-
rent specification whenever she wants. Also, as we have mentioned above, when
she wants to import a textual specification or to export textual or XML versions
of the current specification the verification process is run in order to inform her
about possible errors.

We have to take into account that to debug and find errors in a distributed
system is a really hard work. Then, to verify the specification and detect the
errors before starting the development of the system is fundamental. This saves
a lot of time and effort from the developers of the system.

The tool has to verify that specifications satisfy different conditions. As we
can see from the definition of the textual language some of the fields correspond
to references to other specification elements. Then, it is obvious that the tool
must check that each element which is referenced is actually defined. But there
are other properties that must be checked. It must be checked that agents can
reach the different scenes and that from each of them there exists a path that
will allow them to leave the instittution, that scene protocols are correct and
that agents may fulfil the norms. In section 5.3 we will focus on the verifications
done by the tool.

5.2.2 Graphic User Interface

The graphic user interface is an essential aspect of the application because it is
the way in which the institution designer interacts with the tool. In this sense
the interface has been developed as user friendly as possible. We can see in
figure 5.3 how the interface is divided in six panels that we explain next:
1. Menus and tool bar.
The menus contain the general operations of the application and they are similar
to other applications. In the file menu the options are: new project, open project,
re-open project, close project, save, import a textual specification, export the
textual representation, export the XML representation, and exit.

In the insert menu the user can insert any type of element of an institution: a
performative structure, a scene, a dialogic framework, an ontology, an illocution
scheme and a norm.

74 Chapter 5. Islander

| Islander oggfrodo/hone/davdela/pro jeots/mast i t/doo/design/fituers-Tslander/masfit, 151 $Revision: 1.19 § B X

| File Insert View Graph Help

NMEEECENNE ol [&[+]&]4 e
5 EEEDDEI0EICEEIEEE s pererane s g
DI Gl ﬁjfm_pelfurmalive_slruclure & fo_seek] 403 ion_admision_scene : HEb R rE s paraming |

fm_performative_st| |
gg info_seeking

& frn_performative_st|/+|
rcProg
goodsReqistratig
auctionResults
root
buyerddmision
infoSeeking
auctionRoorm
output
auctionAdmisio
- createinfoseek
£ toBuyerAdmisio
4= toRCProg
B tAuctionAdrisi
- exitinfoSeeking
- createllotja

transitions = (

cannections = {

Inspect Dialog

- exitCoodsRegis
T exitAuctionResu
- exitRCProgram |
- exitAuctionAadm | Name:

MAS Data ||

- exitBuyverAdmisi |fm_permrmanve_strutture |
- 10infoSesking [

Initial Scene:

root - 6
Final Scene:

Error: at IslanderProject : Can not execute traj ’:I_““‘ ut -

Errar: at IslanderProject : Can hot execute tr; i

Error: at IslanderProject : Can not execute traf

Error; at IslanderProject ; Can not execute trans Al
Frrar_at lslanderProiect * Can nnt execute fran Pply

(goodsRegistration goods_|
(auctionResults auction_re
(root root_scene)
(buyeradmision buyer_acd|
(infoSeeking info_seeking)
(auctionRoorm auction_roo
{output output_scene)
(auctionAdmision auction_

(createlnfoSeeking ARD-.
(toBuyeradmision OR-0R)
(toRCProg AMND-AND)

(toy mision AND-.
(e king OR-0OR)
(s ja AND-AND)
(exitGoadsRegistration OR-

(exitAuctionResults OR-OR)]
(exitRCProgramming OR-
{exitauctionAdmision OR-
(exitBuyerAdmision OR-0R
(tolnfoSeeking AND-ARD)
(exithuctionRoom OR-0R))

(auctionResults exitAuction
(infoseeking toAuctionAdm
{root 1oRCProgiiy ro)))
(auctionAdmision exitAucti
(buyerAdmision exitBuyers
(buyeradmision tolnfoSeek|
(goodsRegisiration exitGol
(rcProg exitRCProgrammin:
(root 1oB! Admisioni(x bl
% i —

Figure 5.3: ISLANDER Graphic User Interface

THe view menu permits to show and hide the inspect panel, while from the
help menu the user can activate the help of the application. The help contains

a brief description of the application.

The tool bar contains icons for a quick access to the different operations. An

important one is the icon that activates the verification process.
2. Project Structure Panel.

In this panel the user can see on the upper part all the elements that belong to
current specification ordered by category. On the lower part the sub-elements of
the currently selected element are displayed. For instance, when a performative
structure is selected in the upper part of the panel, on the lower part the scenes,
transitions and connections among them, which compose the selected performa-
tive structure are shown. Using these two parts of the panel the user can navi-
gate through the different elements and sub-elements of the current specification.
When she changes the selection the other panels are modified appropriately in
order to show the information of the selected element or sub-element.

3. Graph Panel.

The graph panel supports the edition of the graphical components of the elec-
tronic institution. That is to say, the edition of the graphical component of

5.2. ISLANDER editor 75

performative structures, dialogic frameworks and scenes. The user can edit the
different graphs and modify them using the mouse. The graph panel is used for
the creation and modification of the graph topology while the textual informa-
tion associated to the graph is introduced and modified using the inspect panel.
For instance, the graph panel is used to add a new node on the graph but the
name of the node is introduced using the inspect panel. On the upper part there
are icons that permit her to change from one graph to another. Also there is a
tool bar with icons that are used to select the edition mode determining if the
next action will be the selection of an element, to add a node of the selected
type, or to add a connection between two nodes of the graph. As we will explain
later the representation of the graph can also be modified textually from the
inspect panel.

4. Textual Data Panel.

The textual data panel presents the textual representation of the current spec-
ification. Concretely, it presents the textual representation of the currently se-
lected element of the specification. This permits the user to see how the current
specification is represented in the presented textual specification language. This
panel is only used for showing the textual representation of the current speci-
fication as the user is not allowed to modify the specification using this panel.
Modifications on the specification must be done using the graph and inspect
panels. We want to note that any change done by the user in the specification
is immediately reflexed in the textual representation showed in this panel.

5. Log Panel.

The log panel is used to inform the user of the errors found in the specification.
Some textual information is checked when the user modifies it, but the most
important use of the panel is after running the verification process. Then, all
the error found are presented to the user in the log panel. Each error message
contains the element, and when possible also the sub-element, where the error
was found and a message explaining the error. For each error the user can move
to the element containing the error by simply selecting it. When a user selects
an error the other panels of the application are modified in order to show her
the element or sub-element containing the error. This permits the user to move
faster to the element containing the error and to found it, facilitating her work.

6. Inspect Panel.

This panel is used for the definition of textual components of the specification.
It allows the user to modify the attributes of each one of the elements in the
specification. Whenever possible it uses pop-down menus to facilitate the de-
signers work. This panel is always presented in front of the others and it always
contains the information of the currently selected element. For each element a
different design of the panel has been done because each one has different at-
tributes. In any case we have tried to structure the information required in a
way that permits a faster identification of the meaning of the fields to be filled in.
This is also useful when specifications are presented to people not familiarised
with the concepts of electronic institutions and their scpecification.

As soon as the user modifies an attribute of the selected element the rest

76 Chapter 5. Islander

of the panels are updated in order to maintain all the information consistent.
When the selected element corresponds to a graph element this panel also allows
to modify its graphical attributes.

5.3 Verification

In the following we concentrate on the properties that the tool has to verify. We
have divided the verifications in four parts: integrity, liveness, protocol correct-
ness, and norm correctness. The first one checks principally that cross references
among ISLANDER elements are correct. The second one checks that agents will
not be blocked at any point of the performative structure, that each scene is
reachable for each of its roles and that from each scene they can always reach
the final scene. The third one checks that scene protocols are correct and finally,
the last one checks that agents can fulfil the norms.

5.3.1 Integrity

As it can be seen from the definition of the textual specification language some of
the fields correspond to references to other specification elements. It is obvious
that the tool must check that each element which is referenced is actually defined.
For instance, if it is defined that a scene uses a dialogic framework, this dialogic
framework must be specified. Moreover, it must be checked that identifiers of
the same type of element in the same context are not repeated. That is to say,
that there can not be two scene definitions with the same identifier or within a
scene definition there can not be two states with the same name.

Another important point is that within an institution the dialogic framework
and ontology of each scene must be a subset of the institution dialogic framework
and ontology respectively. For instance, it can not be the case that a dialogic
framework of a scene has declared a role which is not declared in the institution
dialogic framework. In the case of ontologies it is checked that the ontology
referenced in the scene dialogic framework is a subset of the ontology referenced
in the institution dialogic framework. That is to say, the scene ontology does
not include any type, data type or function definition which is not defined in
the institution ontology, and data types and functions are defined as in the
institution ontology. Thus, it is checked that for each scene type used in the
performative structure its dialogic framework and ontology are a subset of the
institution dialogic framework and ontology respectively.

5.3.2 Liveness

An important part of the verification is related to the mobility of participating
agents within the electronic institution. That is to say, that participating agents
will not be blocked indefinetly at any point of the performative structure, that
the different scenes can be reached by agents playing the scene roles and that

5.3. Verification 77

from any point of the perforamtive structure an agent has a path that will allow
it to leave the institution. Thus, the following properties must be guaranteed:

e for each scene of the performative structure and for each role of the scene
there is a path from the initial scene which will allow agents to reach the
scene with that role.

e from each scene of the performative structure and for each role that can
be played within the scene there is a path that permits agents playing that
role to leave the institution; i.e. there is a path to the final scene.

e for each transition of the perfomative structure each agent reaching the
transition has at least one path to follow.

e for each role of each scene agents playing that role are allowed to enter and
leave.

e for each scene there is at least one incoming arc of type new that will allow
the creation of scene executions.

e for each set of roles appearing together in a conjunction in an outgoing arc
of a scene there is at least a scene state which is an exit state for all of
them.

e for each set of roles appearing together in a conjunction in an incomiing
arc of a scene there is at least a scene state which is an exit state for all of
them.

We can see that these properties involve verifications on the performative
structure and on the scenes composing it. On the one hand, the performative
structure defines how agents depending on their role can move among the dif-
ferent scenes. On the other hand, scene definitions determine whether agents
depending on their role will be allowed to join or leave the scene.

The first property is related to scenes’ accessibility. That is, that each scene is
accessible from the initial scene for all of its roles. The second property forces the
final scene to be reachable from any scene of the performative structure, allowing
agents to leave the institution. Summarising, for each scene of the performative
structure and for each role that can be played within it, there must be a path
connecting the initial and final scenes that passes through the scene. Notice, that
only the roles of a scene can appear in the labels of its incoming and outgoing
arcs. On the one hand, each role of a scene must appear in at least one label of
its incoming arcs in order to allow agents playing that role to reach the scene.
On the other hand, in order to allow agents to leave the scene, each of its roles
has to appear in at least one label of its outgoing arcs. Thus, agents playing the
participant roles can reach and leave the scene. Furthermore, each scene, except
the initial and final scenes, must have at least one incoming arc of type new. At
the begining of an institution execution only an execution of the initial and final
scenes are created, while scene executions of the rest of the scenes are created

78 Chapter 5. Islander

as agents progress through an arc of type new. Then, if there is a scene which
does not have any arc of type new, this will imply that no scene executions of
that scene will be created at execution time.

We also have to verify that agents will not be blocked at the transitions.
That is to say, agents reaching a transition must have at least one path to
follow in order to leave it. Performative structure arcs are labelled with pairs
of an agent variable and role identifier which determine which agents depending
on their role can move through the arc. If an agent playing role R; reaches a
transition following an arc which contains the pair (z R;) in its label, then its
possible paths from the transitions are the outgoing arcs containing in its label
apair (z R;). Remember that we allow to change agents’ role when traversing a
transition. Summarising, the paths that an agent reaching a transition can follow
is determined by the agent variables appearing on its outgoing arcs. Which of
this paths the agent will follow will be determined by the type of the transition,
but this is not important at this stage as we only want to guarantee that agents
will not be blocked at the transition. Thus, it is checked that all agent variables
labelling an incoming arc of a given transition appear on at least one label of its
outgoing arcs. Furthermore, it is also checked that all agent variables appearing
in the labels of outgoing arcs appear in a label of the incoming arcs because
it has no sense to have an agent variable labelling only an outgoing arc of a
transition. Summarising, it is checked that the set of agent variables appearing
in the incoming and outgoing arcs of a transition are the same.

How are these properties checked? The two first properties are checked using
a well known graph algorithm, the depth-first search algorithm. This algorithm
uses a stack were it keeps the nodes to be expanded and at each step it takes
the element on the top of the stack, it generates the successors of the element
and pushes them on the top of the stack. This algorithm explores all the paths
from the nodes pushed on the stack at the beginning of the search and finishes
when the stack is empty.

As we want to check if each scene is reachable from the root scene for each
of its roles and if from each scene the final scene is reachable for each of its roles
the search is made in terms of roles. This should not be a surprise as the paths
that agents can follow within an institution are determined by the role they are
playing. Concretely, the algorithm will explore the paths that can be followed
with each role from the initial scene. In order to generate the succesors of a
scene, each branch of the search always keeps the current role which is the role
labelling the arc that lead to the last scene of the branch. The successors of a
scene s; in a branch of the search are the scenes s; reachable from s; with the
current role. We have to take into account that as agents are allowed to change
their role when traversing a transition the current role of a branch can change.
That is to say, from a scene s; with role r, it may be possible to reach a scene
sj with role r,. Furthermore, we want to keep track of which scenes have been
visited and with which role in each branch of the search. Then, for each branch of
the search is maintained a sequence of pairs of scene and role identifiers. That is,
each branch b; maintains a sequence of the form < sg,79 > ... < sp,7, > where

5.3. Verification 79

So...Sn are the scenes ordered as visited in the branch and rg...7r, represent
the role when each scene was visited. Then, s,, represents the last scene of the
branch and r, the current role. This information is used to detect cycles and
when the branch reaches the final scene for marking from which scenes and with
which roles the final scene is reachable.

During the search, for each scene s; two role lists are maintained, called the
visit and exit lists. The first one, the visit list, contains the roles that can reach
the scene s; from the initial scene. That is, if a role r; belongs to the visit list of
scene s;, it means that there is a path from the initial scene that permits agents
to reach scene s; playing role r;. The second one, the exit list, contains the roles
that can reach the final scene from the scene s;. That is, if a role r; belongs to
the exit list of scene s;, it means that there is a path from scene s; to the final
scene that agents playing role r; in the scene can follow in order to leave the
institution.

The search starts from the initial scene creating a branch for each of the
roles that can be played within it. Then, as a first step of the algorithm for
each role r; that can be played in the initial scene s, it is pushed onto the stack
the pair < sg,r; >. After that at each step of the algorithm it is obtained the
element on the top of the stack which will be a sequence < sg,79 > ... < §;,7; >
representing a branch of the search. Then, it is checked if the scene s; was
previously visited with role r;.

If it is the first time that a scene s; is visited with role r;, it is marked as
visited for that role. That is, r; is added to the wisit list of scene s;, denoting
that scene s; is reachable from the initial scene with role r;. Then, the successors
of scene s; with role r; are generated. As we have mentioned, these are the scenes
reachable from s; with role r; traversing a transition. Then, for each scene s;
reachable with role r;, which can be different of r;, from s; with role r; the
sequence < sg,79 > ... < s;,1; >< 5j,1; > is pushed on the top of the stack. If
there are no succesors from the last scene with the current role the search in this
branch finishes. That is, from s; with role r; no scene can be reached. There
are two situations that can provoke that situation: that there are no outgoing
arcs from s; which contain r; in its label, or that there are outgoing arcs from s;
to transitions that contain r; in their label but there are no outgoing arcs from
the transition that agents reaching the transition with role r; can follow. In the
first case, we have to distinguish if the scene is the final scene or not. If scene
s; is the final scene the graph is correct and the exit lists of the different scenes
are modified as we explian later. Otherwise, an error has been found as we have
found a scene which does not have any outgoing arc labelled by role r;. In the
second case it is always an error as we have detected some transition(s) where
a variable appearing in its incoming arcs does not appear in any of its outgoing
arcs.

The exit list is modified when a branch reaches the final scene. That is, when
the final scene is a succesor of the last scene and role of a branch. When the
final scene is reached it means that from all the scenes of that branch the final
scene is reachable with the corresponding role. That is, if the sequence of the

80 Chapter 5. Islander

branch is < so,70 > ... < s;,7; >, and the final scene sy is a succesor of scene
< s;,7; >, that means that for each pair s;,r; of the sequence, the final scene is
reachable from scene s; with role r;. Then, for each pair < s;,7; >€< sg,79 >
... <s;,1; >, r;is added to the exit list of the scene s;.

What happens when a branch of the search goes to a scene with a role that
was previously visited?. In this case we have to check if there is a cycle or not.
That is, if the scene was previously visited in the same branch or in another
branch of the searc. The performative structure is defined as a directed graph
and it may conatain cycles. We have to take this into account for not entering
in an infinite loop and in order to detect from which scenes and with which roles
the final scene is reachable. A cycle is detected when the branch goes back to a
visited scene in the branch and with the same role. That is, the next scene to
visit is s; with role r;, the sequence of the branch is < sg,79 > ... < Su,7n >,
and < s;,7; >E< 89,70 > ... < Sp, T, >. Notice, that if we go back to a visited
scene but with a different role this is not a cycle. Of course when we detect a
cycle we stop the search for that branch as we do not want to enter in an infinite
loop and to explore again previously explored paths. For the first property that
we want to check, we could forget about the cycle beacause we have marked as
visited all the scenes forming the cycle with the corresponding role and all the
paths from each scene and role of the cycle either have been explored or will be
explored by the algorithm. But we want to know if the final scene is reachable
from the scenes composing the cycle. The final scene is reachable from the scenes
composing the cycle with their corresponding roles, if it is reachable from one
of the scenes of the cycle with its corresponding role. That is, if there is a path
from a scene of the cycle to the final scene whith the same role which has been
visited within the cycle, there is a path from any scene of the cycle to the final
scene with its corresponding role.

That is, if there is a cycle < s;,1; >< Sit1,Tir1 > o < Sigt,Tipr ><
si,T; >, and exists < Sitk,Titk € 84,7 >< Sip1,Tit1 > oo < Sitt,Titt >
from which there is a path < sj;, 74 > ... < sf,7, > Where s; stands for the
final scene, then for each < s;4j,7i4; >€< 5:, 7 >< Sip1,Tig1 -+ - < Sicety Tigt >
exists a path < s;yj,ripj > ... < SigkTitr > ... < 8,7, > that goes from
scene s;y; with role r;;; to the final scene.

Summarising, when a cycle is detected it is checked if the final scene is
reachable from any scene of the cycle with the corresponding role. That is, for
each pair sj,r; of the cycle, it is checked if role r; belongs to the list exit of
scene s;. If this is the case, the final scene is reachable for all the scenes of the
cycle with their corresponding role. Then, for each scene belonging to the cycle
the role when it was visited is added to its list exit. Otherwise, the cycle is kept,
that is, it is kept the list of scene and role pairs composing the cycle. At this
point of the search, we can not be sure that all the paths from all the scenes of
the cycle have been explored and then, a path to the final scene from a scene
and role of the cycle can stil be found. Then, if during the search it is found
a path from one of the scenes of the cycle with the corresponding role to the
final scene, it means that the final scene is reachable from all the nodes of the

5.3. Verification 81

cycle. Otherwise, it means that the final scene is not reachable for the scenes
composing the cycle with the corresponding roles.

The second case that we have to take into account is what happens when the
search goes back to a previously visited scene with the same role but there is no
cycle. That is, the search reaches a scene with a role visited in another branch.
Then, we check if the final scene is reachable from the scene with the current
role. If the current role belongs to the list exit of the scene it means that the
final scene is reachable from this scene with this role. This means, that the final
scene is reachable from all the scenes and roles of the current branch.

If the current branch is < sg,r9 > ... < s;,7; >, and the role r; belongs to
the list wisit of scene s;, and r; belongs to the list exit of s;, then, exist a path
< 84,1 > ... < 55,7, >. Then, for each < sj,r; >E< 509,70 > ... < 55,7 >
exist a path < sj,r; > ... <s;,r; > ... < sy, > to the final scene.

Then, for each pair s;j,r; of the branch sequence we add the role r; to the
exit list of the scene s;. What happens if the role does not belong to the list
exit of the scene? As we are exploring the graph by a depth-first search, when
the search goes back to a node that was previously visited in another branch, all
the paths from the node have been explored. That means, that if there would
be a path from that scene to the final scene for that role, it would have been
found before and then the role would be in the ezit list of the scene. Thus, if
the role does not belong to the list exit of the scene, it means that there is no
path from that scene with that role to the final scene and it makes no sense to
continue the search for this branch.

If the performative structure is correct, at the end of the search for each
scene its visit and ewit lists must contain all the roles of the scene. This would
mean that all the scenes are reachable for each one of the roles of the scene from
the initial scene, and that from each scene and for each of its roles there is a
path to the final scene that will allow agents to leave the institution. Notice,
that the second property is not checked for those cases in which a scene is not
accessible with a role from the initial scene. We have opted for this lazy solution
in order not to start multiple searches. That is, to carry out one search for each
role that can not reach a scene. As agents with that role will not be able to
reach the scene if the institution is executed it does not matter if there is no
path from this scene to the output scene for agents playing that role. For this
cases the user is informed that the scene is not accessible from the initial scene
with a concrete role. Then, when it will solve this error and the scene will be
accessible with the role, it will be checked if there is a path with this role to the
final scene.

Complementarily to the search algorithm, it is checked that for each scene
all the roles appearing in its incomming and outgoing arcs belong to its role set
and that each role appears at least in one incoming and one outgoing arc, that
each scene has at least one incoming arc of type new, and for each transition it
is checked that the set of variables appearing in its incomming arcs are the equal
to the set of variables appearing in its outgoing arcs. In the case of transitions
they must at least have one incomming and outgoing arc. That is, it is checked

82 Chapter 5. Islander

=2 fin_performative_structure

“buyer

el-agebuntant

KIHYEr eauchoneer

wauctjoneer

Figure 5.4: Fish Market Performative Structure

that it does not exist a disconnected transition.

As an example of how this works, we can see an example of how the algorithm
works in a performative structure. Figure 5.4 depicts the performative structure
of the Fish Market institution [Rodriguez-Aguilar et al., 1997]. The fish market
is a trading institution devoted to the traiding of fish. In this figure we can see
the different scenes and how agents depending on their role can move among
them. The main scene is the auction room where products are auctioned but
the institution also contains scenes for the admission of buyers and sellers, for
accountability and the initial scene which is the scene root, and the final scene
which is the scene output. In the institution there are two external roles which
are the buyer and seller roles, and five internal roles in charge of the different
scenes which are: auctioneer, buyer-admitter, seller-admitter, buyer-accountant,
seller-accountant and auctioneer.

In figure 5.5 we can see how the search algorithm visits the different scenes
of the fish market. Each node is labelled with the name of a scene and a role
identifier, meaning that a role identifier, meaning that role. Each tree in the
figure correspons to the exploration of the paths that can be followed by each of
the roles from the initial scene. This result should not be a surprise, as the first
step of the algorithm is to push on the stack for each role that can be played in
the initial scene, the pair composed by the initial scene and the role. Each line
on the tree corresponds to a succesor in the search, that is, if a node labeled by

5.3. Verification 83

root root
root
buyer- i auctioneer seller-
admitter admitter

buyer-ad buyer-set . seller-ad seller-set
auction-r
buyer- buyer- y seller- seller-
. auctioneer
admitter accountant accountant accountant

seller-ad
seller

buyer-ad
buyer

output output
buyer- buyer-
admitter accountant accountant admitter

output output
seller- seller-

seller-set
seller

auction-r
buyer

output
buyer

output
auctioneer

buyer-set
buyer

output
seller

Figure 5.5: Depth-first search of the Fish Market performative structure

s; r; has a connection to a node s; r;, it means that agents playing role r; in
scene s; can reach scene s; with role r; only traversing a transition. Dash lines
correspond to the cases where the search goes to a previously visited scene and
role. All the scenes are visited for each one of its roles and we can see that the
final scene is reachable from all of the nodes.

We also have to guarantee that agents can entry and leave the scenes. In
order to analyse the scenes we have to take into account that each scene specifies
for each role a minimum and maximum number of agents that can participate
playing that role and a set of access and exit states. Thus, the set of access and
exit states determines the entry and exit points of the scene for a given role.
When an agent wants to join a scene it has to wait until the scene reaches an
access state for its role. The same applies for the exit states when it wants to
leave the scene. The tool verifies that for each scene role there is at least one
access state that will allow agents playing that role to enter the scene. Further-
more, the initial state must be an access state for those roles whose minimum
is greater than zero, in order to start the scene, and for those roles labelling an
incoming arc of type new, as agents following the arc must be incorporated to
the scene execution once created. In order to allow agents to leave when the
scene is finished, the final states must belong to the set of exit states for each
one of the roles. Furthermore, arcs can be labelded with conjunctions of pairs of
an agent variable and role identefier with the meaning that agents playing those
roles have to progress together through the arc. Thus, if a conjunction appears
in a scene incoming arc it is verified that exists an state which is an access state
for all the roles appearing in the conjunction, while if the conjunction appears
in an outgoing arc it is verified that exists a state which is an exit state for all

84 Chapter 5. Islander

of the roles. Finally, it must be checked that every path that the conversation
can follow from the initial state through the conversation graph leads to a final
state. We will explain how this is checked in the next subsection when analysing
the protocol correctness.

5.3.3 Protocol correctness

Another important verification step in the context of a scene is to check that
the conversation protocol is correct. We demand a scene protocol to satisfy the
following requirements:

e all the sates of the graph are accessible from the initial state.
e a final state is reachable from any scene state.

e the initial state is not reachable once left.

e there are no outgoing arcs from the final states.

e the illocution schemas labelling the arcs are correct with respect to the
scene dialogic framework and ontology, and at least the terms referring to
agents and time are variables.

e there are no outgoing arcs from the same state labelled with equivalent
illocution schemes.

e all the occurrences of a variable within the scene have the same type.

e an application occurrence of a variable must be always preceded by a bind-
ing occurrence.

The first and second properties enforce that all the states of the conversation
graph are accessible from the initial state and that from each of them there is
a path to a final state. That is, that the conversation will not enter an infinite
loop from which it can not go out and that there are no states, apart from the
final states, from which there are no outgoing arcs. The combination of these
two properties forces that for each state of the scene there must exist a path
from the initial state to a final state which passes through the state. Moreover,
the graph must satisfy that the initial state is not reachable once left, that is,
the initial state does not have incomming arcs, and there are no outgoing arcs
from the final states as they represent the different endings of the conversation.

Labels of the arcs must also be verified. As we want the scene protocol to
be independent from concrete agents and time instants, we demand that in the
illocution schemas that label the scene arcs, at least the terms referring to agents
and time must be variables, while the other terms can be variables or constants.

In the definition of illocution schemas nothing is said about the types of the
variables appearing in them, they have to be deduced using the position in which
they appear in the illocution schemas and the ontology definition. Variables rep-
resenting the sender and the receiver are associated to the type Agentld. If the

5.3. Verification 85

terms refering to the sender and receiver roles correspond to a role identifier
this is also kept and it must be the same for all of the occurrences of the agent
variable. That is to say, the same variable can not be used to represent an agent
variable of different roles. If the terms referring to the sender and receiver roles
are variables, then they are associated to the type Roleld. This is a special type
only used in the verification. Otherwise, it is checked that they correspond to
scene roles. The content of the illocution scheme is checked against the scene
ontology. Remember that the content of the messages must be constructed mak-
ing use of function definitions on the ontology returning a boolean and it must
be expressed in the content language defined in the scene dialogic framework.
Then, it is searched in the ontology for the function definition and if found, it is
checked that the content expression is correct with respect of the definition and
the types for the variables are deduced.

As we have said, scene variables must have the same type in all of its oc-
currences. As illocution schemas are analysed a table of symbols is created that
keeps the type of each found variable. Then, when a new illocution scheme is
analysed two situations can arise for each variable in the illocution scheme. On
the one hand, if it is the first occurrence of the variable found the type deduced in
the analysis of the new illocution scheme is assigned as the variable type within
the scene. That is, the table of symbols is incremented by the new variable and
its type. If an occurrence of the variable was found before, it is checked that
the type deduced in the analysis of the new illocution scheme is the same than
the one found before. If it is not, an error is given as the variable is being used
within the scene with different types.

Also, the constraints and time-outs are analysed. In both cases they are
defined as a list of expressions. The difference is that constraints expressions
must be of boolean type while time-out epressions must be of a numeric type.
For each variable appearing in the expression its type is looked up in the table
of symbols. Then, taking into account the types of the variables, constants and
the operators definition, it is analysed if the expression and sub-expressions are
correctly typed. For each of them it is checked that the type of the arguments
is correct with respect to the operator definition, and the type of the expression
is the type returned by the operator with the types of the argument.

Remember that we distinguish between binding occurrences and application
occurrences of variables. Since at the beginning of a scene all the variables
are unbound, each application occurrence of a variable must be preceded by a
binding occurrence. What does this condition imply? Imagine that in the label
of an arc from state w; to w; appears an application occurrence of variable z, that
is lz. Then, for each path from the initial state to w; it must appear a binding
occurrence of variable z, that is 7z. Remember that binding occurrences can only
appear in arcs labelled with illocution schemas, while application occurrences
can appear in arcs labelled with illocution schemas and in arcs labelled with
timeouts.

In order to check that each scene state is reachable from the initial state;
that the final state is reachable from any scene state; and that each application

86 Chapter 5. Islander

occurrence of a variable is preceded by a binding ocurrence, we explore the
conversation using a depth-first search algorithm starting at the initial state, in
a similar way as it is done at performative structure level. That is, the algorithm
starts by pushing the initial state of the scene in the stack. During the search
two global lists are maintained, one with the visited states, that is, the states
which are accessible from the initial state, and another with the states from
which the final state is reachable. We also maintain for each branch of the
search a sequence of the states visited within the branch and the set of variables
for which a binding occurrence has been found in the labels of the followed arcs.
The sequence of states is used to detect cycles within a branch and for marking
from which states a final state is reachable when a final states is found. When
a branch reaches a final state, all the states of the sequence are added to the
second global list, the one corresponding to the states from which a final state
is reachable.

An important point to take into account is what happens when the search
goes back to a previously visited state. That is to say, the search goes to a
state which is marked as visited. There are two possibilities: that the state was
visited in the current branch and then, there is a cycle; or that the state was
visited in another branch. In the first case, we proceed in a similar way as in
the performative structure, the search for this branch is stopped as we do not
want to enter in an infinite loop, However, we have to check if a final state is
reachable from the states composing the cycle. A final state is reachable from
the states of the cycle if it is reachable from any of them. Then, it is checked if
a state of the cycle which belongs to the list of states form which a final state is
reachable exists. If this is the case, it means that from all the states of the cycle
a final state is reachable, then all the states of the cycle are added to the list.
Otherwise, the cycle is kept until the end of the search because a path from one
of the cycle states to a final state can still be found.

When a state is visited again but we are not in a cycle we continue the
search as if it was the first time that the state is visited. This is necessary in
order to check that each application occurrence of a variable is preceded by a
binding occurrence, as the set of variables for which a bindings ocurrennces has
been found in the new path to the state can be different from the set of variables
found in previous one(s). Hence, we have to continue exploring the graph in order
to ensure that each application occurrence is preceded by a binding occurrence.

If the scene protocol is correct at the end of the search all the states of the
scene must belong to the two global lists. That is to say, all of them have been
visited and from of all them a path to a final state has been found. Furthermore,
if the scene is correct all consulting occurrences of a variable must be preceded by
a binding occurrence. Notice that for those states which are not accessible from
the initial state it is not checked if a final stare is reachable from them. As this
states are not reached, the paths from those states are not explored. Moreover,
it is neither checked, if in the paths from those states each application occurences
of a variable is preceded by a binding occurrence.

5.3. Verification 87

1 (inform (?x auctioneer) (buyer) open-auction(?n))
MAS Data |Graphical Data |

'l:a_rtnem | [e 2 (inform (!x auctioneer) (buyer) open-round(?r))
Dialogic framewark: M buyer g 2 3 (inform (!x auctioneer) (buyer) to-sell (?good-id))
:::,:r::;omdf =\ 4 (inform (!x auctioneer) (buyer) buyers(?buyers list))
:::ﬂl R - 5 (inform (!x auctioneer) (buyer) offer ('good-id, ?price))

’ ! 6 (inform (!x auctioneer) (buyer) offer (!good-id,?price))
| fsauction-room-scene | 7 (commit (?y buyer) (!x auctioneer) bid ('good-id,!price))

| 8 (commit (?y buyer) (Ix auctioneer) bid (!good-id,!price))
9 (inform (!x auctioneer) (buyer) withdrawn(!good-id))
10 (inform (!x auctioneer) (buyer) collison(?price))
11 (inform (!x auctioneer) (buyer) sanction(?buyer-id))
12 (inform (!x auctioneer) (buyer) expulsion(?buyer-id)))
13 (inform (!x auctioneer) (buyer) sold(!good-id,

?price,?buyer-id))

14 (inform (!x auctioneer) (buyer) end-round(?r))

15 (inform (!x auctioneer) (buyer) end-round(!r))

16 (inform (!x auctioneer) (buyer) end-auction(!n))

Figure 5.6: Auction scene following a Dutch protocol

In figure 5.6 we present the protocol for a scene where goods are auctioned
following a dutch protocol. From the specification we can see that there are two
roles that can be played within the scene, which are the auctioneer and buyer
roles. We can also see that for each role there is at least one access state and
that the final state is an exit state for all of them.

In figure 5.7 we can see how the search algorithm visits the diffrent states
of the auction scene starting from its initial scene wg. The first branch finishes
when the final state wg is reached. The other branches finish when the search
goes back to a visited state which is denoted by the dash lines. In all the cases
there is a cycle as the search goes back to a state which was previously visited
in the same branch. We can see that all the states are visited at least once, then
all of them are accessible from the initial state. Also the final state is reachable
from all of the states. On the contrary, wy and w; belong to the branch that
reaches the final state, then the final state is reachable from them. The rest of
the states belong to a cycle which contains w; and then, the final state is also
reachable from all of them.

In table 5.1 we can see the types deduced for the scene variables when
analysing the labels of the arcs, taking into account the following definitions

88

Chapter 5.

Figure 5.7: Depth-first search for the acution scene

from the scene ontology:

open-auction: numeric -> boolean
end-auction: numeric -> boolean
open-round: numeric -> boolean
end-round: numeric -> boolean
to-sell; string —-> boolean
buyers: AgentId list -> boolean
offer: string * numeric ->boolean
bid: string * numeric -> boolean
withdrawn: string -> boolean
collision: numeric -> boolean
sanction: AgentId -> boolean
expulsion: AgentId -> boolean
sold: string * numeric * AgentId -> boolean

Islander

5.3. Verification 89

Variable Type Variable Type
b'e Agentld || buyers-list | Agentld list
n numeric price numeric
T numeric buyer-id Agentld
good-id string y Agentld

Table 5.1: Deduced types for the variables of the auction scene.

5.3.4 Norm correctness.

Finally, the tool has to perform an important verification step which consists
on checking that norms are correctly specified and that agents may fulfil them.
Each norm specifies the actions that will trigger it, and the actions that agents
must do in order to fulfil the obligations. As we have said, actions in a norm
are specified as a pair formed by an illocution scheme and a scene. Then, for
each pair scene variable appearing in the norm definition it must be verified that
the scene exists and that an illocution matching the illocution scheme can be
uttered within the scene.

As in the context of the scene, the type of the variables appearing in a norm
definition must be the same for all of its occurrences. Then, each illocution
scheme is evaluated in the context of its scene in order to deduce the types of
the variables appearing in it. Another important restriction is that those agents
for which an obligation is imposed must appear in all the illocution schemas in
the antecedent and in the defeasible antecedent. This means that the illocutions
which can impose or fulfil an agent obligations must be illocutions uttered or
received by the agent.

Thus, we need to check that agents can fulfil the norms. That implies, that
there must exist a path from the scenes where norms are activated to the scenes
where they are fulfilled. There are no restrictions concerning the order in which
the illocutions in the antecedent must be uttered and in which the illocutions
in the defeasible antecedent must be uttered. This implies that the norm can
be activated in any of the scenes appearing in the antecedent Thus, it must
be checked that each scene appearing in the defeasible antecedent is accesible
from each scene appearing in the antecedent. Therefore, for each scene in the
antecedent a depth-first search with the role of the agent that will acquire the
obligations is made. The goal of the search from each scene of the antecedent is
to check that all the scenes appearing in the defeasible antecedent are accessible
from it. Then, the search stops when all the scenes appearing in the defeasible
antecedent have been visited with the correspondig role.

5.3.5 Model Checking Scenes

One of the advantages of having the specifications in a textual format is that
it they can be easily translated into preexisting languages and benefit from the
work done in those languages.

90 Chapter 5. Islander

This section, which is a brief summary of [Huguet et al., 2002]?, we report
the work done exploring how model checking can be used to verify electronic
institution. Concretely, model checking ir is used to verify some properties of
scenes.

For this reason scene specifications are translated from its ISLANDER, tex-
tual representation into MABLE a language defined for the design and develop-
ment of multiagent systems [Wooldridge et al., 2002]. MABLE language is an
imperative language similar to C and each agent defined in MABLE has a men-
tal state consisting of “beliefs”, “desires” and “intentions”. The MABLE lan-
guage has been implemented making use of SPIN [Holzmann, 1997], an available
model checking system for finite state machines. Agent definitions in MABLE
may incorporate claims about its behaviour which are expressed in a quantified
multi-modal temporal logic and can be automatically checked.

As scenes are specified in ISLANDER as a type of finite state machines they
can be easily translated into MABLE. The claims that we want to prove are
expressed in quantified temporal logic. The code in MABLE is translated into
promela, the system description language used by the spin model checker. The
claims that can be currently checked correspond to the checking that from each
scene state a final scene state is reachable. Concretely, it is checked the oposite
claim, which is, whether it is impossible to reach the final state from a given
state. This is expressed as follows:

O[(state = W;)]— > O—exit]

For each state of the scene a claim is so generated and it is checked whether
these claims are false. If a claim violated message is generated for each claim,
that means that the final scene is reachable from each state. The results of this
work show how specifications in ISLANDER can be translated into MABLE and
how claims on the generated translation can be defined and proved. This opens
the opportunity to look for more interesting properties to be checked.

5.4 Conclusions

We think that a formal specification is needed before starting the development,
of complex systems. This is also true for Multi-agent systems. This formal
specification process allows to identify the important parts of the system and
detect possible errors saving time for the designer. Furthermore, the existence
of software tools that help the designers on the specification and development, of
multi-agent systems is a key aspect for the succes of the area. This is specially
true for the expansion of use of multi-agent systems in software companies.

In this line we have presented ISLANDER a tool for the specification and
verification of electronic institutions. First, we have defined a textual language to

2This work has been done in colaboration with Marc-Philipe Huguet, Steve Phelps and
Michael Wooldridge of the Liverpool University. They have also implemented the software
tool which translate ISLANDER specifications into MABLE and verifies them.

5.4. Conclusions 91

specify institutions based on their formalisation presented in chapter 3, and the
ISLANDER editor that permits the graphical specification of several language
components. We think that this facilitates a lot the work of the designer because
graphical specifications are extremely easy to understand and they are similar
to the informal diagrams that engineers use while designing, constructing and
analysing a system. Graphical specifications can also be used as a presentation
of the specified institutions.

Once the specification is finished it goes through a validation process. As
several components of an institution are specified as a graph, an important part
of the verification is done using graph algorithms. It is verified that agents can
reach the different scenes in which they can participate, that agents have always
a path that will allow them to leave the institution that each conversation is
specified correctly and that agents can fulfil the obligations that they acquire as
a consequence of their actions within the institution. In this verifications per-
formative structure’s and scene’s constraints are not taken into account. Hence,
the next step will be to take them into account when verifying liveness and
protocol correctness. As specifications generated by the ISLANDER, editor are
used in different stages on the development of infrastructures and agents for the
specified institutions it is crucial to ensure that specifications do not contain any
error.

Chapter 6

Social Layer for Electronic
Institutions

In previous chapters we have presented our electronic institution model and how
electronic institutions can be specified and verified. That is to say, which are
the components of electronic institutions and the properties that these compo-
nents must satisfy. In this chapter we focus on the execution of institutions
and we present a generic infrastructure for them that we have developed. Thus,
the developed infrastructure can be used in the deployment of different institu-
tions. The purpose of the infrastructure is to facilitate agent participation and
communication in the institution, and to enforce the institutional rules to them.

Participants in electronic institutions are heterogeneous (human and soft-
ware) agents (possibly) written by different people, in different languages and
with different architectures. No assumptions are made about the characteris-
tics of the participating agents, nor restrictions are imposed to its designers and
in which environment the agents run. We believe that such assumptions have
some advantages as agent designers can choose the language and architecture
that is better to fulfil their goals, facilitate the reusability of previously devel-
oped agents, and the integration of existing software and AI components. On
the contrary, we can not assume that these agents will behave according to the
institutional rules. Then, the institution infrastructure is in charge of guarantee-
ing that agents actions within the infrastructure do not violate the institutional
rules.

Instead of developing an infrastructure from scratch, we have opted for de-
veloping a social layer middleware on top of a communication layer implemented
by the JADE platform. The social layer middleware is thought to guarantee that
agent interactions are structured according to the norms and conventions defined
in the institution specification. Next we summarise the main functionalities of
the social layer middleware:

o facilitate participating agents the information they need to successfully
participate in the institution;

93

94 Chapter 6. Social Layer for Electronic Institutions

facilitates their communication with other agents within the different con-
versations;

e guarantees the correct evolution of each conversation;

e prevents errors made by the participating agents by filtering erroneous
illocutions, thus protecting the institution; and

controls which obligations participating agents acquire and fulfil.

Another important aspect is the development of agents which can participate
in the institution. Specially in the case of staff agents, those that play internal
roles, as the institution delegates its services and duties to them. The specifi-
cation defines what agents can do within the institution but not how they have
to take their decisions. Hence, agents can not be completely generated from the
specification. Instead, skeletons of agents can be obtained from the specifica-
tion which agent developers can customise in order to completely develop their
agents. In the last part of the chapter we explain how agent skeletons can be
obtained from ISLANDER specifications and how skeletons can be customised
by agent engineers.

The chapter is structured as follows. In the next section 6.1 we describe the
institution architecture. In section 6.2 we present a brief description of JADE
as it is the FIPA-compliant platform that we have chosen as our communication
layer. Next, in section 6.3 we focus on the social layer with a special attention on
the governors because they are the more complex and important of the agents
composing the social layer. In sections 6.3.2, 6.3.3 and 6.3.4 we concentrate on
how scenes, transitions, and norms, are handled by the agents of the social layer.
Next, in section 6.4 we explain how agents for an institution can be developed
using institution specifications. Finally, in section 6.5 we summarise the chapter.

6.1 Institution architecture

Figure 6.1 depicts the architecture of an electronic institution. We have opted
for a multi-layered architecture composed by the following layers:

e autonomous agent layer: composed by the agents taking part in the insti-
tution.

e social layer: devoted to facilitate agent participation within the institution
and to enforce the institutional rules encoded in the specification.

e communication layer: it is in charge of providing a reliable and orderly
transport service to the agents composing the social layer.

Notice that participating agents in the institution do not interact directly,
they have they interactions mediated by the social layer. In order to know the
valid interactions that agents must have, and the rest of the characteristics of

6.1. Institution architecture 95

-

Autonomous
Agents Layer

Institution
Manager

JADE Communication
[' Layer

Figure 6.1: Institution architecture

Social Layer

the institution the agents of the social layer load the institution specification
from its XML representation as generated by the ISLANDER, specification tool.

Building the social layer on top of JADE eases the communication of the
agents of the social layer as they do not need to deal with low level communica-
tion issues. For instance, agents do not need to know the physical addresses of
other agents as the JADE transport service is in charge of routing messages and
deliver them to their addressees. Furthermore, the monitoring and debugging
tools offered by JADE have been very useful for testing the agents of the social
layer. All the agents of the social layer have been developed in JAVA as JADE
agents.

In the following sections we will present an overview of JADE, we will describe
in detail the social layer, and we will explain how agents for an institution can
be developed.

Before detailing our infrastructure we want to compare it with the infras-
tructure proposed in [Rodriguez-Aguilar, 2001] since our work is a continuation
of it. Rodriguez proposes that the infrastructure can be realized making use of
a special type of mediator agents, the so called interagents [Martin et al., 2000)
devoted to the mediation of agent interactions. Each agent in a conversation
is connected to an interagent which mediates the interaction between the agent
and the society where it is situated. Interagents of the different agents taking
part in a conversation coordinate in order to guarantee the correct evolution of
the interaction. A main feature of interagents is that the conversation protocol
that they manage is the agent view of the protocol, and not the protocol as a
whole. That is, the conversation protocols that they manage only include mes-
sages where its associated agent is involved and arcs’ labels include information
on whether the transition will be provoked by either the transmission or the
reception of a message. This can be seen as the role projection of the global
protocol. Hence, interagents in the same conversation manage complementary
conversation protocols. That is to say, when one interagent is in a state where
a transition can be provoked by the emission of a message, the interagent of the

96 Chapter 6. Social Layer for Electronic Institutions

agent to which the message is addressed must be in a state where a transition
can be provoked by the reception of the message. Among the interagents of
the agents taking part in the same conversation one plays the role of the leader
and the rest play the follower role. It is a duty of the leader to decide which
illocution is accepted when more than one agent can speak. In this case, all the
illocutions are sent to the leader which decides which of them is accepted and
makes the scene evolve. The interagent playing the leader role is also in charge
of authorising agents to join and leave the conversation. Interagents can man-
age conversations where only two agents are involved and conversations where
multiple agents are involved but where interaction is always between one agent
and the rest of the agents. This kind of conversations can be managed by an
interagent as a set of one to one conversations. On the contrary, they fail to
manage conversations where each agent can speak to all other agents. We have
improved this limitation in this Ph.D.

Rodriguez’s infrastructure also contains another type of agent, the so-called
institution manager, which is in charge of authorising agents to join the institu-
tion and of managing the transitions. During the institution execution it keeps
information about all the participants, and about all the current scene execu-
tions, for each one it keeps which are the participants within the scene and
which is the interagent leader of the scene execution. Summarising, the insti-
tution manager is in charge of authorising agents to join the institution, their
movements among performative structures’ scenes, as well as the creation of
new scene executions while management of scenes and control of agent pending
obligations are kept as duties of interagents. These ideas were validated by the
development of the fish market institution [Rodriguez-Aguilar et al., 1998].

Following Rodriguez proposal we have in our infrastructure an institution
manager in charge of the same duties, and each participating agent is connected
to a mediator agent, which we call governor '. The evolution of the insti-
tution formalisation, the limitations of the interagents in the management of
complex interactions protocols, as scenes have become, and the goal of having
an infrastructure capable of loading institution specifications as generated by
the ISLANDER editor, has motivated us to develop a new infrastructure. Gov-
ernors are in spirit similar to interagents and are in charge of similar duties, but
there are some differences. Concretely our model differs from the one proposed
in [Rodriguez-Aguilar, 2001] in the following issues:

e the conversation protocol managed within scenes;
e the scene management;
e the infrastructure architecture;

Firstly, governors manage global interaction protocols in contrast to the agent
view of the protocol managed by the interagents. Furthermore, governors are
capable of managing timeout transitions and constraints, being both extensions
of scenes added after the development of interagents. Thus, governors are no

I'We borrow this name from Noriega’s thesis [Noriega, 1997]

6.2. JADE in brief 97

limited on the type of scenes that they can manage. Secondly, in our approach
we do not differentiate a leader among the governors of a scene. The duties of
the leader were to decide which illocution makes the scene evolve when more
than one agent could speak and to authorise agents to join and leave the scene.
These duties are now undertaken in the following way:

e Governors implement a token-passing protocol to guarantee that only one
agent speaks at the same time.

e The control over which agents join and leave the scene is devoted to a new
type of agent, the so-called scene manager.

Then, for each scene execution there is a scene manager being responsible for
authorising agents to join the scene and for participants to leave. We think that
with the Rodriguez’s approach the agent whose governor is the leader could be
penalised with respect to the others, as its governor is in charge of more duties.
Lastly, we have divided the infrastructure in two layers: a communication layer
for which we use JADE and a social layer which contains the institution manager,
the scene managers and the governors. In this way agents of the social layer do
not need to take care of low level communication issues as JADE provides them
a reliable transport service. In Rodriguez’s approach the agents composing the
infrastructure were in charge of guaranteeing a reliable transport service and they
had to maintain information about the physical addresses of the other agents.

6.2 JADE in brief

In this section we offer a general overview of the Java Agent Development
Environment (JADE), the FIPA-compliant platform that we have chosen as
communication layer. For a more detailed description about JADE readers
are referred to [JADE, URL, Bellifemine et al., 2001, Bellifemine et al., 2002b,
Bellifemine et al., 2002a].

JADE is a software development framework which contains a FIPA compli-
ant agent platform developed in JAVA and a package to develop JAVA agents.
The main goal of JADE is to simplify and facilitate the development of multi-
agent systems. Apart from the FIPA compliant platform which permits agents
executions, it provides support to agents development and as well as different
tools that permit to manage, monitor and debug the platform execution.

As a FIPA compliant platform, JADE contains the following mandatory roles
performed by different agents:

e Agent Management System (AMS). It controls the platform execu-
tion determining which agents can be executed, it maintains a list of the
agents running in the platform and it handles their lifecycles.

e Agent Communication Channel (ACC). Responsible for the agent
communication inside and outside the platform. It guarantees a reliable,
orderly, and accurate message routing service.

98 Chapter 6. Social Layer for Electronic Institutions

Host 1 Host2 Host 3

Jade distributed Agent Platform

Jade Main-container Jade Agent Container Jade Agent Container

‘ Metwork protocol stack |

= @

=0 =

Figure 6.2: Architecture of the JADE platform

e Directory Facilitator(DF). It provides a yellow pages service to the
agents of the platform. Agents can register their services in the DF, and
request the services offered by other agents.

The platform is perceived from outside as a single entity but it can be divided
in different agent containers, each one executing a Java virtual machine and it
can be distributed in different hosts. Figure 6.2 depicts the scheme of a JADE
platform execution. When the platform is launched the AMS, the DF and the
ACC are started. Each agent in JADE is executed within an agent container and
it must have a global unique identifier within the platform which is composed
by the agent name and the platform where it is running. Concretely, the global
unique identifier of an agent is constructed, like e-mail addresses, by the name
of the agent, a ‘@’ symbol, and the address of the platform. Agent containers
communicate using Java RMI while communication with other FIPA compliant
platforms is done using ITOP. The main container is the one containing the AMS,
the DF and the RMI registry. The other containers, once launched, connect to
it.

JADE defines a generic agent class that agent developers must extend in order
to program their agents. Developed agents inherit from its superclass different
services such as: the capability of registering and deregistering in the platform,
a set of basic methods for sending and receiving messages, the capability of
cloning, etc.

An agent functionality is defined by a set of behaviours which represent

6.2. JADE in brief 99

logical threads. So, each agent is composed of a set of behaviours which can be
either added or removed dynamically. Behaviours represent logical threads but
each agent in JADE has only one execution thread associated and behaviours
are executed in a round-robin non preemptive. That is, behaviours are never
interrupted and so they are executed until they return. Hence, it is important
to define simple behaviours and be careful to avoid behaviours with an infinite
loop (in this case since the behaviour never returns, no other agent behaviour
will be executed). During its execution each agent maintains a queue of active
behaviours, a queue of blocked behaviours and a queue of incoming messages.
When a behaviour finishes, the next one in the queue of active behaviours is
executed. When the agent receives a new message is added to its queue of
incoming messages and all its blocked behaviours are activated by moving them
to the queue of active behaviours. Messages in the queue can be accessed by
blocking and unblocking operations and in both cases a message template can be
passed. In this case, the returned message must match the given template. For
blocking operations it can be defined a maximum time to wait for the message.

Agents within JADE exchange messages in FIPA ACL. Moreover, JADE has
implemented some FIPA protocols and offers facilities for the definition of user
ontologies and new content languages.

One of the main features of JADE is that it offers a set of tools for the
management, monitoring and debugging of the platform. These tools allow the
user to know what is happening within the platform and to interact with it.
Due to the complexity of testing and debugging distributed systems these tools
largely facilitate the developers work. More precisely JADE offers the following
tools:

e Remote Monitoring Agent (RMA). It shows all the information about the
platform, which agents are being executed in each container with their
IDs, the state of each one, etc. Using the RMA the user can modify the
execution of the platform. For instance, creating new agents, eliminating
a participating agent, or shutting down a container. In order to obtain the
information and to execute the required operations it uses the AMS agent.

e Directory Facilitator GUI. It permits users to see the agents and services
registered in a Directory Facilitator agent. Furthermore, users can modify
agents and services information.

e Dummy Agent. It is a graphic user interface which permits users to act as
an agent in the platform. Using the dummy agent users can send messages
to the other agents and are informed about received messages.

e Sniffer Agent. It permits to keep track of the messages exchanged by an
agent or a group of agents. It shows all the messages sent and received by
the selected agent(s) to the user. This permits the user to investigate the
exchange of messages among the agents connected to the platform.

e Introspector Agent. This is the last tool developed, and it permits to follow

100 Chapter 6. Social Layer for Electronic Institutions

and control the life cycle of an active agent and to see the messages that
it sends and receives.

6.3 Social layer

In figure 6.1 we differentiate three types of agents composing the social layer:

e Institution Manager. It is in charge of starting the system, authorising
agents to enter the institution and controlling their movements between
scenes. During the institution execution it maintains a list of all the agents
taking part in the institution and a list of the active scenes along with the
scene manager in charge of it. As it knows at every moment the current
executions of each scene, it is in charge of authorising agent movements
to current executions and the creation of new scene executions. Then, for
each transition it keeps the agents within the transition and the scenes
that they have requested to go to. There is one Institution Manager per
institution execution.

e Scene manager. It is the responsible for governing a scene. It is in
charge of authorising agents to join or leave the scene at the specified
states whenever the restriction on the minimum and maximum agents per
role is not violated. There is one scene manager per scene execution.

e Governor. Each governor is devoted to mediate the communication of
an agent and the rest of the agents within the institution. They are in
charge of giving participating agents all the information they require for
participating in the institution. They also check that agent actions are
correct with respect to the specification and the current execution. There
is one governor per participating agent.

The social layer can be distributed among different machines for scalability
purposes. Such distribution does not require modifying the agents as they com-
municate in the same way with any agent running on a JADE platform. Notice
that the number of agents in the social layer change as new agents join and leave
an institution, and as scene executions are created and finish. Conceptually, gov-
ernors and scene managers are created by the institution manager which is in
charge of authorising agents to join the institution and the creation of new scene
executions, But there is a technical limitation because an agent does not have
the capability of creating agents in other machines. To solve this problem an
agent that works for the institution manager must be created in each machine
to be responsible for creating governors and scene managers on behalf of the
institution manager.

The social layer that we have developed is generic in the sense that can
be deployed to realise different institutions. Agents composing the social layer
load institution specifications as XML documents generated by the ISLANDER
specification tool presented in chapter 5. Thus, changes on an institution specifi-
cation solely involve the loading of a new XML document. From the institution

6.3. Social layer 101

specification the agents of the social layer know the static information of the
institution. That is, which are the roles that can be played within the institu-
tion, which are the different scenes and their protocols, how agents can move
among scenes depending on their role and which are the institution norms. This
information along with the information of the current execution, will be used to
validate the agent actions within the institution.

The execution of an institution starts with the creation of an Institution
Manager. Once up, the institution manager activates the initial and final scenes
launching a scene manager for them. Thereafter, agents can start to request to
join the institution upon requesting the institution manager. When an agent
is authorised to join the institution, it is connected to a governor and initially
admitted into the initial scene. From there, agents can move around the different
scene executions or start new ones according to the specification of the institution
performative structure.

The current version of the social layer presents some limitations in the insti-
tutions that they can manage. As explained in chapter 3, performative structure
arcs are labelled by conjunctions and disjunctions of pairs composed of an agent
variable and a role identifier, where a conjunction means that a group of agents
must progress together through the arc. Furthermore, the labels on arcs con-
necting scenes and transitions can also contain conditions that agents must fulfil
in order to progress through arcs. However, the current version of the social layer
does not support these features. Concretely, agents can only progress together
after an And transition and conditions are not taken into account when agents
move from scenes to transitions. That is to say, conjunctions can only appear
in outgoing arcs of transitions of And type and agents within scenes are allowed
to move to any transition reachable from the scene with their role.

Next, we focus on the governor because it is the more complex and important
of the agents composing the social layer. We explain the governor architecture,
the communication channels that it may use to communicate with its associated
agent and the messages that they can exchange. Later on, in sections 6.3.2, 6.3.3
and 6.3.4, we will focus on how scenes, transitions and norms are managed by
the agents of the social layer.

6.3.1 Governor
Architecture

Each participating agent in an electronic institution is connected to a governor
which mediates its communication with the rest of the agents. The communi-
cation between a governor and an agent is structured in conversations as shown
in figure 6.3. There is always a conversation between the agent and its governor
devoted to allow the agent to request general information about the institution
execution and to inform it about the adoption and fulfilment of obligations. This
conversation is created when the governor and the agent are connected, and it
only finishes when the agent leaves the institution. The other conversations cor-
respond to the scenes and transitions in which the agent is taking part. They are

102 Chapter 6. Social Layer for Electronic Institutions

Governor

Communication
channel

‘—\/\/\/—’

A JADE

[E Normmanagerrent J

Figure 6.3: Governor architecture.

created and destroyed dynamically as a consequence of agent movements within
the performative structure.

An important issue is which information should be provided to a participant
about the institution execution. That is, information about the participants
within the institution and about the different scene executions. Imagine, for
instance, a trading institution where agreements among traders are reached by
using a one to one negotiation scene. Probably, it would be not be desirable to
inform a trading agent about the current negotiation scenes and the participants
in each one, or to inform an agent about other agent’s obligations. We believe
that the decision about which information is provided to each agent should be
decided when designing the institution and it should be associated to roles.
In this way agents playing the very same role will have access to the same
information. Hence ISLANDER should be extended to permit the definition of
which information is provided to each role. In the current version of the social
layer this conversation has been restricted to the communication of obligations
information.

A governor can receive messages from the agent to which it is associated and
by the other agents composing the social layer. Messages from the agent are re-
ceived through its communicating channel while messages from the other agents
of the social layer are received through JADE. In section 6.3.1 we detail which
communication channels can be established between an agent and its governors.
For each conversation the governor has two queues, one for the messages received
from its associated agent and one for the messages received from the social layer
agents.

The Governor has an execution thread that listens all the time to the com-
munication channel with the agent in order not to lose any message. When a
message is received the thread checks to which conversation the message is ad-
dressed to add it at the end of the corresponding conversation queue. Later on,
the thread in charge of this conversation will take the message and process it. In
order to avoid that the agent may overload its Governor with a massive sending
of messages, the length of the reception queues for each conversation is limited
to twenty messages.

On the other hand, messages received from the other agents of the social layer

6.3. Social layer 103

are gathered by a behaviour that places them in another conversation queue. In
this case, an execution thread is not used because JADE places the received
messages in the agent’s private queue, so that messages are not lost. Moreover,
JADE will wake up the behaviour as new messages arrive to save CPU time.
This queue is not limited by two reasons:

e the retransmission of these messages would require establishing complex
control mechanisms that would reduce the system’s performance.

e because these are messages received from the other agents of the social
layer which only send to the governor the messages needed for their correct
coordination.

The Governor has an independent execution thread to manage each conver-
sation. We have discarded to use JADE behaviours because in that case agents
holding in more conversations would be penalised because of the policy that
JADE follows after the reception of a message. When a message arrives, JADE
wakes up all blocked behaviours by moving all of them to the queue of active
behaviours. Remember that JADE executes the active behaviours of an agent
following a round-robin non-preemptive policy. Hence that in order to handle
two successive messages for the very same conversation it would be necessary to
execute the behaviours of all other conversations. Thus, agents which are taking
part in more conversations would be penalized with respect to agents taking
part in less conversations. In our approach conversation threads are kept asleep
while there are no messages for the conversation they are handling, and they are
woken up when a message addressed to their conversation arrives. That is, when
a message arrives it is read by the governor behaviour or the thread in charge
of the communication channel, and in both cases the message is added to the
corresponding queue of the conversation to which the message is addressed and
the thread handling the conversation is woken up to process the message.

Governors have another thread devoted to the management of norms. During
the agent participation within the institution the governor keeps a list with the
agent pending obligations. In order to chek whether an agent either acquires new
obligations or it fulfils some of its pending obligations, we advocate for the use
of the Java Expert System Shell (JESS). Then, this thread is in charge of adding
the rules and facts to JESS, and it is informed whenever a norm is activated or
some obligations are fulfilled. In both cases the agent is informed about the new
obligations that it has acquired or about the obligations that it has fulfilled. For
further details about norms management the reader is referred to section 6.3.4.

Agent-Governor communication channel

Nowadays there are many well established communication channels (USB, in-
frared, socket, etc) that carry information in different ways. In order to allow
the agent to use any of these channels or any future one to communicate with
its governor, we have built an abstract model of them. One of the advantages
thus obtained is that it is not necessary to design a specific Governor for each

104 Chapter 6. Social Layer for Electronic Institutions

channel. Thanks to the use of java, that follows an object-oriented methodology,
it has been possible to do it in a simple way with two classes: an abstract one
called Link, and another one called Message.

The Governor uses the class Link to have access to the functionality of any
channel in the same way. The Link class provides the methods to send and
receive messages, to open and close a channel, and to check that the channel is
not broken. In order to create a new communication channel it is only necessary
to extend the class and implement the methods. At present we have implemented
two communication channels: one via socket so that most of the languages and
systems allow its use, and another one to receive messages from JADE. This
allows participating agents to be in any FIPA compliant platform as all of them
can be connected with JADE.

The ’'Message’ class makes the information that travels over the channel
independent from its codification. When a message has to be sent through a
channel, the ’Link’ class, in charge of the management of the channel, extracts
the information from an object of class message, and codifies it in a way that
makes it possible to travel through the channel. The reverse operation is done
on the receiver side, that is, the ’Link’ class at the receiver side decodifies the
information received through the channel and it creates a new object of class
"Message’ with the received information.

Agent-Governor communication Protocol

One of the most important aspects of our implementation is the communication
protocol between governors and participating agents. Since an agent can only
communicate with its governor, any action an agent can do, any information
that it can request and any information it can receive must materialise as a
message to or from its governor. Apart from the result of the actions that an
agent wants to do, about the information it requests, and the messages addressed
to it, the governor sends the agent all the information it needs to successfully
participate in the institution. In other words, the governor informs the agent
about all events that occur within the institution that are relevant to the agent.
For instance, the agent is informed when a new agent joins a scene in which it
is taking part, or when a norm implying new obligations for it is triggered.

The agent and the governor exchange messages in FIPA-ACL where the
content has the following elements:

e ConvID: an integer identifying which conversation the message belongs to.
e Action: the action to do or the action the receiver is informed about.
e Parameters: additional information needed to specify the action.

Agents intending to act within the institution or requesting information
about the institution itself send request messages to its governor. Table 6.1
lists messages that an agent can send to its governor, except the first one for
entering the institution which is sent to the institution manager. The table

6.3. Social layer 105

Action Description

1 enterInstitution Request to enter the institution

2 | saySceneMessage | Request to say a message in a scene

3 | moveToTransition Request to move from a scene

to a transition
4 moveToScenes Request to move from a transition
to several scenes

5 accesScenes Ask for the scenes the agent
can move into from a transition

6 | accesTransitions Ask for the transitions the agent

can move into from a scene

7 | agentObligations Ask for the pending obligations

8 sceneState Ask for the current scene state

9 scenePlayers Ask for agents in a scene

Table 6.1: Messages that an agent can send to its governor.

contains a message per action or information request. As to actions within a
institution, an agent can say a message within a scene in which it is taking part,
move from a scene to a transition and move from a transition to a set of scenes.
As to information request, an agent can ask its governor for the scenes it can
reach from a transition, the transitions that it can reach from a scene, current
agent’s obligations, and the current participants or state of a scene in which it is
taking part. An agent can cancel any sent message by sending a cancel message
before the request has been processed.

When the governor receives a message from the agent the thread in charge
of the communication channel processes it and then the governor answers the
agent with an agree, refuse or unknown message. If the governor answers with
an agree, it means that the message is sintactically correct and that it has been
added to the queue of messages of the corresponding conversation. If the gov-
ernor answers with a refuse, it means that the message can not be added to
the queue of messages of the conversation because it is full or because the mes-
sage is incorrect. A message can be incorrect because its Convld refers to a
non-existing conversation or because the message was found to be syntactically
incorrect. Anyhow the agent is informed about the reason that made the mes-
sage to be refused. Finally, an unknown message means that the governor did
not understand the message.

Correct messages will be processed later on by the thread in charge of the cor-
responding conversation. After processing the message the governor will respond
the agent with either the information requested or the result of the requested
action. Table 6.2 shows all the messages that a governor may send to its asso-
ciated agent. For any action that an agent can do within the institution there
are two messages: one informing that the action has been done and another one
informing that the governor failed trying to perform the action. In this later
case, the message contains information about the reason that made the action

106 Chapter 6. Social Layer for Electronic Institutions

Action Description
1 enteredInstitution The agent has entered the institution
2 exitedInstitution The agent leaves the institution
3 enteredInstitutionFailed The agent could not enter the institution
4 saidSceneMessage An agent message has been said
within a scene
5 saySceneMessageFailed Agent message in a scene has failed
6 receivedSceneMessage Reception of a message for the agent
within a scene
7 timeoutTransition The scene state has evolved as a consequence
of the expiration of a timeout
8 enteredAgent An agent has entered the scene
9 exitedAgent An agent has left the scene
10 finishedScene The scene has finished
11 currentAccesScenes List of all the scenes that the agent
can move into from a transition
12 movedToScene The agent has entered a scene
13 moveToSceneFailed Agent attempt to move to a scene failed
14 | currentAccessTransitions Informs of all the transitions that the agent
can move into from a scene
15 movedToTransition The agent has been moved to a transition
16 | moveToTransitionFailed Agent attempt to move to a transition
failed
17 acquiredObligations Informs of acquired obligations by the agent
18 obligationsFulfilled Informs of fulfilled obligations by the agent
19 currentObligations Informs about the current obligations of the agent
20 currentSceneState Informs about the scene state
21 currentScenePlayers Informs about the agents within a scene

Table 6.2: Messages that the governor can send to its associated agent.

fail. For instance, it is trying to utter an illocution which it is not correct with
respect to the current execution of a scene.

The table also contains the messages that the governor sends to the agent in
response to requested information. That is, messages informing the agent about:
the scenes it can reach from a transition, the transitions that it can reach from a
scene, the agent current obligations, and the current state or participants within
a scene in which the agent participates. Furthermore, governors pass the agents
the messages in the scenes executions addressed to them and inform them of the
following events: agents entering or leaving a scene in which the agent is taking
part, the end of a scene in which it is taking part, the adoption of new obligations,
and the fulfilment of pending obligations. Notice, that if agents were allowed to
ask for general information about the institution execution more messages must
be supplied for requesting and receiving information.

6.3. Social layer 107

6.3.2 Scene Management

In this section we focus on the execution of a scene. In the execution of a
scene several agents in the social layer are involved, namely: a scene manager,
and one governor per agent taking part in the scene. They must coordinate in
order to guarantee its correct evolution. The execution of a scene starts with
the creation of a scene manager endowed with the scene conversation protocol,
the roles that participating agents may play and the maximum and minimum
number of agents per role that can participate in the scene in order to regulate
requests to join and leave. Once the scene manager is up, running agents may
start to join the scene. Notice that the scene conversation protocol can not start
until the minimum number of agents per role is reached.

A scene conversation protocol defines all possible interactions that agents
may have defining at each moment (state) what can be said, by who and to
whom. When a scene is played by a group of agents incarnating its roles, agents
make it evolve by the utterance of grounded illocutions which match the illocu-
tion schemes labelling the scene arcs and that satisfy the constraints associated
to them.

In order to evaluate agent actions within a scene, governors and scene man-
agers use the scene specification and the contextual information of the current
execution. For each scene execution they keep the following contextual informa-
tion:

e all the participating agents with the role they are playing within the scene;
e the current state of the scene execution; and

e all the variable bindings made up by uttered illocutions(X), where ¥ stands
for the sequence of all the substitutions done during a conversation, i.e. a
sequence of 0,,,; each one corresponding to an actually uttered illocution
from state w; to state w;.

At any point in the execution of the scene the contextual information must be
the same for all the governors and the scene manager. They must be constantly
informed of any event that updates it. These events are: new agents joining
the scene, some participating agents leaving the scene and any transition on the
conversation protocol. A transition can be caused by the expiration of a timeout
or by the utterance of an illocution. A fundamental aspect is that the state of
the scene execution must be perceived to be the same for all the agents. That
is, all of them must progress together when there is a transition in the protocol.
This implies that only one agent can speak at the same time. Thus, governors
and scene manager must, coordinate in order to guarantee that only one of them
updates the contextual information at the same time. For this purpose, they
use a token passing protocol and only the agent that has the token can send
a message that updates the contextual information. Furthermore, the token
contains the number of events produced since the beginning of the scene. This
permits governors to check if they have the complete information of all events

108 Chapter 6. Social Layer for Electronic Institutions

produced so far. Otherwise they would ask for the missing bits to the scene
manager.
A participating agent can do three actions within a scene:

e it can try to utter an illocution;

e it can inform the governor that it wants to leave the scene to go to a
transition; and

e it can request for scene information.

In this later case, it can ask for the list of participants within the scene, the
current state and the transitions that it can reach from the scene. Furthermore,
an agent is informed about changes in the list of participating agents, about
messages received by the governor addressed to it, and about transitions caused
by a timeout. Agents are also informed when the scene finishes.

Now we concentrate on the process that a governor follows when requested by
its agent to utter an illocution in a scene conversation protocol (see figure 6.4).
As the governor keeps information of all the participants in a scene along with
their role, there is no need for the agent to send all the information correspond-
ing to the sender and receiver(s) when trying to utter an illocution. If some
information is left out, the governor expands the message by filling them with
the information that it keeps. Table 6.3 shows how the sender and receiver fields
of a received message are expanded by a governor if its agent is the agent polki
playing role a, and there is another agent, polki2, playing role b within the scene.
In the case of the sender, if some information is left out, the governor expands
it with the identifier and role of the agent associated to it. In the case of the
receiver field, if no information is received, it is understood that the message
is addressed to all the agents within the scene. If only the identifier of the
addressee is given, the governor expands the message by adding the role that
this agent is playing within the scene. This process is done before starting the
verification of the message.

Once the message has been expanded, the governor checks if it is correct
with respect to the scene specification and the scene execution context. An
illocution sent by the agent will be correct if it matches an illocution scheme
labelling an outgoing arc of the current state and it satisfies the constraints
associated to that arc. Notice that within an illocution scheme we distinguish
between application and binding occurrences of the variables. The governor
substitutes each application occurrence in the illocution schemes labelling the
outgoing arcs of the current state by the last bound values of the variable. That
is, for each application occurrence the governor searches in ¥ for the last bound
value of the variable and it substitutes the application occurrence by the bound
value. Thereafter, it applies pattern matching between the expanded illocution
received from the agent and illocution schemes labelling the outgoing arcs of the
current, state where application occurrences have been substituted by the last
bound value of the variable. If the pattern matching fails in all the cases, it
means that the illocution is not correct and the agent is informed about it. If

6.3. Social layer

]

A

Expand message

Message to say

Yes

No
Is it correct?
Yes
[
\
Y
No
Send an error Have | got the
message token?
A4
- Say the message - Ask for the token
- Wait for the token or a

v change in the scene context

Continue

Has the scene

context changed?

Figure 6.4: Algorithm for saying an agent message

109

the pattern matching succeeds, a list of substitutions for free variables in the
schema is obtained and the governor checks if the arc constraints are satisfied.
In order to evaluate constraints, the variables are substituted by their actual
values. On the one hand, occurrences making reference to variables in the illo-
cution scheme of the same arc are substituted by their value in the illocution
sent by the agent. On the other hand, occurrences making reference to previous
binding(s) of a variable have their bound value searched for in ¥. Remember
that within constraints we allow to make reference to a set of variable bindings

110 Chapter 6. Social Layer for Electronic Institutions

(see section 3.2.2 for all possibilities). Once variables have been substituted
by their corresponding values, constraint expressions are transformed to postfix
Polish notation [Tremblay and Sgrenson, 1985] and are evaluated using a stack.
For instance, the expression (> (+ 2 3) 4) is transformed to the expression '2 3
+ 4 >’. As a result, they can be easily evaluated by using a stack.

If the illocution is correct (it matches an illocutions scheme and satisfies the
arc constraint) the governor tries to send it. If the governor has the token, it is
allowed to send the message. The message is sent to all the governors and the
scene manager because they have to update their contextual information but only
the governor(s) of the receiving agent(s) forward it to their agent(s). To update
the contextual information of the scene the target state of the arc becomes the
current state of the scene and ¥ is extended with the bindings produced in the
pattern matching process. The governor confirms the agent that its illocution
has been uttered by sending it a saidSceneM essage message. If the governor
does not have the token, it asks for the token to the agent that has got it. At
this point, it can either receive the token or a message from another governor
corresponding to the utterance of an illocution by another agent. In the first
case, if it receives the token, it sends the message to all the governors and scene
manager as explained above. Otherwise, as the context of the scene has changed
it must verify whether the message is still correct and if so, it asks for the token
again. Notice that the verification of the message is done before asking for the
token to avoid the possibility of an agent blocking the scene when its governor
has the token by continuously sending incorrect messages.

When the governor that has the token receives a message asking for it, it
checks first whether it needs the token or not. If it needs the token, the request
message is stored to be processed later on. Otherwise, it looks in the queue of
incoming messages if there are other governors asking for the token. In this case
it selects randomly one of them and it sends the token to it, except if the scene
manager has asked for the token. In this later case the token is sent to the scene
manager.

The following example illustrates how this works. Consider an auction
scene at state w; connected to state w; by an arc labelled with the illocution
scheme (commit (7y buyer) (z auctioneer) (bid !good_id ?price)) and the con-
straint (> ?price !reserve_price). This illocution allows buyers to submit bids.
Consider also that agent John, playing the buyer role within the scene, sends to
its governor the following message to submit a bid:

request(cl, SaySceneMessage(commit (James) (bid g1 25)))

where cl stands for the identifier of the conversation between the agent and its
governor which corresponds to the auction scene.

When the governor receives the message the thread in charge of the commu-
nication channel parses it and adds the message to the queue of the conversation
of the auction scene. Later on, the thread in charge of this conversation will read
the message, it will detect that the agent wants to utter an illocution within the
scene and it will expand the message. We can see that the message sent by the

6.3. Social layer 111

Received message Expanded Message
Sender Receiver Sender Receiver
Agent | Role | Agent | Role | Agent | Role | Agent | Role
- - - - polki a all -
- - all - polki a all -
polki - - - polki a all -
polki a - - polki a all -
polki - all - polki a all -
polki a all - polki a all -
- - - b polki a - b
polki - - b polki a - b
polki a - b polki a - b
- - polki2 - polki a polki2 b
- - polki2 b polki a polki2 b
polki - polki2 - polki a polki2 b
polki - polki2 b polki a polki2 b
polki a polki2 - polki a polki2 b
polki a polki2 b polki a polki2 b

Table 6.3: Expansion of messages.

agent, has no information about the sender and about the role of the receiver.
Then, the governor will expand the message by filling the missed information
with the information it keeps. That is, with the information of its associated
agent and with the role of agent James. If agent James plays the auctioneer
role within the scene, the received illocution will be expanded into the following
one:

(commit (John buyer) (James auctioneer) (bid gl 25))

Complementary, application occurrences in the illocution scheme for sub-
mitting bids are substituted by the last bound value of variables. Looking at
illocution scheme presented above, there are two application occurrences: !z and
lgood_id. Therefore, it is looked in ¥ for their last bound value. If the last bound
value of variables z and good_-id are James and gl respectively, the illocution
scheme presented above is transformed into the following one:

(commit (?y buyer) (James auctioneer) (bid gl ?price))

Then, the governor applies pattern matching between the expanded illocution
from the agent and the illocution scheme where application occurrences have
been substituted by the last bound value of the variables. In this case the
pattern matching succeeds and the following list of substitutions is obtained:
[?y/John, ?price/25]. Notice, that if the last bound value of variable z would be
different of James or the last bound value of variable good_id would be different
than g1, the pattern matching would have failed. Finally, before trying to send

112 Chapter 6. Social Layer for Electronic Institutions

the illocution, the constraints associated to the arc must be evaluated. In order
to evaluate the constraint, its variables must be substituted by their es must
be substituted by their e occurrence ?price makes reference to the value of the
variable in the illocution sent by the agent and the occurrence !reserve_price to
the last bound value of the variable, which is search for in ¥. The constraint
is satisfied if the last bound value of variable reserve_price is lower than 25. If
this is the case, the message is correct and the governor would try to send the
message. With this aim it would ask for the token, and if it receives the token,
it will send the illocution to all the governors and the scene manager making
the scene evolve. Only the governor of agent James would pass the message to
its agent. As a consequence of the illocution utterance the current state of the
scene will evolve to w; and ¥ is extended with 0,4, the bindings produced by
the utterance of the illocution, namely [?y/John, ?price/25].

Another important issue within a scene execution is when there is a timeout.
As soon as the scene evolution reaches a state where there is an outgoing arc
labelled with a timeout, governors evaluate the timeout expression and start
the timeout countdown. Timeout expressions are evaluated as constraint ex-
pressions. Thus, variables appearing in the expressions are substituted by their
bound values to evaluate the expression using a stack. Notice, that in the case
of timeouts all variable occurrences must correspond to application occurrences.
This process is done independently by each governor of the scene and the count-
down is done in a newly created thread. If the governor receives a message of its
agent, before the timeout expires, it proceeds as explained above. Otherwise, if
the timeout expires, this means that its agent can not utter any illocution and
must coordinate with the scene manager and the other governors to know if all of
their timeout countdowns have expired or if there is some agent that uttered an
illocution on time. The coordination in this case is lead by the scene manager.
When a governor timeout expires it sends a message to the scene manager. If
the scene manager receives a message from each governor confirming timeout ex-
piration, it asks for the token and sends a message to all the governors informing
that the scene state evolves as a consequence of the timeout expiration.

Scene managers are also in charge of authorising agents to join or leave scene
executions. On the one hand, requests for joining the scene are received from
the institution manager which is in charge of transitions. On the other hand,
when an agent intends to leave a scene, it must send the governor a message
movetoTransition informing the governor to which transition it wants to go
to. If the agent can move to the requested transition (if there is an arc in the
performative structure from the scene to the requested transition labelled by
the agent’s role) the governor informs the scene manager that its associated
agent wants to leave the scene. In both cases the scene manager informs all the
governors about the requests and the roles of the agents waiting to join or leave
the scene. Thereafter, when the scene reaches a state where the action can be
performed the governor owning the token sends it to the scene manager. This
occurs, when the scene execution reaches an access or exit state for the role of
an agent waiting for joining or leaving the scene. Upon the reception of the

6.3. Social layer 113

token, the scene manager blocks the scene execution and authorises agents to
join or leave except if the restrictions on the maximum and minimum agents
per role would be violated. When an agent is authorised to join the scene, the
scene manager sends all the contextual information about the current execution
to its governor, namely the current state, ¥ and the list of participants. The
governor keeps the received information and informs its agent that it has joined
the scene, and about the current state and the current participants within the
scene. When an agent is authorised to leave the scene, it goes to the selected
transition. Then, the governor informs the agent that it has moved from the
scene to the selected transition. In both cases the scene manager informs all
the governors about the agents that have joined or left the scene and governors
update the contextual information and inform their associated agents.

6.3.3 Transition management

Transitions are a kind of routers within the institution performative structure
whose dialogues refer to the scenes that agents within them can reach. The
institution manager is in charge of managing the transitions, because it knows
all the current executions of the different scenes in the performative structure,
and which is the scene manager of each one of them. Furthermore, it is in charge
of authorising agents to move to current scene executions and of creating new
ones.

The outgoing arcs that an agent reaching a transition can follow depend on
the arcs’ labels. Since incoming and outgoing arcs of a transition are labelled
with pairs of agent variable and role identifier, an agent can only leave a tran-
sition through those arcs labelled with the same agent variable than the one in
the arc through which it reached the transition. Notice that we allow agents to
change its role when traversing a transition before joining target scenes. There-
fore, if an agent reaches the transition through an arc labelled with (zr) its
possible paths are those outgoing arcs whose label contain a pair (xr'). Fur-
thermore, the type of each outgoing arc defines if an agent following the arc will
join to one, some or all the current executions of the target scene or if the agent
will join a newly created execution of the target scene.

Complementarily, the type of a transition determines whether the agent will
follow all or must select one of its possible paths and if the agent has to syn-
chronise with other agents. Remember that there are two types of transitions:
Or, and And. Agents reaching an Or transition must choose only one of its
possible paths to follow, while agents reaching an And transition will follow all
its possible paths. Moreover, And transitions force agents to synchronise before
leaving the transition.

When an agent arrives to a transition, it can ask which scenes it can go
by sending an accesScenes message to its governor. The governor passes the
message to the institution manager, that taking into account the path that
the agent followed to the transition, the performative structure specification
and the current scene executions, provides the paths that the agent can follow.
Concretely, each path contains:

114 Chapter 6. Social Layer for Electronic Institutions

the type of the target scene of the arc;

the type of the arc;

the role that the agent will play in the target scene; and
e the current scene executions of the target scene.

For those arcs of type new, an empty list is sent in the last field because if
the agent follows that arc it will go to a newly created scene execution of the
target scene. When the governor receives the information from the institution
manager, passes it to the agent.

From its possible destinations the agent must request which paths to follow
by sending a movetoScenes message to its governor. The message must contain
per selected path the type of the target scene, the type of the arc, the role
that the agent is going to play in the destination scene(s), and a list of scene
executions. The last field is only necessary when the arc is of type one or some;
containing only one scene execution identifier if the arc is of type one and a list
of executions identifiers if the arc is of type some. In the case of arcs of type
new or all, this last field must be an empty list as in the first case, the agent
will go to a newly created scene execution and in the second case, the agent will
go to all the current executions of the target scene.

The governor passes the message to the institution manager which analyses
if the agent request is correct. For instance, that it does not select more than
one path to follow in an Or transition, that it does not select more than one
execution to go to in an arc of type one or that the identifiers of the scene
executions that it requests to go are correct. The institution manager analyses
the agent request taking into account the type of the transition, the arc that
the agent followed to reach the transition, the transition outgoing arcs and the
current, executions of each target scene. If it is not correct, the agent has its
request refused.

The last point to take into account before allowing an agent to move is
whether it has to synchronise with other agents or not. Agents are forced to
synchronise when they reach a transition of And type. In the case of an Or
transition agents reach and leave the transition by themselves following one of
its possible paths, without synchronising with other agents. The synchronisation
is undertaken by the institution manager as it knows all the agents within the
transition and the scene executions that each agent has requested to go to. Notice
that agents appearing in a conjunction in an outgoing arc of the transition must
go to the same scene executions and then, which agents are synchronised depends
in some cases on which scene executions they request to go to. This corresponds
to the cases where the conjunction appears in an arc of type one or some. If
there are no conjunctions in an arc of type one or some, synchronisation is
accomplished taking into account the order in which agents reach the transition.
In this manner, the first agents reaching the transition for each incoming arc are
synchronised. If there is a conjunction in an arc of type one or some agents are
synchronised with the agents that want to go to the same scene execution(s). For

6.3. Social layer 115

(€] %))

Figure 6.5: Examples of transitions.

this purpose, the institution manager keeps which scenes each agent within the
transition wants to go to and it uses this information to synchronise the agents.
When a new agent reaches a transition requesting which scene executions it
wants to go to, the institution manager looks if the agent can be synchronised
with some of the agents on wait. If so, the institution manager synchronises the
agents and authorises them to start moving to the requested scene executions.
We want to remark that when the institution manager has different possibilities
for synchronising the new agent, it always chooses the agents that first reached
the transition. (the agents that have been waiting for longer). While an agent is
waiting for being synchronised it can change its target scenes by sending a new
message movetoScenes to its governor.

Once an agent has correctly selected where to move to and after being syn-
chronised, if necessary, it can start moving. Movements are done asynchronously,
and agents are incorporated into each requested scene execution, as soon as pos-
sible, without taking into account other destinations. From the set of movements
that an agent has requested, we differentiate between the movements to active
scenes and the movements to new scenes. When the movement is to an active
scene, the institution manager communicates the scene manager of the target
scene execution that there is an agent or a group of agents waiting to join the
scene as well as their role(s). The scene manager will allow the agent(s) to join
the scene, as soon as the scene execution reaches an access state for that role(s).
When the movement is to a new scene execution, this is created by launching a
scene manager for it, and the agent(s) is incorporated into it..

Figure 6.5 depicts two examples of scene connections mediated by an And

116 Chapter 6. Social Layer for Electronic Institutions

transition. In (1), agents coming from scenes s1 and s2 are synchronised in order
to start a new execution of scene s3, while in (2) they are synchronised to go to
one of the current executions of scene s3. Consider that an agent al playing the
R1 role reaches the transition from s1; that there are no agents waiting in the
transition; and that there are three executions of s3 denoted by il#s3, i2#s3
and i3#s3. Once in the transition the agent can request which scenes to go by
sending the following message to its governor:

request(ci, accessScenes)

where ci stands for the conversation between the agent and the governor associ-
ated to the transition.

The governor, after communicating with the institution manager, answers
the agent with the following message (the first one corresponds to (1) and the
second one to (2)):

(1) inform(ci, current AccessScenes((s3, new, R1,nil)))
(2) inform(ci, current AccessScenes((s3,one, R1, (i14s3,i2453,i34s3))))

In the first case, as the destination will be a newly created scene execution
of the target scene, no information is sent about the current executions of s3.
In the second case, as the arc is of type one the agent is informed about all the
current executions of s3. After receiving the information, the agent must request
where it wants to go to by sending a movetoScenes message to its governor. In
the first case, it has only one option while in the second one, it must choose
one of the current executions to join. Consider that in each case it sends the
following messages to the governor:

(1) request(ci, movetoScenes((s3,new, R1,nil)))

(2) request(ci, movetoScenes((s3,new, R1, (i14#s3))))

Afterwards, the governor passes the message to the institution manager which
analyses the agent request. Since the agent request is correct in each case, the
institution manager keeps it and the agent waits to be synchronised. In the
first case, the agent will be synchronised with the first agent coming from s2
to enter a newly created execution of s3. At this aim the institution manager
will launch a scene manager for the new scene execution to which agents will be
incorporated.

In the second case, the agent must wait until the arrival of an agent from s2
intending to go to the very same scene execution, that is to execution i1#s3.
Notice that if an agent intending to go to another scene execution arrives from s1,
this agent will not be synchronised with agent al. However if an agent arriving
from s2 requests for joining ¢1#s3, it will be synchronised with a1 and both will
be authorised to move to the selected scene execution. After being synchronised
the institution manager will inform the scene manager of execution i1#s3 which

6.3. Social layer 117

will allow agents to join the scene, as soon as, it will reach an access state for
their roles, that is, for roles R1 and R2.

We have to take into account that some of the requested movements of an
agent can fail since an agent might not join a requested scene execution before
it finishes. This can occur because the scene did not reach an access state for
the agent role before finishing or because there were already in the scene the
maximum number of agents per its role and therefore it was not allowed to join
the scene. If the arc to the scene is of type all or some, the agent is informed and
it is moved to the other selected executions. But, if the arc is of type one this
path is considered failed and the agent is asked to select another scene execution
to go.

6.3.4 Norm management

Norms model the consequences of agent’s actions within scenes. These conse-
quences are expressed in terms of obligations that agents must fulfil later on.
Norms contain the actions that will provoke their activation, the obligations that
agent will have and the actions that agents must carry out in order to fulfil the
obligations. As we are in dialogic institutions the actions are expressed as pairs
of a scene and an illocution scheme. Norms have the following schema:

(s1,71) Ao e A(SmyYm) ANer A AepA

A= (Smt1sYm+1) A <o A =(Smtns Yman) = 0bli A ... A obl,,

where (s1,71),- -, (Sm4n, Ym+n) are pairs of scenes and illocution schemes,
e1,...e, are boolean expressions over illocution schemes variables, - is a de-
feasible negation, and obl, ..., obl, are obligations. The meaning of these rules
is that if the illocutions (s1,71),- .-, (Sm, Ym) have been uttered, the expressions
e1,...,e are satisfied and the illocutions (Sy41,Vm+1)s- -+ (Sm+n, Ym+n) have
not been uttered, the obligations obly, ..., obl, hold. Therefore, the rules have
two components, the first one is the causing of the obligations to be activated
(for instance winning a Dutch auction round by saying ‘mine’, generates the
obligation to pay) and the second is the part that removes the obligations (for
instance, paying the amount of money due for the round which was won).

Remember that norms are specified in ISLANDER by three components, the
antecedent, the defeasible antecedent and the consequent. The antecedent con-
tains the list of actions that provoke the activation of the norm, the consequent
contains the list of obligations that the agent will have when the norm is acti-
vated and the defeasible antecedent contains the actions that an agent must do
in order to fulfil the obligations.

Governors keep, at every moment, the pending obligations of their associated
agent and they check whether agent interactions modify them. This can happen
as a consequence of the activation of some norms or as a consequence of the ful-
filment of some of the agent pending obligations. On the one hand, the governor
must check whether the illocutions uttered and received by its associated agent
satisfy any of the norm antecedents implying that the agent has acquired new

118 Chapter 6. Social Layer for Electronic Institutions

obligations. On the other hand, the governor must check whether the illocutions
uttered and received by its agent satisfy the defeasible antecedent of an activated
norm in order to remove the obligations.

Our approach is to manage norms as a rule based system. In order to con-
struct the rule base, each institutional norm is divided into two rules, one for
the activation of the norm and another one for the fulfilment of obligations.
The facts of the system are the illocutions uttered and received by the agent.
Notice that not all the rules are active at every moment. The rules that check
norms’ activation are always in the rule base but the rules corresponding to the
fulfilment of obligations are added and deleted dynamically from the rule base
when a norm is activated or when obligations are fulfilled respectively. A norm
N; which follows the schema presented above is divided into the two following
rules:

R1l;: (s1,71) Ao A (Smyym) Ner A ... ANep —
assert(obly ...obl,) A addRule(R2;, RB)

R2; : (Sma1, Yma1) Ao A (Smtny Yman) =
retract(obly ...obl,) A dropRule(R2;, RB)

The first rule corresponds to the norm activation. The meaning of R1; is
that if illocutions v; ...7, have been uttered in the corresponding scenes and
e1 ...e; are satisfied, then obligations obl; ... obl, are added to the set of agent
pending obligations and a rule to check the obligations fulfilment is added to the
rule base. Notice that illocution schemes on norm definitions contain variables
whose scope is the complete norm. Hence that the bindings of these variables
must be taken into account in the rule of the second type added to the rule
base. Thus, R2] is a particularization of R2; where variables are replaced by
their bound value.

The second rule checks whether norm obligations are fulfilled. The meaning
of R2; is that if illocutions vy, 41 - . - Ym+n have been uttered in the corresponding
scenes, then obligations obl; . ..obl, are eliminated from the set of agent pending
obligations and the rule is removed from the rule base. Notice that at a certain
moment there can be more than one rule of the second type from the same norm
in the rule base, each one corresponding to a different activation of the norm.
Governors only need to add to their rule bases the first type of rules because
the second type will be added and removed dynamically in the rule base as new
obligations are acquired or fulfilled.

In order to manage the rules we have opted for using the Java Expert System
Shell (JESS) [JESS, URL]. JESS is a rule engine and scripting environment
which permits the creation and management of rule-based systems from JAVA
programs. In order to check which rules can be fired, it has implemented a rete
algorithm which is a well known forward checking algorithm [Forgy, 1982].

The governor has a thread devoted to manage its connection to JESS. On the
one hand, this thread will be in charge of adding the rules and facts into JESS

6.4. Development of agents for electronic institutions 119

and to run the rete algorithm. On the other hand, this thread will be informed
by JESS whenever a rule is fired. When the institution specification is loaded
each norm in ISLANDER is transformed into a rule in JESS and added into
JESS. That is, rules where the antecedent is the antecedent of the norm, and as
a consequent they have the obligations expressed in the norm consequent, and
a rule definition for checking the fulfilment of the obligations. Thus, when one
of these rules is fired a new rule will be added to the rule base for checking the
fulfilment of obligations.

Taking into account that few of the illocutions that agents utter can acti-
vate a norm or fulfil agent obligations to add all the illocutions that an agent
sends or receives to JESS would make the rete algorithm very inefficient. Only
the uttered illocutions which match an illocutions scheme in a norm should be
added to JESS. For this purpose, for each scene it is marked which illocution
schemes can be matched by illocutions which can also match some of the illocu-
tion schemes appearing in the norms. When, an illocution matching one of the
marked illocutions where the agent associated to the governor is uttered within
a scene, the thread handling that conversation passes it to the thread in charge
of JESS.

The thread in charge of JESS works as follows:

[Step 1] Waits for a new illocutions from one of the threads in charge of the
conversations.

[Step 2 | Adds the new fact into JESS.
[Step 3 | Runs the rete algorithm.
[Step 4 | Goes back to step one.

At each execution of the rete algorithm JESS checks if the new facts fire any
rule and it stops when no more rules can be fired. Whenever a rule is fired, JESS
informs the thread which informs the agent and modify the list of agent pending
obligations. On the one hand, when a rule of the first type is fired the agent
is informed about the new obligations that it has acquired. On the contrary,
when a rule of the second type is fired the agent is informed about the fulfilled
obligations.

6.4 Development of agents for electronic insti-
tutions

Until now we have focused on how to develop infrastructures for electronic in-
stitutions but another fundamental issue is the development of agents which
can participate in the institution. Remember that in institutions’ formalisation
we differentiate between the internal and external roles. The internal roles are
played for what we call the staff agents that represent the electronic counterpart
of the institution workers in human institutions. Since the institution delivers

120 Chapter 6. Social Layer for Electronic Institutions

Figure 6.6: Performative structure of the agoric market.

its services and duties to staff agents a complete development of them is needed
in order to run the institution. However, the process presented here to develop
agents for an institution can be used to develop indistinctly a staff or an external
agent.

The specification defines what the agents within an institution are allowed
to do but no information is given on how agents have to take their decisions.
Hence, agents can not be automatically generated from the specification. But
agent skeletons can be obtained from the institution specification. And yet, the
work of agent designers will be to fill up the parts that can not be extracted
from the institution specification. For this purpose, they must define when to
speak and what to say, which conversations to join to and which information
from the received illocutions must be kept in the agent’s knowledge base to be
used in further decisions.

The purpose of this section, which is a summary of
[Vasconcelos et al., 2002b, Vasconcelos et al., 2003]?, is to show how agent
skeletons for an electronic institution can be first synthesised from the insti-
tution specification and how they can be later on customised by engineers.
Next, in section 6.4.1 we present the agoric market which we use as an example
throughout the section. In section 6.4.2, we explain a logical formalism for
electronic institutions in Prolog, section 6.4.3 describes how agent skeletons
can be synthesised from the logical representation of an institution and section

2The main ideas of this section correspond to Wamberto Vasconcelos and he has also
developed the software components explained here. T want also to thank him and the rest of
the authors of both paers for authorising us to use material from them.

6.4. Development of agents for electronic institutions 121

1 (request (2 buyer) (seller) buy(7item)
2 (offer (2 seller) (!x buyer) sall(titem, 2price))

3 (inform (1x buyer) (?y seller) accept(titem, 2price))
4 (inform (x buyer) (?y seller) reject(titem, price))

5 (inform (!x buyer) (all) close())

Figure 6.7: Simple Agora Room Scene

6.4.4 details how the skeletons can be customised by agent developers. Finally,
in section 6.4.4 we present a generic seller agent for the agoric market.

6.4.1 Apgoric Market

As an example we use a virtual agoric market that agents enter to buy and
sell goods. Figure 6.6 depicts the performative structure of the market. The
main scene is the agora, depicted in figure 6.7, where agents interact for buying
and selling goods. Before agents can take part in the agora they have to be
admitted and after the agora room scene is finished, buyers and sellers must
proceed to settle their debts. Within an agora room (see figure 6.7) an agent
willing to acquire goods interacts with a number of agents intending to sell such
goods. This agora scene has been simplified — no auctions or negotiations are
contemplated. The buyer announces the goods it wants to purchase, collects the
offers from sellers (if any) and chooses the best (cheapest) of them.

6.4.2 Logical formalism for Electronic institutions

Once the institution has been specified it is translated from ISLANDER into a
logical formalism [Vasconcelos et al., 2002a] implemented in Prolog [Apt, 1997]
making the representation computer-processable. This makes easier to synthe-
sise our simple agents, as we shall see below.

We show in Figure 6.8 our Prolog representation for the agora room scene
depicted in Figure 6.7. Each component of the formal definition has its corre-

122 Chapter 6. Social Layer for Electronic Institutions

roles(agora, [buyer,seller]). states(agora, [wO,wl,w2,w3,wd]) .
initial_state(agora,w0). final states(agora, [w4]).
access_states (agora,buyer, [w0]) . access_states(agora,seller, [w0]).

exit_states (agora,buyer]).

exit_states(agora,buyerler, [wl,w4]).

theta(agora, [wO,request (B:buyer,all:seller,buy(I)),wl]).
theta(agora, [wl,offer(S:seller,B:buyer,sell(I,P)),w2]).
theta(agora, [w2,offer(S:seller,B:buyer,sell(I,P)),w2]).
theta(agora, [w2,inform(B:buyer,S:seller,accept (I,P)),w3]).
theta(agora, [w2,inform(B:buyer,S:seller,reject (I,P)),w3]).
theta(agora, [w3,inform(B:buyer,S:seller,reject (I,P)),w3]).
theta(agora, [w3,inform(B:buyer,S:seller,close()) ,w4l).

Figure 6.8: Representation of Agora Room Scene

sponding representation. Since many scenes may coexist within one electronic
institution, the components are parameterised by a scene name (first parame-
ter). The arcs among scene states and their labels are represented together in
theta/2 where the second argument holds a list containing the directed edge as
the first and third elements of the list and the label as the second element.

scenes ([admission,agora,settlement,departurel).
transitions([t1,t2,t3,t4,t5,t6]).

root_scene (admission) . output_scene (departure) .
arc([admission,w3],p1,t1). arc(tl,p1.1, [departure,w0]) .
arc([admission,w3],p2,t2). arc(t2,p2.1, [agora,w0]).
arc(t2,p2.2, [agora,w0]). arc([agora,wl],ps3,t3).
arc([agora,w4],p3,t3). arc(t3,ps3.1,[settlement,w0]).
arc([agora,wl],ps,t4d). arc([agora,wd],ps,t4d).
arc(t4,pa. 1, [departure,w0]) . arc([admission,w3],ps,t6).
arc(t6,ps.1, [settlement,w0]) . arc([settlement,w3],ps5,t5).

arc(th,ps.1, [departure,w0]) .

Figure 6.9: Representation of Agoric Market electronic institution

Any scene can be conveniently and economically described in this fashion. In
Figure 6.9 we present a Prolog representation for the agoric market institution.
Of particular importance are the arcs connecting scenes: these are represented as
arc/3 facts storing the first argument of which holds (as a sublist) an exit state
of a scene, the second argument holds the predicate (constraint) p; which enables
the arc, and the third argument is the destination transition. Each p; contains
which roles can progress through the arc. Another arc/3 shows arcs leaving a
transition and entering an access state of a scene. Notice that the representation
of the performative structure is a little bit different from the one that we have
presented in chapter 3. Concretely, connections are done from scene exit states
to transitions and from transitions to scene access states. Furthermore, norms
are not represented in the current version of the logical formalism.

6.4.3 Synthesis of Agents

The basic idea for synthesising agents is to automatically extract from an elec-
tronic institution an account of the behaviours agents ought to have. This sim-

6.4. Development of agents for electronic institutions 123

plified account is called a skeleton: it provides the essence of the agents to be
developed. A simple way to synthesise agents from our institutions is introduced
in [Vasconcelos et al., 2002a]. We devised a means to use the logical represen-
tation of the electronic institution in order to obtain a set of Horn clauses which
capture the behaviours for the agents participating in the institution. The syn-
thesis obtains, for the roles of each scene, a set of Horn clauses which represent
the connections among the states and the events, i.e., sending or receiving mes-
sages, associated with these edges. Engineers willing to develop agents to per-
form in electronic institutions could then be offered a skeleton which would be
gradually augmented into a complete program. Depending on the way skeletons
are represented, semi-automatic support can be offered when augmenting them
into more complex programs.

A skeleton defines all the basic behaviours agents should possess to success-
fully perform in the institution they are designed for. Our skeletons are simple
logic programs with very limited functionality: they store the current state of the
computation, and are able to move on to a next state, given certain conditions.
However, there might be states of the computation from which more than one
next state is possible. That is, situations where an agent can do different actions.
For instance, there are states of a scene where an agent can utter different illo-
cutions, or when a scene reaches an exit state for its role an agent might choose
between leaving the scene or continuing participating within it. When a rational
agent follows an institution, which is the next action to do should be resolved
by formal reasoning and decision-making procedures. The augmenting process
which skeletons undergo is aimed at “filling in” such capabilities. Reasoning
and/or decision-making procedures have to be appropriately added to the ini-
tial skeleton, yielding more sophisticated agents that conform to the institution
from which they were extracted. Furthermore, any variation to be performed
by the components (such as the customisation of messages) is not specified in
the institution specification. If, for instance, a message offering an item is to be
sent, the actual item which is offered is to be defined by whichever agent actually
participates in the institution. This variability is another capability that ought
to be added to the initial skeleton.

We show in Figure 6.10 some of the clauses synthesised from the electronic
institution of Figure 6.6, represented as in Figures. 6.8 and 6.9. The top clauses
depict the agora scene. The bottom clauses are the transitions among scenes.
Additional predicate definitions are required for message exchange and these are
inserted at a later stage. An agent whose predicates are all defined is a completely
operational and executable Prolog program which captures the behaviours within
an electronic institution.

The clauses define predicate s/1 which uses a list to represent the current
state. The list consists of the name of the scene, the name of the state in the
graph and the role of the agent. Depending on the role of the agent, a suitable
action send/1 or rec/1, to send and receive a message, respectively, is chosen
for the clause. By using the clauses with the standard SLDNF resolution mech-
anism [Apt, 1997] we get all possible behaviours of the agents in the electronic

124 Chapter 6. Social Layer for Electronic Institutions

s ([agora,w0,buyer]) : -
send(request (B:buyer,all:seller,buy(Item))),
s([agora,wl,buyer]).

s([agora,w0,seller]):-
rec(request (B:buyer,all:seller,buy(Item))),
s([agora,wl,seller]).

s([agora,w3,seller]) :—
rec(inform(B:buyer,S:seller,reject (Item,Price))),
s([agora,w3,seller]).

s([admission,w3,seller]):- holds(p;),s([tl,seller]).

s([t5,buyer]) :- holds(ps.1),s([departure,w0,buyer]).

Figure 6.10: Synthesised Agent from Agoric Market institution

institution.

6.4.4 Customising Synthesised Agents

The clauses synthesised from the logic representation of an institution describe
all possible behaviours an agent may have. Because it is an exhaustive process,
all scenes, edges, transitions and roles are considered. However, if we were to use
the same clauses to define agents which would enact an institution, they would
all have precisely the same behaviours. Although this might be desirable at
times, we also want to offer means for designers to add variability to the agents
synthesised.

This initial skeleton is then customised in different ways by the user. We are
able to represent a comprehensive repertoire of program manipulation operations
organised in the following three categories (in increasing order of complexity of
captured programming expertise):

e Program editing — operations such as insert/delete an argument in a pred-
icate, insert/delete goal in a clause, insert/delete clause in a program, and
SO om.

e FElectronic institution editing — operations to restrict the clauses to spe-
cific scenes, states of a scene, transitions and roles. Such operations take
into account the inter-dependence of concepts within the institution; for
instance, if an agent has access to scene S; then it may also need to have
access to scene So; if the user tried to restrict the clauses to scene Si, a
message would be issued.

e Program techniques — insertion of extra functionalities with a coherent
meaning/purpose, such as pairs of accumulators to carry values around,
building recursive data structures, and so on [Sterling and Shapiro, 1994].

These operations require user intervention in order to be properly applied. Users
must determine where an argument is to be inserted, which transition, scene, or
role is to be removed from the program being built, and so on. Our environments

6.4. Development of agents for electronic institutions 125

also offer the means to perform manual editing: the users are presented with
the code for the program in a text editor and they can alter the program in
whichever way wanted.

We show in Figure 6.11 the first two clauses of the synthesised agent with an
example of the kinds of customisation via augmenting that users are allowed to
perform within the environment. Starting with the synthesised clauses of Fig-

s([agora,w0,buyer],Stock,Msgs) : -
chooseItem(Stock,Item),
send(request (B:buyer,all:seller,buy(Item))),
updateMsgs (send,Msgs,buy(Item) ,NewMsgs),

s([agora,wl,buyer],Stock,NeuMsgs) .
s([agora,w0,seller],Stock,Msgs) : —
rec(request(B:buyer,all:seller,buy(I))),
updateMsgs (rec,Msgs,buy(Item) ,NewMsgs),
s([agora,wl,seller],Stock,NewMsgs) .

Figure 6.11: Augmented Agent

ure 6.10 the user gradually adds features to the agent’s capabilities. We show the
added parts underlined. The first modification inserts a programming technique
which carries a Stock data structure around as program execution proceeds; this
data structure is employed to obtain, via predicate chooseItem/2, the value of
Item in the first clause. The definition for chooseItem/2 must be supplied. The
second modification concerns the addition of another technique to assemble a
data structure Msgs. This data structure stores the messages sent and received,
and is updated by means of calls to predicate update/3 (which should also be
supplied). The environment ensures that arguments are consistently inserted,
and the user must provide suitable definitions for any auxiliary predicates. The
original set of behaviours of the synthesised agent is preserved in our extended
program above. Ideally this should always happen, ensuring that agents will
perform correctly and efficiently /intelligently.

A Generic Seller Agent

When we customise our seller agents to deal with their pricing policy, we define
the functions which implement the respective policies and leave a slot with the
possible choices greedy or considerate. Depending on the choice taken, the dis-
tinct policies are incorporated. We can also pursue the continuum alternative
and have a slot for the profit margin which will be a numeric value between 0
and 100 to be used by the seller agents when assigning prices to items. We can
be very specific and independently carry out the alterations which will define the
greedy and considerate policies, but we have noticed that these are very similar,
the only distinction being the percentage of profit to be added to the price. We
show in Figure 6.12 the clause of the GenericSeller agent, where the pricing is
established as well as the definition of one of the auxiliary predicates and design
options. The s/3 definition shows the edge w; — w2 when the seller agent re-
sponds to a buyer request: the actual request request:buy(Item) is retrieved

126 Chapter 6. Social Layer for Electronic Institutions

from the messages received Msgs, the price of Item is established via predicate
pricing/2, the offer is sent to the buyer agent, the messages sent/received are
updated via updateMsgs/4 and finally the seller agent moves to state wy. Pred-
icate retailPrice/2 maps each Item (first argument) to its suggested retail
price RPrice (second argument).

s([agora,wl,seller],Stock,Msgs) :—
member (request:buy(Item),Msgs),
pricing(Item,Price),
send(offer(S:seller,B:buyer,sell(Item,Price))),
updateMsgs (send,Msgs,offer:sell(Item,Price) ,NewMsgs),
s ([agora,w2,seller],Stock,NewMsgs) .

pricing(Item,Price):-
retailPrice(Item,RPrice),
$greed(Profit),
Price is RPrice + (RPrice * Profit).

designOption(predicate:greed/1, [greedy:greed(40),considerate:greed(10)]).

Figure 6.12: Fragment of GenericSeller Agent

Predicate pricing/2 calculates the Price of Item but it requires the defini-
tion of predicate greed/1 (marked with a “$” explained below) which obtains
the profit margin the agent is to adopt. The distinction between a greedy and
a considerate seller agent lies in the definition of greed/1. Both the contin-
uum and the discrete possibilities can be exploited with suitable definitions of
greed/1.

The designOption/2 predicate highlights that greed/1 is yet to be defined.
When the user marks a programming construct with “$” our programming tool
prompts her to specify what the construct is expected to be and what val-
ues it may have. This is then represented in the program itself via predicate
designOption/2: its first argument states that a predicate greed/1 awaits def-
inition and its possible definitions are represented as a list (second argument of
designOption/2) of pairs Label:Definition. A more informative label, such
as greedy and considerate, can thus be associated to a definition. The labels
are used to automatically synthesise an interface to the parameter-tuning of our
prototypes.

When the different type of agents has been customised, a prototype of MAS
can be defined. A prototype of a MAS consists of an institution and agents
to enact it. These agents have been synthesised from the institution (or from
parts of it) and customised later on by the designer. Prototypes are defined as
collections of populations of agents. Designers select from the programs obtained
during the customisation stage those that will enact the institution and how
many of each should make up the prototype.

In order to simulate institutions a distributed simulation platform for elec-
tronic institution has been developed. This environment permits to select pop-
ulations of customised agents and simulate a prototype of the electronic institu-
tion. This proof-of-concept platform, developed in SICStus Prolog [SICS, 2000],
simulates an electronic institution using a number of administrative agents, im-

6.5. Conclusions 127

plemented as independent processes, to oversee the simulation. These admin-
istrative agents look after the customised agents taking part in the institution
which interact via a blackboard architecture, using the SICStus Linda tuple
space [Carriero and Gelernter, 1989, SICS, 2000]. Once the simulation has been
run the user is informed about its results. After analysing the results, the user
can modify some of the decisions taken and then, run new simulations. This pro-
cess gives rise to a virtuous lifecycle, as reported in [Vasconcelos et al., 2002a].

6.5 Conclusions

In this chapter we have presented an infrastructure for electronic institutions. We
defend that the execution of open multi-agent systems require an infrastructure
that must check that participating agents do not violate the rules. For this reason
we have developed a social layer middleware on top of the JADE platform. The
social layer middleware is in charge of allowing agents to participate in the
institution but checking that they do not violate institutional rules. The agents
of the social layer coordinate to guarantee the correct execution of an institution.

The most important agent of the social layer is the governor because each
participating agent is connected to a governor to have their interaction mediated
with the rest of the agents. The agent requests to the governor any information
it wants about the institution or for carrying out actions. In the case of infor-
mation, the governor sends it to the agent if it is authorised to receive it. In the
case of actions, the governor analyses first if the action is correct with respect to
the institution specification and the current execution. If so, it tries to do it in
behalf of the agent and it informs the agent if it succeeds or not. Furthermore,
participating agents are informed by their governors about those events in the
institution that they need to know in order to participate in it.

The social layer middleware is generic in the sense that it can be used in
different institutions. In order to achieve that, the agents composing the social
layer are able to load XML specification of institutions as generated by the
ISLANDER. editor. Thus, there is no need to develop a new infrastructure for
each specified institution saving effort and time to institution designers. We
believe that this is an important step forward on the development of multi-
agent systems for which much of the effort has been spent on the development
of infrastructures.

In the last part of the chapter, we have shown how agents for electronic
institutions can be developed. Firstly, agent skeletons can be obtained from the
logical representation of an institution. Then, the agent designer can develop an
agent customising the skeleton. That is, the designer extends the skeleton with
the decision making mechanisms.

Chapter 7

Applications

The purpose of this chapter is to illustrate practically how to specify electronic
institutions. Specifically we introduce two institutions: the auction house feder-
ation and the conference centre'. Firstly, in section 7.1 we focus on the auction
house federation, while in section 7.2 we focus on the conference centre.

7.1 Auction house federation

As a first example we introduce the auction house federation institution designed
and developed within the MASFIT project [MASFIT, URL]. The goal of the
MASFIT project is to develop a system that allows software agents to partici-
pate in real fish markets in the same conditions as human buyers. Nowadays,
some of the real fish markets have a centralised software system which controls
all the processes occurring within the auction house. The system permits the
registration of lots delivered to the fish market by the fishermen, has control
on which buyers are taking part in the auction, auctions the fish after receiving
an order from the auctioneer, and keeps track of the result of each round. In
order to allow buyer agents to participate in the fish markets we have defined
an electronic institution which can be connected to the software running at the
auction houses.

From the point of view of the IITA this project is a continuation of the fish
market project [FishMarket, URL]. The fish market project was devoted to
the design and development of an electronic version of the real fish markets,
as it is thoroughly described in [Noriega, 1997, Rodriguez-Aguilar, 2001]. The
differences among the implemented version and the real fish market, the necessity
of connecting the institution to the software systems in the real auction houses
and the possibility of having several real fish markets connected to the institution
has motivated us to design and develop a new electronic institution, although
the previous experience on the design and development of an electronic version

L Appendix A presents the complete specification of both institutions in the ISLANDER
language.

129

130 Chapter 7. Applications

of the fish market has been very valuable during the project. Thus, we have
designed and developed an electronic institution which permits software buyer
agents to participate in the real auctions in the same conditions as human buyers.
That is, buyer agents receive the same information as human buyers in the real
auction house and they have the same opportunities during the auctions. A main
feature of the designed institution is that it is a federation of auction houses,
that is to say, different real fish markets can be connected to the institution
allowing buyer agents to participate in several auctions at the same time. Thus,
buyer agents receive information from several simultaneous auctions, being able
to decide which is the most suitable place to buy. At the same time, the software
in charge of the real auctions has been extended to permit the participation of
software agents in the auction house. The connection between the real auction
house and the electronic institution is done via sockets. On the one hand, the
software of the real auction house sends to the electronic institution information
of all the events occurring in the auction house relevant for the buyers. On
the other hand, the electronic institution sends to the software in charge of the
real auction house information about which buyer agents are taking part in the
auction and the bids that they submit.

In what follows we concentrate on the virtual part concerning to the elec-
tronic institution which allows buyer agents to participate in the auction house
federation. We want to point out that the auction house federation has been
designed and developed making use of the software presented in this thesis. That
is to say, the institution has been specified using the ISLANDER editor, and it
is executed by loading the specification on the agents of the social layer. The
staff agents playing the internal roles have been developed in JAVA.

7.1.1 Dialogic Framework

The dialogical framework defines all the roles that participating agents can play
within the auction house federation. The institution contains the following roles:

Good Register (GR): it is an internal role which provides buyers with informa-
tion about the goods registered in an auction house. That is, about the
goods that will be auctioned later on. There is one agent playing the good
register role for each real fish market connected to the federation.

Auction Broker (AB): it is an internal role which manages the scenes of a
concrete auction. It informs agents about the events related to the auction
occurring in the real fish market and also it sends the bids submitted by
buyer agents to the software system in the real fish market. There is one
agent playing the auction broker role for each real fish market connected
to the federation.

DB Manager (DBM): it is an internal role which manages the database which
contains historical information about the auction houses. It receives
queries from the buyers, and it returns them the requested information,

7.1. Auction house federation 131

if they are authorised to receive it. There is one agent playing the DB
Manager role for the whole institution.

Buyer Admitter (bad): it is an internal role which controls buyer agents’ access
to the auction house federation. There is one agent playing the buyer
admitter role for the whole institution.

Auction Admitter (aad): it is an internal role which controls buyer agents’
access to a concrete fish market. There is one agent playing the auction
admitter role for each real fish market connected to the federation.

Llotja: it is an internal role played by the agents connecting the auction house
federation and a real fish market. Once in the institution they are respon-
sible of the creation of all scenes related to a real fish market. There is
one agent playing the role llotja for each real fish market connected to the
federation.

Remote Control (RC): it is an internal role which performs all the tasks to
participate in a specific auction under the control of a buyer agent. There
is one agent playing the remote control role per buyer and auction.

Buyer Agent (BA): it is an external role played by the software agents whose
aim is to buy goods in the auctions. Buyer agents receive information from
several auction houses and can participate in each one thanks to a remote
control agent. Each Buyer Agent coordinates the actions of several remote
controls, each one taking part in a different auction. There is one buyer
agent per user.

From the above description we can see that in the institution there are five
internal roles and only one which is external. The external role belongs to the
role Buyer Agent which should be customised with the user preferences before
going to the institution to buy. Once in the institution, they should take into
account their user preferences and the information that they receive from the
different auction houses to decide which is the best place to buy. We want to
point out that buyer agents do not participate directly in the auctions. They
participate in the auctions through to an agent of the institution who takes the
role of remote control and receives orders from the buyer and that participates
in the auction on its behalf. A buyer agent has one remote control for each real
auction in which it is taking part.

7.1.2 Performative Structure

Next we describe all the scenes in the auction house federation except the root
and the output scenes, which are only used as the entry and exit points of the
institution. In the auction house federation we find the following scenes:

Buyer Admission : this scene is devoted to control buyer agents access to
the auction house federation. In this scene a buyer admitter is in charge

Chapter 7. Applications

132

ZhafnoAlngax

DLALRANT

Jafnc ApENE

Ceho|ZEingAgOE

| sdwsew %

Figure 7.1: Graphical Specification of the aucton house federation performative

structure.

7.1. Auction house federation 133

of admitting buyer agents in the institution. Buyer agents entering in
the scene request their admission by sending their username and password
to the buyer admitter, who accepts them if their identification is correct;
otherwise, it denies the admission. There is one buyer admission scene for
the whole institution.

Auction Admission : this scene is devoted to control buyer agents access to
the scenes of a concrete fish market and it is managed by the auction
admitter. Whenever a buyer agent is admitted into a fish market, it is
informed about which are the auction results and good registering scene
of this fish market. There is one auction admission scene, managed by
a different auction admitter, for each real fish market connected to the
federation.

Auction Results : this scene is devoted to inform buyer agents about the
results of the auctions. There is one auction results scene for each real
fish market connected to the federation. In each one, the auction broker
of an auction house and all the buyer agents currently taking part within
that auction house, participate. The auction broker informs buyers about
the result of each round. For each sale in the auction house, the auction
broker informs the buyers about the identifier of the lot, the identifier of
the buyer who has won the round, the price at which the buyer has won
the round, and the number of acquired boxes. If a lot is withdrawn, buyers
are informed about the identifier of the lot, the price at which the lot has
been withdrawn, and the number of withdrawn boxes.

Good Registering : this scene is devoted to inform buyer agents about the
lots registered within an auction house. There is one good registering scene
for each real fish market connected to the federation. In each one the good
register of an auction house and all the buyer agents currently taking
part within that auction house participate. The good register informs
the buyers of all the lots registered within the auction house. When a
new buyer enters the scene it is informed about previously registered lots
which have not been auctioned yet. Each registered lot is identified by the
following attributes:

e an identifier for the lot;

e the fish species;

e the quality;

e the weight in kilograms;

e the ship that delivered the lot to the auction house;

e Wether the price during the auction will be per kilogram or per box;
e some characteristics about the presentation of the lot.

Auction Room : this scene is the most important, as it is the one in which the
fish is auctioned. There is one auction room scene for each real fish market

134 Chapter 7. Applications

connected to the federation. Each one is managed by an auction broker
who auctions the lots following a descending bidding protocol. Besides an
auction broker within the scene, one remote control for each buyer agent
currently taking part within that auction house also participates. Each
remote control participates in the auction room in behalf of a buyer agent
from which it receives orders for submitting bids. In the next section we
will explain in detail the auction room scene.

RC Programming : this scene is devoted to coordinate a buyer agent and a
remote control. The buyer agent programmes the remote control by giving
to it orders for buying within the auction room. These orders contain the
identifier of the lot, the price to bid, and the number of boxes that the
buyer wants. There is one rc programming scene for each buyer admitted
in one of the real fish markets connected to the federation.

Info-Seeking : this scene is devoted to give buyer agents historical information
about the different fish markets and about the fish markets connected at
each moment to the federation. This scene is managed by the DB manager
which receives requests from buyers and answers with the requested infor-
mation, if buyers are authorised to have it. When the request is to know
which are the real fish markets connected to the federation, the returned
information by the DB manager contains the identifier of the admission
scene for each fish market. That is, the scene into which the buyer agent
must go, if it wants to participate in that fish market. Agents playing
the role llotja can also participate in the scene. Concretely, when a fish
market is connected to the federation, the agent playing the role llotja,
which provokes the creation of the scenes for that fish market, moves to
the info-seeking scene in order to inform the DB manager and buyer agents
that a new fish market has connected to the federation.

Figure 7.1 depicts the graphical specification of the auction house federation
performative structure. We can see, according to the description above, that
there are seven scenes apart from the root and the output scenes. The figure
also depicts the connections among the different scenes, which determines the
paths that agents can follow depending on their role. Each scene, except RC
programming scenes, is created by a staff agent playing one of the following
internal roles: buyer admitter, auction admitter, auction broker, good register,
and DB manager.

Notice that we differentiate between the admission into the auction house
federation and the admission into a concrete fish market. The admission to the
federation permits buyer agents to request historical information in the info-
seeking scene but not to participate in the auctions. In order to participate in
the auctions of an auction house connected to the federation buyer agents must
first go to the corresponding auction admission scene. There are at least three
reasons that justify to distinguish between the admission to the federation and
the admission to a concrete auction house. Firstly, buyer agents may not be
allowed to participate in all auction houses; for instance, a buyer agent may not

7.1. Auction house federation 135

be registered in all the auction houses. Secondly, each auction house can have
different admission rules. Lastly, each auction house wants to keep control over
which buyer agents are authorised to participate and buy.

It has already been pointed out that each real fish market is connected to
the auction houses federation via socket. There is one agent in charge of that
socket that mediates the communication between the software in charge of the
real fish market and the agents within the institution. This agent enters in the
institution playing the role llotja and once in the root scene, it can only follow
one path which provokes the creation of all the scenes for that auction house.
Concretely, an execution of the following scenes is created: auction admission,
auction room, auction results and good registering. Then, the agent in charge
of the socket moves to all of them changing its role in each case. Concretely,
it plays the auction admitter role in the auction admission scene, the auction
broker role in the auction room and auction results scenes, and the good register
role in the good registering scene. This agent receives information about all
the events occurring in the real auction house which are relevant for the buyers
through the socket. Depending on the type of the event, it informs the agents
in the corresponding scene. For instance, when it receives a message informing
about the registration of a new good, it informs all buyer agents within the
good registering scene; and when it receives a message informing about the
start of a round, it informs all remote controls within the auction room scene.
Complementary, it informs the software in the real fish market whenever a new
buyer is admitted within the auction house or when one of the participants
leave, and about the bids submitted by the remote controls within the auction
room scene. Notice that the decision about who wins each round is taken by
the software in the real auction houses, not by the auction broker within the
electronic institution.

Buyer agents entering in the institution must go first to the buyer admission
scene where they ask for admission into the auction house federation. Once
admitted they can go to the info-seeking scene where they can request historical
information and information about which fish markets are connected to the
federation. Then, from the info-seeking scene, they can move into the auction
admission scenes of each fish market. Notice that the buyer can go to different
auction admissions in parallel while at the same time, remain in the info-seeking
scene. In this way buyer agents are informed about new fish markets connected to
the federation and can try to enter in those fish markets in which it is not taking
part. Furthermore, as they remain in the info-seeking scene, they can continue
requesting information to the DB manager. When a buyer is admitted within
an auction house a new remote control agent is launched. The buyer agent and
its remote control have then to synchronise before moving to a newly created rc
programming scene, and the rest of the scenes of that auction house. Concretely,
the buyer agent goes to the auction results and to the good registering scenes of
the auction house, and the remote control moves to the auction room scene in
which it participates in behalf of the buyer agent. In the good registering scene,
buyers receive information of the new lots as soon as they are registered in the

136 Chapter 7. Applications

7 L(inform (% AB) (all) startauction(?a))
" 2 (inform (Ix AB) (rc) startround(?lotl D, ?boxes,
price, ?species))
3 (inform (!x AB) (rc) offer(!lotID,?price))
4 (inform (?y rc) (!x AB) bid(!lotID,?buyerI D,
?boxes))
5 (inform (!x AB) (rc) collision(!lotID,?buyers))
6 (inform (!x AB) (rc) mot(!lotID,?buyerI D))
7 (failure (!x AB) (?z rc) bidError(?code)))
' 8 (inform (!x AB) (rc) sold(!lotID,?buyerI D,
?price, ?boxes))
9 (inform (!x AB) (rc) withdrawn(!lotID,?price,
?boxes))
10 (inform (!x AB) (rc) stopprice(?buyerID,
2time,?maxboxes))
11 (request (!x AB) (?y rc) numboxes(?maxboxes))
12 (inform (!x AB) (rc) cancelRound())
13 (inform (ly rc) (!x AB) numboxes('num))
14 (inform (Ix AB) (all) endauction(!a))

Figure 7.2: Specification of the auction room scene

real auction house. Thus, they have the same information as human buyers
within the real fish market who can see the lots after being registered, and have
some time to decide if they want to bid for the lot, and if so, at which price and
the number of boxes that they want to acquire. This also gives buyer agents the
necessary time to send the corresponding order to the remote control in the RC
programming scene. Notice that buyer agents receive information from all the
auction houses in which they have been admitted and then they can decide which
is the best place to buy in. For each auction house they have a different remote
control which participates in the auctions on its behalf. Using this approach,
buyer agents can concentrate in the general buying strategy and they do not
need to be directly controlling the evolution of each auctions in which they are
taking part. For instance, if a buyer agent wants to submit a bid for the lot 1
at price 30 in one of the auction houses, it sends the order to the corresponding
remote control, and does not need to be directly monitoring when the auction of
lot 11 starts and when the offer reaches the value 30. Buyer agents are informed
about the result of each round within the auction results scene.

7.1. Auction house federation 137

7.1.3 Auction Scene

The main activity within a fish market is the auctioning of goods in the auction
room. Figure 7.2 depicts the graphical specification of the auction room scene.
In this scene can participate agents playing the auction broker and remote con-
trol roles. Concretely, the scene requires the participation of exactly one agent
playing the auction broker role, while there is no limit on the number of remote
controls which can participate within the scene. The graph depicts the states
of the scene, along with the edges representing the legal transitions between
scene states labelled with illocution schemes. The information contents of such
schemes is expressed in prolog.

Notice that, apart from the initial and final states, the state wl is labelled
as an access and exit state for remote controls —meaning that between rounds
some of the remote controls can leave and new ones might be admitted into the
scene. A remote control only leaves the auction room scene, before it finishes,
after receiving an order from the buyer agent which it is representing.

This scene is governed by the auction broker making use of the downward
bidding protocol (DBP). The scene begins when the auction broker announces
the start of the auction, label 1, and makes the scene evolve to wl. At wl
the auction broker can start a new round by sending the remote controls the
information of the lot, label 2, or it can close the auction by moving the scene to
the final state w5, label 5. The information of a lot sent to the remote controls
consist on the identifier of the lot, the number of boxes, the initial price and the
species of fish.

We have already pointed out that the auction brokers auctions the lot by
a downward bidding protocol; once the round has been started all the buyers
taking part in the round receive offers in descending value until there is a bid
or the reserve price for the lot is reached and then the lot is withdrawn, or the
round is cancelled. The auction house has always the capability to cancel the
current round. If there is a bid the following situations can arise:

e “mot”: each auction fixes an initial number of offers for which bids are
not accepted. If a bid is submitted during this period then a “mot” is
declared, and the round is restarted at a higher price. Human buyers use
these first steps of the rounds to check that their electronic devices work
properly without acquiring any good.

e collision: if there is more than one bid at the same price. Then, the round
is restarted at a higher price.

e rejection of the bid: the auction house can always reject a bid submitted
by a buyer. For instance when the buyer has not got enough credit. A
bid error message is sent to the buyer who has submitted the bid and the
round is restarted.

e sale: if there is only one bid and it is accepted. Then, the buyer who has
submitted the bid is declared the winner of the round.

138 Chapter 7. Applications

The state w2 represents the state where the auction broker sends the offers
to remote controls. Notice that as there are also human buyers taking part in
the auction a sale, a collision and a mot can be declared without any bid within
the scene. These messages are consequence of bids submitted by human buyers,
which are not depicted in the scene.

Bids submitted by remote controls contain the identifier of the lot, the iden-
tifier of the buyer whose remote control is representing, and the number of boxes
that it wants acquire. The value at which the bid is submitted is the value of
the last offer sent by the auction broker. If the value of the number of boxes
in the winner bid is set to zero, the round is stopped, and the winner remote
control is requested to inform how many boxes it wants to acquire. The decision
about how many boxes to acquire is not taken by the remote control, it is taken
by the buyer agent. Then, the remote control asks the buyer agent within the
rc programming scene which decides how many boxes to buy by sending the
corresponding message to the remote control.

7.2 Conference Centre

The second example corresponds to the Conference Centre (CC)
[Arcos and Plaza, 2002] 2 A conference takes place in a physical setting,
the conference centre, where different activities take place in different locations
by people that adopt different roles (speaker, session chair, organisation staffer,
etc.). During the conference people pursue their interests moving around the
physical locations and engaging in different activities. In a moment in time
people are physically distributed along the conference, possibly interacting
with other people. We can easily think about the spatial proximity relations
that exist among people in this physical space. However, if we think about
an informational space where the past background and current interests of
the conference attendees are represented, we could think of a new kind of
proximity relation that is a function of the similarity among people’s interests
and backgrounds.

We can imagine software agents inhabiting the virtual space that take up
some specific activities on behalf of the interest of an attendee of the conference.
Specifically, a Personal Representative Agent (PRA) is an agent inhabiting the
virtual space that is in charge of advancing some particular interest of a confer-
ence attendee by searching information and talking to other software agents.

Attendees have to instruct their PRAs specifying a presentation (e.g. a list
of interested topics), an appearance (a collection of features describing the view
an agent wants to offer to the other agents) for interacting with other PRAs, and
a collection of tasks (e.g. meeting people, making appointments, etc) in which
the PRA can participate for achieving the attendees’ interests. The collection
of tasks is provided by the Conference Centre definition as a set of scenes and
roles in which a PRA can participate.

2We want to thank Josep Lluis Arcos for giving us information about the conference centre
institution and a description of it, which we have used as the basis for this section.

7.2. Conference Centre 139

Moreover, the Conference Centre provides two mediation services connecting
the information space of agents and the physical space of human users: the
awareness service and the delivery service.

The awareness service takes charge of pushing information from the physical
space to the information space. Specifically, the awareness service provides to
PRAs a real-time information about the physical location movements of users.
The specific data provided depends on the particular sensors available in the
awareness service for a particular application. For instance, in the conference
centre application the awareness service provides a real-time tracking of atten-
dees’location as well as the group of other attendees nearby a given attendee.

Concerning the delivery service, it offers mediation and brokerage capabilities
(subscribed by the human users) for delivering information from the information
space to the physical space. Specifically, the delivery service provides the chan-
nels for delivering the information gathered by the PRAs to their corresponding
users. For instance, in the conference centre application the delivery service
allows to send information as audio output by means of a wearable computer
and HTML pages by means of screen terminals scattered through the conference
building.

Apart from these two services connecting the two spaces, the Conference
Centre provides a yellow pages service. PRAs can register in the yellow pages
information about the attendee that they are representing and they can request
information about other agents.

7.2.1 Dialogic framework

In the Conference Centre there are staff agents which give the conference centre
services playing the internal roles awarener in charge of the awareness service,
deliverer in charge of the delivery service and broker in charge of the yellow
pages service.

Apart there are the Personal Representative Agents (PRAs) in charge of pur-
suing interests of attendees of the conference. Fach attendee can launch several
PRAs, each of them pursuing a different interest. During the conference a PRA
can adopt different roles—and several at the same time if the PRA is partic-
ipating in several scenes. The PRA roles are information gatherer, proposer,
advertiser, information provider, context manager and information filterer. The
roles that a PRA is playing depends on the tasks in which it is involved at each
instant and on the responsabilities that its principal has —i.e. only PRAs be-
longing to a workshop organizer or to a demonstrator, or can adopt the role of
advertisers.

PRAs have available information about the activities that take place in the
Conference Centre and their scheduling. Examples of conference activities are
exhibition booths and demo events, plenary and panel sessions, etc. They have
also information about the different locations of the conference such as exhibition
areas, conference rooms, and public areas—i.e. halls, cafeterias, and restaurants.
This information is used by the agents to reason about the movements of users
in the conference.

140 Chapter 7. Applications

Furthermore, PRAs are customised by conference attendees via a WWW
browser at registration to the conference. The attendee customises the PRA
with the following information: i) an interest profile (specifying the topics the
attendee is interested in); and ii) those tasks the user delegates the PRA to do
in her behalf (e.g. if she is interested or not in making appointments).

7.2.2 Performative Structure

We can see in figure 7.3 the different scenes of the conference centre. It is im-
portant to remark here that, in order to perform these scenes, the information
agents use both the information about the conference centre scheduling and lo-
cations, and the information received from the conference awareness service to
infer the situation of the user. That is to say, knowing that the user is in a
particular place, the current time, and the activity scheduled by the Conference
for that place at that time, the information agent can infer the social activity in
which the user is involved.

We will briefly summarize the tasks performed by PRAs and the scenes they
are involved in except the root and exit scenes which only represent the enter
and exit points of the institution.

Information Gathering Scene (IGS) : in this scene all the PRA’s within
the conference centre playing the information gatherer role participate to-
gether with a staff agent playing the broker role. The broker gives a yellow
pages service to PRAs. Then, when a new PRA enters the scene it should
register in the yellow pages by sending to the broker agent a message con-
taining the name of the attendee whom it is representing, a list of topics in
which she is interested and a list of information about those events in which
she has some responsibility. Also PRAs can ask the broker agent for agents
interested in a set of topics. We say that the information gathering scene
constructs the interest landscape of a given attendee. The interest land-
scape holds all the information considered as useful for the interest of the
attendee and is used and refined in the other tasks. When the information
gathering task assesses a conference event with a high interest valuation,
the information is directly delivered to the attendant via the delivery scene.
In advertiser PRAs, this task has been specialized for attracting persons
that might be interested in the conference events (exhibition booths or
conference sessions) they represent.

Context Scene (CS) : in this scene, PRAs playing the context manager role,
receive information from the conference awareness service for tracking the
physical context of a given attendee. The conference awareness service
keeps track of the whereabouts of the attendees in the Conference Centre.
In the CC the detection devices are a network of infrared beacons (marking
the different rooms, places and locations in the CC) and the wearable
computers the attendees carry. The CC wearable computer detects the
infrared beacons and thus informs the awareness service of the location
of its user. Moreover, the wearable device possesses an infrared beacon,

141

7.2. Conference Centre

1]

oyoig :g

JBBAIRA :d PPIN0Id oo | d]

RuUMY MY Jefeue N OIIOD :IND
JJal|14 uorewlou| H| Jesodo.d :oud
JeseApY (Y ey UolewIo| 19|

aN3Io3a1

[DERFIEES

&.{c._n#_ [R

| sa20% |

Figure 7.3: Graphical specification of the conference centre performative struc-

ture.

142

Chapter 7. Applications

allowing the detection of other persons, wearing wearable devices as well,
located nearby. In order to have access to this information, each PRA in
the information space “subscribes” its user to the awareness service. As
a result, the PRA receives messages about the changes in location of that
person and a list of other people close to that person. When an attendee
is physically near another person, exhibition booth, or thematic session
with similar interests to its, the PRA tries to inform the attendee via
the delivery scene. Another task of the context scene is checking wether
attendees are aware of their commitments (e.g. an appointment, but also
commitments with the Conference organization, like chairing a session that
is about to start, or boarding a bus that is about to leave for a tour the
user has paid for). Commitments of attendees are only noticed when the
context information available to PRAs indicates that the attendee is not
aware of the commitment (e.g. it is five minutes before the starting of a
session chaired by the attendee and the attendee is physically in a different
place).

Appointment Negotiation Scenes (APS, ACS) : in these two scenes, and

using the interest landscape, the PRAs try to arrange an appointment
between two attendees. Both play the proposer role. The negotiation is
done in two parts. First, PRAs negotiate a set of common topics for dis-
cussion (the meeting content) in the Appointment Proposal Scene (APS).
The APS scene is explained in detail in the next subsection. If they reach
an agreement about the topics, PRAs move to the Appointment Coordi-
nation Scene (ACS) where they negotiate about the appropriate meeting
schedule.

Advertiser Scene (ADS) : in this scene a PRA, adopting the role of adver-

tiser, tries to attract other PRAs, adopting the role of information filterer,
to the conference event that the advertiser represents (workshop, booth, or
demonstration). A PRA can only play the advertiser role if the attendee
it is representing is responsible of an event.

Delivery Scene (DS) : is responsible of delivering information to the user

by means of the conference delivery system. The delivery service in the
CC allows the users to receive information in two ways: by means of a
wearable computer with text and audio output and by screen terminals
scattered through the Conference Centre. The wearable computer is used
to convey short messages that are relevant for the user with respect to her
current physical and social surroundings. The user can walk to a terminal
if she wishes to have more information about this message or other recent
messages she has received. When the user approaches a screen the wearable
computer detects this terminal’s identifier, and then it sends this identifier
to the user’s PRA. Once the PRA is aware of this situation, the agent
sends to that screen the report of the performed tasks and the report of
ongoing tasks.

7.2. Conference Centre

Inspect Dialog

MAS Data

Name:

|APS

Dialogic framewark:

|APS-df

[

Initial State:

wo

£

Final States:

PNE W3

Inner

Name
nro

Min

v
]

fpApnointmentProposalScene\

143

1 (propose (?x pro) (?y pro) (app ?topic-x
2timeout-x))

2. (decline (ly pro) (!x pro) (reason ?r))

3. (propose ('y pro) (x pro) (app ?topic-y
2timeout-y))

4. (decline (x pro) ('y pro) (reason ?r))

5. (accept ('y pro) ('x pro) (app !topic-x))

6. (accept (!x pro) ('y pro) (app !topic-y))

7. (propose (!x pro) ('y pro) (app ?topic-x
2timeout-x))

8. ltimeout-x

9. ltimeout-y

Figure 7.4: Specification of the Appointment Proposal Scene.

7.2.3 Appointment Proposal Scene

Figure 7.4 depicts the specification of the Appointment Proposal Scene. The
participants of this scene are two personal representative agents PRA, and
PRA, playing the role of proposer. The goal of the scene is to agree upon a set
of topics for discussing in the appointment—represented in Figure 7.4 as (app
7topic-x 7timeout-x), (app 7topic-y 7timeout-y), where the arguments
of app are the set of topics and the caducity of the proposal. Following the
interaction protocol shown in Figure 7.4, the scene is played as follows:

1. one of the PRAs takes the initiative and sends an appointment proposal
to the other PRA, label 1, with a set of initial topics topic-x and a
timeout timeout-x defining a caducity for the proposal. We will refer to
the initiating agent PRA, and to the other PRA,. This set of topics is
intended to be a subset of the attendant’s posted profile of interests.

2. PRA, evaluates the proposal (wl) and can either (i) accept (transition to
w6), (ii) decline (transition to w3), or (iii) send a counter proposal to PRA,
with a (partially) different set of topics and a new timeout (transition to
w2). Whether the timeout-x expires and PRA, has not answered, the

144 Chapter 7. Applications

;mlnspect Dialog
[MASData | Graphical Data |

Name:
|app-nntiﬂcatinn |

Antecedent definition:
((ACS (accept (7 pro) {7y pra) (app ?date-yinn)

Defeasible Antecedent definition:
(DS (request (Y% IP) (Y2 D) {push TpersanlD ?infog)))

Consequent definition:
{fabl { Y (request (Y 1P (P2 00 {push PpersonlD Pinfod) DS

Figure 7.5: Specification of a norm in the conference centre.

scene moves to w4.

3. in turn, when PRA, receives the counter proposal of PRA, evaluates it
and can also either accept (transition to w6), decline (transition to w4),
or send a counter proposal to PRA, (transition to wl). This negotiation
phase finish when an agreement on topics is reached or one of them decides
to withdraw it.

4. when timeout-x expires without any answer from PRA, (state w4),
PRA, can either send a new proposal (transition to wl) or finish the
scene with a decline message (transition to w3).

5. when timeout-y expires without any answer from PRA, (state w5),
PRA, can either send a new proposal (transition to w2) or finish the
scene with a decline message (transition to w3).

When PRASs reach the acceptance final state, the scene finishes but remark
that, up to this point, no time commitment was made—thus no change in the
agenda of attendants have yet taken place. Nevertheless, the acceptance of
appointment contents in APS scene involves the commitment of accepting the
appointment if PRAs reach a time-slot agreement in the ACS scene. We adopt
this lazy commitment strategy in order to facilitate the management of the
agenda.

7.3. Conclusions 145

7.2.4 Norms

As we have said, PRAs participate in the virtual space representing an attendee
and looking for interesting activities and appointments for the user. In order to
send information to the user the institution gives PRAs a delivery service. Thus,
when a PRA reaches an agreement for an appointment with another PRA, or it
decides that an event is interesting for its user, the PRA must inform the attendee
about it. Figure 7.5 depicts the norm which obliges PRAs accepting another
PRA proposal for an appointment date, in the ACS scene, to inform the user
about the appointment within the delivery scene. Remember, that appointment
negotiations are done in two steps, first PRAs negotiate the appointment topics
in the APS scene, and if they reach an agreement about the topics, they negotiate
about an appointment date in the ACS scene. So, when a PRA accepts another
PRA proposal for a date for an appointment, it implies that they have previously
reached an agreement about the appointment topics. A similar norm obliges the
other PRA, that is, the one which receives the accept message, to go to the DS
scene and inform its user. Notice that although the ACS scene is connected to
the output scene this path is disabled for those PRAs which have the obligation
to inform their users about the appointment. That is, the path that connects the
ACS scene and the output scene can only be followed by those PRAs which have
not reached an agreement for an appointment. Another norm in the conference
centre obliges PRA’s which accept another PRA proposal to attend an event in
the AD scene, to go to the DS scene and inform their user.

7.3 Conclusions

In this chapter we have presented two examples of institutions: the auction
house federation and the conference centre. The auction house federation is an
institution which permits buyer software agents to participate in real fish mar-
kets in the same conditions as human buyers. For this purpose, the institution
can be connected to the software at each auction house from which it receives
information about the events occurring within it. Thus, buyer agents within the
federation receive information from several auction houses and they decide which
are the best place to buy. We want to remark that the design and development of
the auction house federation have been done using the software tools presented
in this thesis. Firstly, the institution has been specified and verified using the
ISLANDER editor. Once the institution has been verified it is executed using
the infrastructure architecture proposed in chapter 6.

The second example correspond to the conference centre institution where
Personal Representative Agents interact in order to look for interesting events
for the attendee they are representing. PRAs are customised before to go to
the institution by the user preferences. The institution provides PRAs with the
necessary services to receive and send information to the physical world.

Chapter 8

Conclusions

Due to the expansion of the Internet and the facilities that it offers to commu-
nicating entities, open multi agents systems have become the most promising
application area of multi agent systems [Wooldridge et al., 2000]. Thus, the de-
sign and development of open multi-agent systems has become a fundamental
issue in agent research. The complexity of this type of systems requires for
appropriate methodologies and software tools that guide and give support to
their design and development [Iglesias et al., 1999, Jennings et al., 1998]. In
this thesis we have focused on the design and development of open multi-agent
systems: systems whose components are unknown in advance, can change over
time, and are composed by heterogeneous (human and software) agents probably
developed by different people using different architectures and languages.

We have argued that open multi agent systems can be designed and devel-
oped as agent mediated electronic institutions. Electronic institutions define
the rules of the game within agent societies, likewise institutions do in human
societies. Institutions define what agents are permitted and forbidden to do,
and more importantly they are in charge of enforcing their rules. Then, follow-
ing the work of [Noriega, 1997, Rodriguez-Aguilar, 2001], we have concentrated
on formalising and providing support to the specification and development of
electronic institutions.

Because of the complexity of electronic institutions we have opted for a
formal approach in their design and development. Then, in chapter 3, we
have presented a formalisation of electronic institutions, following the work in
[Noriega, 1997, Rodriguez-Aguilar, 2001]. Thus, we have described and pre-
sented a formal definition of the components of an institution. The institution
formalisation represents a sound basis on which to guide the design and devel-
opment of institutions. Based on the institution formalisation we have defined
a textual specification language called ISLANDER. We believe that the process
of specifying an institution forces the designer to go through a deep analysis of
the problem and allows him to detect critical parts of the system before starting
its development. We have proposed that agent engineers intending to design
electronic institutions specify their components, namely:

147

148 Chapter 8. Conclusions

e The dialogic framework, which includes the definition of a common ontol-
ogy that allows agents to understand each other, the selection of a content
language used to express the knowledge in communication language ex-
pressions, and the definition of set of internal and external roles along
with the relationships among them.

e The scenes. Each scene defines a conversation protocol for a group of
roles. Each scene requires the definition of its participating roles and their
population, its conversation protocol, and the states at which agents can
either leave or join the conversation. The scenes of an institution define the
valid interactions that agents may have and they are the context wherein
exchanged illocutions among agents must be interpreted.

e The performative structure capturing the relationships among the different
scenes. The performative structure defines how agents depending on their
role can move among the different scenes, whether they have to synchronise
with other agents or not, and whether new scene executions are created.

e The set of norms which capture the consequences of agents’ actions within
the different scenes.

In order to give support to institution designers through the specification
process, we have built an ISLANDER editor. The tool combines textual and
graphical specification of the institution components. We believe that graphical
specifications are extremely useful, since they facilitate the designer work and
the understanding of the specification by other people. Furthermore, the tool
permits the verification of institution specifications. This is an essential step
before to start the development of the system or in our case before loading the
specification in the agents composing the institution infrastructure. We have to
take into account that debugging and finding errors in distributed systems is
a difficult and hard task. From this arise that errors detected at specification
stage may save a lot of time and effort to system developers.

An important feature is that specifications done in ISLANDER are indepen-
dent of any programming language, and so they do not impose restrictions on
which language has to be used to develop an infrastructure for the institution
and the agents taking part in it. Furthermore, the outputs generated by the tool
can be translated into different languages and be used for the development of
infrastructures and agents in any language. For instance, in section 6.4 speci-
fied institutions in ISLANDER are translated into a logical formalism expressed
in Prolog. Besides, the notion of scene and performative structure are general
enough to be used for specifying agent interactions and activities out of the scope
of an institution. For instance, in [Ontanén and Plaza, 2002] ISLANDER has
been used to define the interaction protocol among a group of learning agents.

Complementarily, in chapter 4 we have focused on the formalisation of multi
agent systems with process algebras. Process algebras focus on the formalisation
and analysis of distributed and concurrent systems. Then, we believe that they
can be a useful mechanism to analyse and verify multi-agent systems. In this

149

chapter, we have presented an alternative architecture for auction systems, by
eliminating the auctioneer and proposing a distributed bidding resolution mech-
anism. Concretly we have adapted a well known distributed algorithm as the
leader election algorithm to determine the winner at each round. The system
has been specified in m—calculus a type of process algebra.

We advocate that the execution of an institution requires an infrastructure
which facilitates agents participation within the institution while enforcing in-
stitutional rules. As we do not impose restrictions on the agents which can
participate within an institution, we can not expect that those agents will be-
have according to the institutional rules. On the one hand, the infrastructure
provides participating agents with the information they need to successfully par-
ticipate in the institution, and facilitates their interaction with the rest of the
agents. On the other hand, the infrastructure is in charge of enforcing the in-
stitution rules to participating agents as well as of having control of each agent
pending obligations. In other words, the infrastructure only allows agents to
perform those actions which are correct with respect to the institutional rules.
In order to achieve these objectives we have developed an agent-based social
layer middleware between the communication layer (implemented by the JADE
platform [Bellifemine et al., 2001]) and the agent layer. An important feature of
the developed social layer is that it can be used in the deployment of different
institutions because the agents composing it are capable of loading institution
specifications as generated by the ISLANDER editor. The agents composing the
social layer coordinate to guarantee the correct evolution of scenes, to control the
agents’ movements among scenes, and to control the obligations of each agent.
The most important agent of the social layer is the governor, a special type of
mediator agent devoted to mediate between an agent and the environment in
which it is situated. Each agent within the institution is connected to a governor
which mediates its communication with the rest of the agents within the institu-
tion, verifies that its behaviour is correct with respect to the institutional rules
and keeps track of the agent pending obligations. Notice that the social layer
also protects agents from other agents’ fraudulent behaviour. For instance, the
social layer prevents agents of being overloaded by an agent which is constantly
sending incorrect messages to other agents.

In order to illustrate how electronic institutions can be specified we have
presented two examples in chapter 7: the auction house federation and the con-
ference centre. The auction house federation is an institution devoted to permit
buyer software agents to participate in real fish markets in the same conditions
as human buyers. Concretely, several real fish markets can be connected to the
institution permitting buyer agents to participate in several auctions at the same
time. Buyer agents receive information from all of them and they decide which
are the better places to buy. Notice that the resulting specification must be
regarded as a multi-market institution, differently to the single market institu-
tion presented in [Noriega, 1997, Rodriguez-Aguilar, 2001]. The second example
corresponds to a conference centre. Besides a physical space in which a con-
ference takes place, a virtual space populated by agents representing conference

150 Chapter 8. Conclusions

attendees is defined. The virtual space is populated by Personal Representative
Agents(PRA) each one customised with an attendee preferences. Then, PRAs
within the conference centre institution devote their time interacting with other
agents in order to look for interesting activities for the attendee they represent.

Finally, we want to summarise the steps that from our point of view should
be followed in order to design and develop nstitutions:

e Specification of an institution.
e Verification of the specification.
e Development of the staff agents.

Obviously we advocate that the ISLANDER, editor should be used for the
specification and verification of institutions. Once the institution has been speci-
fied and verified, the staff agents should be developed. Since institutions delegate
their services to staff agents their development is necessary before making the
institution accessible to external agents. Currently, partial support is provided
to agent developers. Along this direction, in section 6.4 we have shown how
agent, skeletons can be synthesised from the institution specification and then,
customised by agent designers.

After going through these steps an institution can be executed by launching
the institution infrastructure composed of the JADE platform, the social layer,
and the staff agents. Thereafter, external agents can be admitted to participate
within the institution. Notice that using this approach institution designers do
not have to spend time on infrastructure development. They only must inform
the social layer agents about where the institution specification is stored. We
believe that this represents an important step forward as it reduces the amount
of work and time necessary to develop an institution. Thus, institution designers
can devote their time to domain dependent issues related to the institution that
they aim at developing. In other words, their workload is narrowed down to the
specification of an institution along with the development of the staff agents to
which the institution delegates its services.

8.1 Future Work

We believe that this thesis represents an important advance on the design and
development, of open multi-agent systems. Nonetheless, there is an important
amount, of work to do in the area.

Firstly, there are some extensions of the institution formalisation and spec-
ification language, which we think can be useful and which would cover some
limitations of our approach. These extensions relate to the following issues:

Role relationships . Our model permits the specification of role relationships
but there is no way to specify which restrictions they impose on the in-
teractions and activities that agents playing the roles can do within an
institution. Currently, it is a task of the institution designer to take this

8.1.

Future Work 151

into account when it specifies the rest of the components of an institution.
We think that at a first step users should specify the restrictions that each
role relationships imposes. Then, it should be authomaticaly verified that
the designed institution does not violate these restrictions.

Execution Information . As pointed out in chapter 6, an issue to address is

Role

which information about an institution execution is given to the agents.
That is to say, information about the different scene executions and about
the participants in each of them. This information can be useful as it can
permit agents to detect interesting scenes to join. On the contrary, in some
cases it would not be desirable to give agents all the information about the
institution execution. That is, there is some information that should be
kept private by the institution. For instance, the institution may keep
private that two agents are involved in a negotiation scene. We believe
that it is a task of the institution to define to which execution information
agents have access and it should be associated to roles. That is to say,
different roles may have access to different information. Therefore, the
institution designer should be permitted to define which information about
the institution execution is authorised to acces to each role.

attributes . In the current formalisation a role defines a pattern of be-
haviour within an institution. That is, at each moment the role that an
agent is playing constraints what the agent can do. We believe that this
could be extended associating to each role some attributes. For instance,
a buyer within an auction house may have associated a credit and a list
of purchased goods. Apart from defining the role attributes, it must be
defined when and how the value of each attribute can change. For in-
stance, when a buyer wins a round, its credit will be decremented. Then,
the values of the attributes can be used to determine the actions that an
agent, can do. That is to say, they can be used in scene and performative
structure constraints. For instance, a buyer can not be allowed to submit
bids greater than its credit. Taking this approach, roles can be seen as
abstract data types whose definition contain the role attributes and how
and when attributes values have to be modified.

Norms . Currently only dialogic actions can appear in norm definitions. Then,

it is not possible to express that an agent is obliged to move to a scene, or
that it has to synchronise with an agent or a group of agents in order to
start a new scene execution. We believe that norm definitions should be
extended to cope with these possibilities. Another issue to address related
to norms is when an agent has to fulfil their obligations. Currently, the
meaning of norms is that agents have to fulfil their obligations at some
instant in the future, before leaving the institution. This is satisfactory on
some of the cases but not in all of them. We believe that norm definitions
should permit to express when an agent has to fulfil their obligations. For
instance, that the agent has to fulfil an obligation immediately, at the first

152 Chapter 8. Conclusions

opportunity that it has, or define a period of time that it has to fulfil the
obligations.

Notice that these extensions will imply to extend the ISLANDER editor
with new verification capabilities. Furthermore, social layer agents will have to
be extended to cope with these extensions. Also, as we pointed out in chapter 5,
more properties must be verified with respect to scene constraints and conditions
on performative structure arcs. Currently, scene and performative structure
constraints are not taken into account when verifying that a scene can not be
blocked at any non final state and that agents will not be blocked within the
institution performative structure.

Scene constraints capture the restrictions that the previous interaction within
a scene imposes on its future evolution. Constraints restrict the valid values for
illocution scheme variables and the paths that the scene evolution can take. It
should be verified that a scene evolution cannot reache a state in which there is
no illocution that agents can utter that satisfies the arcs’ constraints. In order
to do so, all possible dialogues that agents may have, the value of each scene
variable and the different scene constraints must be taken into account. We
believe that model checking or CSP can be used in this process.

The performative structure defines how agents can move among different
scenes. Concretely, each arc label determines the roles that can progress through
it. The outgoing arcs of a scene determine the paths that agents within the
scene can follow when leaving it. Furthermore, each outgoing arc can have some
associated conditions that agents must satisfy in order to progress through the
arc. These conditions are expressed as illocution schemes and obligations. It
should be verified that an agent can not be blocked within an scene because
it does not satisfy any of the conditions associated to the scene outgoing arcs
labelled with its role and no illocution uttered within the scene can change this
situation. This condition should be verified for each scene and for each role that
can be played within it. At this aim, all the different paths and scenes that an
agent can follow from the initial scene should be analysed.

We have developed several software components which give support to the
design and execution of electronic institutions. Concretely, we have developed a
specification and verification tool, and a generic infrastructure. Nonetheless, we
believe that this work should continue as more tools are needed. As a next step
we advocate for developing tools which give support to agent development and
institution monitoring.

We believe that the first point to address is to give support to agent develop-
ers. This is specially important in the case of staff agents because these are the
agents to which the institution delegates its duties and services, and they are
absolutely necessary for the execution of an institution. The first step should be
the authomatic generation of agent skeletons or templates in different languages.
As a result, library of agent skeletons per role could be given to agent designers.
Then, we propose the development of an agent builder application which would
permit agent designers to complete their agents by selecting first the scenes in
which its agent will be involved, and defining later on the behaviour within each

8.1. Future Work 153

scene. That is to say, the designer should fill up the skeletons with the decision
making procedures. The work reported in section 6.4 for the synthesis and
customisation of agents in Prolog, it is a first step in this direction. The work
done in the ISLANDER editor can also be very useful in the development of
an agent builder as it would permit to present a graphical representation of the
institution to agent designers.

The agent builder should give support to agent development in different lan-
guages. Concretely, we think of giving support to agent development in general-
purpose programming languages (such as Prolog, Lisp and Java) and higher-
level, agent-oriented programming languages (such as 3APL [3BAPL, URL]). No-
tice that some of the user decisions are language independent. Although the
main motivation for the development of an agent builder is to give support to
the development of the staff agents, we believe that the tool would also be very
useful for the designers of external agents.

The purpose of the monitoring tool is to reproduce what has happened during
the execution of an institution, in a similar way as the monitoring tool developed
for the fish market electronic auction house did [Rodriguez-Aguilar, 2001]. We
believe that the monitoring tool should permit to reproduce institution execu-
tions at three levels:

e Performative structure: showing which scenes are executed within the in-
stitution at each instant, along with their participants. The tool should
show at this level when new scene executions are created and when they
finish, as well as the agent movements among them.

e Scene: showing the execution of a concrete scene. That is, the participants
within a scene, the scene state and the messages that agents within the
scene exchange.

e Agent: showing the institution execution from the point of view of an
agent. That is, in which scenes is the agent involved, what messages it
sends and receives in each one, and what obligations has it adquired.

In order to reproduce an institution execution an agents composing the social
layer must store information about all the events produced during the execution.
That is to say, about the creation and finalisation of scene executions, about
agent movements among the different scenes, about all the illocutions uttered
within the different scenes, and about the obligations acquired and fulfilled by
each one of the agents. Then, the monitoring tool would use this information
and the institution specification to reproduce institution execution. The tool
should permit users to customise at each level which information they wants to
see.

Trust and accountability are the main motivations for the development of a
monitoring tool for institutions [Noriega, 1997, Rodriguez-Aguilar, 2001]. Giv-
ing accountability information to the participants will increase they trust in the
institution. This is specially important for electronic institutions where people
delegate their tasks to agents. Furthermore, it would permit them to analyse

154 Chapter 8. Conclusions

their agent(s) behaviour within the institution and improve them. From the
point of view of the institution designers, the tool could serve to test the system
and the staff agents before making the institution available to external agents.
Furthermore, when the institution is running it can be used to detect unexpected
situations and fraudulent behaviours of external agents.

We believe that the simulation and development of test-beds is another im-
portant issues to address. The simulation of institutions will permit to study
their performance. For this purpose, the simulation platform presented in
[Vasconcelos et al., 2003] is an initial step in that direction.

The last issue that we want to point out as future work is institution evo-
lution. Electronic institutions are situated in a dynamic environment which
change over time, then, institutions should be capable to adapt to those
changes. This has been identified as a main feature of open multi-agent sys-
tems [Jennings, 2001]. The capability of evolving is an important feature of
human institutions, but this is not possible in our model. That is to say, the
structure of the institution is static and can not evolve at execution time. It
should be studied how an institution can evolve. That is say, which elements
and how can be changed at execution time. We believe that one way in which
this could be achieved is by adding a meta level to our model where agents
interaction will be about the institution structure and its performance.

Appendix A

ISLANDER specifications

In this appendix we provide the textual specification of the electronic auction
house federation and the conference centre.

A.1 Auction house federation

(define-institution masfit_institution as
dialogic-framework = masfit-df
performative-structure = masfit-ps

)

(define-performative-structure masfit-ps as
scenes = (
(rcProgramming rc-programming-scene list)
(goodRegistering good-registering-scene list)
(auctionResults auction-results-scene list)
(infoSeeking info-seeking-scene)
(root root-scene)
(buyerAdmision buyer-admision-scene)
(auctionRoom auction-room-scene list)
(output output-scene)
(auctionAdmision auction-admision-scene list))
transitions = (
(createInfoSeeking AND)
(toBuyerAdmision OR)
(toRCProgRC AND)
(toAuctionAdmision AND)
(exitInfoSeeking OR)
(exitGoodRegistering OR)
(createlLlotja AND)
(exitAuctionResults OR)

155

156 Appendix A. ISLANDER specifications

(exitRCProgramming OR)
(exitAuctionAdmision OR)
(exitBuyerAdmision OR)
(exitAuctionRoom OR)
(toInfoSeeking AND))
connections = (
(infoSeeking toAuctionAdmision (((x buyer))))
(auctionResults exitAuctionResults (((x AB)) ((y buyer))))
(auctionAdmision exitAuctionAdmision (((x aad)) ((y buyer))))
(root toRCProgRC (((y rc))))
(buyerAdmision toInfoSeeking (((x buyer))))
(buyerAdmision exitBuyerAdmision (((x bad)) ((y buyer))))
(goodRegistering exitGoodRegistering (((x GR)) ((y buyer))))
(root toBuyerAdmision (((x bad)) ((y buyer))))
(rcProgramming exitRCProgramming (((x buyer)) ((y rc))))
(auctionRoom exitAuctionRoom(((x AB)) ((y rc))))
(root createInfoSeeking (((x DBM))))
(root createLlotja (((x llotja))))
(infoSeeking exitInfoSeeking (((x DBM)) ((y buyer)) ((z llotja))))
(auctionAdmision toRCProgRC (((x buyer))))
(toRCProgRC auctionRoom(((y rc))) 1)
(exitRCProgramming output (((x buyer) (y rc))) 1)
(exitAuctionResults output (((x AB)) ((y buyer))) 1)
(createInfoSeeking infoSeeking(((x DBM))) new)
(exitAuctionRoom output (((x AB)) ((y rc))) 1)
(createllotja auctionAdmision (((x aad))) new)
(exitAuctionAdmision output(((x aad)) ((y buyer))) 1)
(exitInfoSeeking output (((x DBM)) ((y buyer)) ((z 1llotja))) 1)
(toRCProgRC auctionResults(((x buyer))) 1)
(toAuctionAdmision auctionAdmision(((x buyer))) some)
(exitGoodRegistering output (((x GR)) ((y buyer))) 1)
(createllotja goodRegistering(((x GR))) new)
(toAuctionAdmision infoSeeking(((x buyer))) 1)
(createllotja infoSeeking(((x llotja))) 1)
(toRCProgRC goodRegistering(((x buyer))) 1)
(createlLlotja auctionResults(((x AB))) new)
(toInfoSeeking infoSeeking(((x buyer))) 1)
(toRCProgRC rcProgramming (((x buyer)) ((y rc))) new)
(toBuyerAdmision buyerAdmision(((y buyer))) 1)
(toBuyerAdmision buyerAdmision(((x bad))) new)
(createllotja auctionRoom(((x AB))) new)
(exitBuyerAdmision output(((x bad)) ((y buyer))) 1))
initial-scene = root
final-scene = output

A.1. Auction house federation 157

(define-scene info-seeking-scene as
roles = (1lotja DBM buyer)
scene—-dialogic-framework = info-seeking-df
states = (W1 W3 WO W2)
initial-state = WO
final-states = (W3)
access-states = ((1llotja (W1 WO0)) (DBM (W0)) (buyer (Wi WO0)))
exit-states = ((1lotja (W1 W3)) (DBM (W3)) (buyer (Wi W3)))
agents-per-role = (
(1 <= DBM <= 1))
connections = (
(W1 W1 (inform (?7z llotja) (all) registerLlotja(Infollotja(?name,
7admissionID))))
(W1 W2 (request (7y buyer) (!x DBM) query(?sql)))
(W2 W1 (inform (!'x DBM) (!y buyer) llotges(7info_llotges)))
(W2 W1 (failure (!'x DBM) (!y buyer) error(?7codeerror)))
(W1 w3 (inform (!x DBM) (all) close()))
(WO W1 (inform (7x DBM) (all) open()))
(W1 W2 (request (7y buyer) (!x DBM) activeLlotges()))
(W2 W1 (inform (!'x DBM) (!y buyer) result(?info)))

(define-scene auction-admision-scene as
roles = (buyer aad)
scene—-dialogic-framework = auction-admision-df
states = (W3 WO W1 W2)
initial-state = WO
final-states = (W3)
access-states = ((buyer (WO W1)) (aad (WO)))
exit-states = ((buyer (W3 W1 W2)) (aad (W3 W2)))
agents-per-role = (
(buyer <= 1)
(1 <= aad <= 1))
connections = (
(WO W1 (inform (7x aad) (all) open()))
(W2 W1 (failure (!'x aad) (!'y buyer) deny(?code)))
(W2 W1 (inform (!x aad) (!y buyer) acceptauction(?idAuctionResults,
?7idGoodRegistration)))
(W1 W2 (request (7y buyer) (!x aad) loginauction(?username,
?password)))
(W1 W3 (inform (!'y aad) (all) close()))

158 Appendix A. ISLANDER specifications

)

(define-scene auction-room-scene as

roles = (rc AB)

scene—-dialogic-framework = auction-room-df

states = (W5 W6 WO W3 W2 W4 W1)

initial-state = WO

final-states = (W5)

access-states = ((rc (WO W1)) (AB (W0)))

exit-states = ((rc (W5 W1)) (AB (W5)))

agents-per-role = (
(1 <= AB <= 1))

connections = (
(W1 W5 (inform (!'x AB) (all) endauction(!a)))
(W3 W2 (inform (!x AB) (rc) mot(!lotID,?buyerID)))
(W2 W1 (inform (!x AB) (rc) sold(!'lotID,?buyerID,?price,?boxes)))
(W2 W1 (inform (!'x AB) (rc) withdrawn(!lotID,?price,?boxes)))
(W2 W2 (inform (!'x AB) (rc) mot(!lotID,?buyerID)))
(W4 W4 (inform (!'y rc) (!x AB) numboxes(?num)))
(W3 W2 (inform (!x AB) (rc) collisio(!lotID,7buyers)))
(W3 W3 (inform (?7y rc) (!'x AB) bid(!lot,?buyer_ID,?7boxes)))
(WO W1 (inform (?x AB) (all) startauction(?a)))
(W4 W1 (inform (!x AB) (rc) sold(!'lotID,?buyerID,?price,?boxes)))
(W2 W2 (inform (!x AB) (rc) offer(!lotID,7price)))
(W2 W1 (inform (!'x AB) (rc) cancelRound()))
(W2 W2 (inform (!x AB) (rc) collision(!lotID,?buyers)))
(W3 W1 (inform (!x AB) (rc) sold(!'lotID,?buyerID,?price,?boxes)))
(W3 W2 (failure (!'x AB) (7z rc) bidError(7code)))
(W2 W2 (failure ('x AB) (?z rc) bidError(7code)))
(W6 W1 (inform (!'x AB) (rc) cancelRound()))
(W1 W2 (inform (!'x AB) (rc) startround(?lotID,?boxes,?price,?species)))
(W3 W6 (inform (!x AB) (rc) stopprice(?buyerID,?time,?maxboxes)))
(W6 W4 (request (!'x AB) (7y rc) numboxes(7maxboxes)))
(W3 W1 (inform (!x AB) (rc) cancelRound()))
(W4 W1 (inform (!'x AB) (rc) cancelRound()))
(W2 W3 (inform (?7y rc) (!x AB) bid(!lotID,?buyerID,?boxes)))

)

(define-scene buyer-admision-scene as
roles = (buyer bad)
scene-dialogic-framework = buyer-admision-df
states = (W3 WO W2 W1)
initial-state = WO
final-states = (W3)

A.1. Auction house federation 159

access-states = ((buyer (WO W1)) (bad (WO)))
exit-states = ((buyer (W3 W1)) (bad (W3)))
agents-per-role = (

(buyer <= 1)

(1 <= bad <= 1))
connections = (

(WO W1 (inform (7x bad) (all) open()))

(W2 W1 (inform (!x bad) (!y buyer) accept()))

(W2 W1 (failure (!x bad) (!y buyer) deny(?code)))

(W1 w3 (inform (!x bad) (all) close()))

(W1 W2 (request (7y buyer) (!x bad) login(?7username,?password)))

(define-scene auction-results-scene as

roles = (AB buyer)

scene-dialogic-framework = auction-results-df

states = (W2 W1 WO)

initial-state = WO

final-states = (W2)

access-states = ((AB (W0)) (buyer (W1 WO)))

exit-states = ((AB (W2)) (buyer (W2 W1)))

agents-per-role = (
(1 <= AB <= 1))

connections = (
(WO W1 (inform (?x AB) (all) open()))
(W1 W1 (inform (!x AB) (buyer) sold(7lot,?buyer_ID,?7price,?boxes)))
(W1 W2 (inform (!x AB) (all) pwd))
(W1 W1 (inform (!x AB) (buyer) withdrawn(!lotID,?price,?boxes)))

(define-scene good-registering-scene as
roles = (GR buyer)
scene-dialogic-framework = good-registering-df
states = (W2 WO W1)
initial-state = WO
final-states = (W2)
access-states = ((GR (W0)) (buyer (WO W1)))
exit-states = ((GR (W2)) (buyer (W2 W1)))
agents-per-role = (
(1 <= GR <= 1))
connections = (
(WO W1 (inform (?x GR) (all) open()))
(W1 W1 (inform (!x GR) (7y buyer) oldgood(?lot,7especie,?quality,

160 Appendix A. ISLANDER specifications

?boxes, 7kg, ?price_type,7ship, 7presentation)))
(W1 W2 (inform (!x GR) (all) close()))
(W1 W1 (inform (!x GR) (buyer) newgood(7lot,7especie,?quality,
?boxes, 7kg, 7price_type,?ship,?presentation)))
)
)

(define-scene root-scene as
roles = (bad DBM buyer rc llotja)
scene-dialogic-framework = masfit-df
states = (WO)
initial-state = WO
final-states = (W0)
access-states = ((bad (WO)) (DBM (WO0)) (buyer (WO0)) (rc (WO0)) (1lotja (WO)))
exit-states = ((bad (W0)) (DBM (WO0)) (buyer (W0)) (rc (WO)) (1llotja (WO0)))
connections = (
)
)

(define-scene output-scene as
roles = (llotja GR bad DBM buyer aad AB rc)
scene—-dialogic-framework = masfit-df
states = (WO)
initial-state = WO
final-states = (WO)
access-states = ((1lotja (W0)) (GR (W0)) (bad (WO)) (DBM (WO)) (buyer (WO))
(aad (WO)) (AB (WO)) (rc (WO)))
exit-states = ((llotja (WO0)) (GR (WO0)) (bad (WO)) (DBM (W0)) (buyer (WO))
(aad (WO)) (AB (WO0)) (rc (W0)))
connections = (
)
)

(define-scene rc-programming-scene as
roles = (rc buyer)
scene-dialogic-framework = rc-programming-df
states = (W2 W3 WO W1)
initial-state = WO
final-states = (W3)
access-states = ((rc (WO)) (buyer (WO)))
exit-states = ((rc (W3)) (buyer (W3)))
agents-per-role = (

(1 <=rc <=1)
(1 <= buyer <= 1))
connections = (

A.1. Auction house federation 161

(W1 W3 (inform (!y buyer) (!x rc) close()))

(W1 W3 (inform (!x rc) (!y buyer) close()))

(W1 W1 (request (!y buyer) (!x rc) programbid(7lotID,?price,?boxes)))
(WO W1 (inform (?x rc) (7y buyer) open()))

(W1 W2 (inform (!x rc) (!y buyer) priceStopped(?7idLot,?time,?maxboxes)))
(W2 W1 (inform (!y buyer) (!x rc) numberBoxes(!idLot,?boxes)))

(define-dialogic-framework buyer-admision-df as
ontology = buyer-admission-ontology
content-language = PROLOG
illocutionary-particles = (inform failure request)
external-roles = (buyer)
internal-roles = (bad)
social-structure = ()

(define-dialogic-framework good-registering-df as
ontology = good-registering-ontology
content-language = PROLOG
illocutionary-particles = (inform)
external-roles = (buyer)
internal-roles = (GR)
social-structure = ()

(define-dialogic-framework masfit-df as
ontology = masfit-ontology
content-language = PROLOG
illocutionary-particles = (request inform failure)
external-roles = (buyer)
internal-roles = (GR bad DBM AB aad llotja rc)
social-structure = ()

(define-dialogic-framework auction-admision-df as
ontology = auction-admision-ontology
content-language = PROLOG
illocutionary-particles = (inform failure request)
external-roles = (buyer)
internal-roles = (aad)
social-structure = ()

162 Appendix A. ISLANDER specifications

(define-dialogic-framework info-seeking-df as
ontology = info-seeking-ontology
content-language = PROLOG
illocutionary-particles = (request inform failure)
external-roles = (buyer)
internal-roles = (llotja DBM)
social-structure = ()

(define-dialogic-framework auction-results-df as
ontology = auction-results-ontology
content-language = PROLOG
illocutionary-particles = (inform)
external-roles = (buyer)
internal-roles = (AB)
social-structure = ()

(define-dialogic-framework rc-programming-df as
ontology = rc-programming-ontology
content-language = PROLOG
illocutionary-particles = (inform request)
external-roles = (buyer)
internal-roles = (rc)
social-structure = ()

(define-dialogic-framework auction-room-df as
ontology = auction-room-ontology
content-language = PROLOG
illocutionary-particles = (request inform failure)
external-roles = ()
internal-roles = (rc AB)
social-structure = ()

(define-ontology buyer-admission-ontology as
(open: -> boolean)
(login:String*String -> boolean)
(deny:int -> boolean)
(accept: -> boolean)
(close: —-> boolean)

(define-ontology rc-programming-ontology as

A.1. Auction house federation 163

(open: -> boolean)
(programbid:String*float*int -> boolean)
(priceStopped:String*int*int -> boolean)
(numberBoxes:String*int -> boolean)
(close: -> boolean)

(define-ontology good-registering-ontology as
(open: -> boolean)
(newgood:String*String*String*int*float*int*StringxString -> boolean)
(oldgood:String*String*String*int*float*int*String*String -> boolean)
(close: -> boolean)

(define-ontology auction-room-ontology as
(startauction:int -> boolean)
(startround:String*int*float*int -> boolean)
(offer:String*float -> boolean)
(bid:String*String*int -> boolean)
(sold:String*Stringxfloat*int -> boolean)
(bidError:String -> boolean)
(withdrawn:String*float*int -> boolean)
(mot:String*String -> boolean)
(collision:String*String list -> boolean)
(stopprice:String*int*int -> boolean)
(endauction:int -> boolean)

(numboxes:int -> boolean)
(cancelRound: -> boolean)

(define-ontology masfit-ontology as
(datatype infolLlotja = InfoLlotja of string * string)
(open: -> boolean)
(close: -> boolean)
(login:String*String -> boolean)
(deny:int -> boolean)
(accept: -> boolean)
(loginauction:String*String -> boolean)
(acceptauction: String * String -> boolean)
(query:String -> boolean)
(result:String -> boolean)
(error:int -> boolean)
(registerLlotja: infoLlotja -> boolean)
(activelLlotges: -> booelan)
(1lotges: infolLlotja list -> boolean)

164 Appendix A. ISLANDER specifications

(newgood:String*String*String*int*float*int*String*String -> boolean)
(oldgood:String*String*String*int*float*int*String*String -> boolean)
(programbid:String*float*int -> boolean)

(priceStopped:String*int*int -> boolean)

(numberBoxes:String*int -> boolean)

(startauction:int -> boolean)

(startround:Stringxint*float*int -> boolean)

(offer:String*float -> boolean)

(bid:String*String*int -> boolean)

(sold:String*Stringxfloat*int -> boolean)

(bidError:String -> boolean)

(withdrawn:String*float*int -> boolean)

(mot:String*String -> boolean)

(collision:String*String list -> boolean)

(stopprice:String*int*int -> boolean)

(endauction:int -> boolean)

(numboxes:int -> boolean)

(cancelRound: -> boolean)

(define-ontology auction-results-ontology as
(open: -> boolean)
(sold:String*String*float*int -> boolean)
(withdrawn:String*float*int -> boolean)
(close: -> boolean)

(define-ontology info-seeking-ontology as
(datatype infolLlotja = InfoLlotja of string * string)
(open: -> boolean)
(query:String -> boolean)
(result:String -> boolean)
(error:int -> boolean)
(registerLlotja: infoLlotja -> boolean)
(activelLlotges: -> booelan)
(1lotges: infolLlotja list -> boolean)
(close: -> boolean)

(define-ontology auction-admision-ontology as
(open: -> boolean)
(loginauction:String*String -> boolean)
(deny:int -> boolean)

(acceptauction: String * String -> boolean)
(close: -> boolean)

A.2. Conferen Centre 165

A.2 Conferen Centre

(define-institution eInsititution as
dialogic-framework = CC-DF
performative-structure = CC-PS
norms = (app-notification)

)

(define-performative-structure CC-PS as
scenes = (
(IGS InformationGatheringScene)
(APS AppointmentCoordinationScene list)
(ADS AdvertiserScene list)
(root root_scene)
(ACS AppointmentCoordinationScene list)
(CS ContextScene)
(exit exit_scene)
(DS DeliveryScene))
transitions = (
(T12 OR)
(T7 AND)
(T3 OR)
(T2 OR)
(T9 OR)
(T13 AND)
(T6 OR)
(TO AND)
(T10 AND)
(T8 OR)
(T5 OR)
(T4 OR)
(T14 AND)
(T1 OR)
(T11 OR))
connections = (
(IGS T2 (((x IG))))
(root T8 (((x D))))
(root T13 (((x AW))))
(IGS T7 (((x IG)(y IG))))
(ADS T4 (((x AD)) ((y IF))))
(APS T5 (((x pro))))
(root T3 (((x B))((y IG))))
(IGS T14 (((y IG))))

166 Appendix A. ISLANDER specifications

(ACS T12 (((x pro)))
((not (obl (?x (request (7x IP) (?z D)
(push ?personID 7info)) DS)))))
(ACS T5 (((y pro))))
(DS T9 (((x IP))((y D))))
(IGS TO (((x IG)(y IG))))
(ADS T6 (((x AD))((y IF))))
(APS T11 (((x pro))))
(€S T1 (((x AW)) ((y CM))))
(IGS T4 (((z IG))((v B)))
(APS T10 (((x pro) (y pro))))
(Cs T2 (((y CM))))
(T14 CS (((y CM))) 1)
(T7 IGS (((x I (y IG))) D
(T8 DS (((x D))) new)
(T1 exit (((x AW)) ((y CM))) 1)
(T7 ADS (((x AD)(y IF))) new)
(T5 exit (((x pro))((y pro))) 1)
(T9 exit (((x IP))((y D))) 1)
(T3 IGS (((x B))) new)
(TO APS (((x pro)(y pro))) new)
(T12 DS (((x IP))) 1)
(T14 IGS (((y IG))) 1)
(T10 ACS (((x pro) (y pro))) new)
(Té DS (((x IP))((y IP))) 1)
(T13 CS (((x AW))) new)
(TO 1IGS (((x IG)(y I®))) 1)
(T3 IGS (((y I®)) 1)
(T2 DS (((x IP)) ((y IP))) 1)
(T11 DS (((x IP))) 1)
(T4 exit (((x AD)) ((y IF))((z IG))((v B))) 1))
initial-scene = root
final-scene = exit

)

(define-scene AdvertiserScene as
roles = (IF AD)
scene—-dialogic-framework = CC-DF
states = (W3 W2 W4 W1 WO)
initial-state = WO
final-states = (W4 W3)
access-states = ((IF (W0)) (AD (W0)))
exit-states = ((IF (W3 W4)) (AD (W3 W4)))
agents-per-role = (
(1 <= IF <= 1)

A.2. Conferen Centre 167

)

(1 <= AD <= 1))
connections = (
(W2 W1 (inform (!x AD) (!y IF) (info 7answer)))
(W1 W4 (accept (!y IF) (x AD) (activity 'event)))
(W1 W2 (request (!'y IF) (!'x AD) (Info ?query)))
(W1 W3 (decline (!'y IF) (!'x AD) (activity 'event)))
(WO W1 (propose (7x AD) (?y IF) (activity 7event)))
)

(define-scene exit_scene as

)

roles = (IG D IF pro B CM IP AW AD)

scene-dialogic-framework = CC-DF

states = (WO)

initial-state = WO

final-states = (WO)

access-states = ((IG (WO)) (D (WO)) (IF (WO)) (pro (WO)) (B (WO))
(CM (WO)) (IP (WO0)) (AW (WO)) (AD (WO)))

exit-states = ((IG (W0)) (D (WO)) (IF (WO0)) (pro (WO)) (B (WO0))
(CM (WO)) (IP (WO)) (AW (W0)) (AD (WO)))

connections = ()

(define-scene DeliveryScene as

)

roles = (D IP)
scene-dialogic-framework = CC-DF
states = (W3 W1 W2 WO)
initial-state = WO
final-states = (W3)
access-states = ((D (W0)) (IP (W1 WO)))
exit-states = ((D (W3)) (IP (W3 W1)))
agents-per-role = (
(1 <=D <=1))
connections = (
(W2 W1 (inform (!x D) (!y IP) (pushed !info)))
(WO W1 (inform (?x D) (all) (open)))
(W1 W3 (inform (!x D) (all) (close)))
(W2 W1 (failed (!x D) (!'y IP) (reason ?r)))
(W1 W2 (request (?7y IP) (!'x D) (push ?personID 7info)))
)

(define-scene AppointmentCoordinationScene as

roles = (pro)
scene-dialogic-framework = CC-DF

168

states =

exit-states

Appendix A. ISLANDER specifications

(WO W4 W6 W1 W2 W3 W5)
initial-state = WO
final-states = (W6 W3)
access-states = ((pro (W0)))

= ((pro (W6 W3)))

agents-per-role = (
(2 <= pro <= 2))
connections

(Wi

W5

= (
)

(W5 W1 (propose (!x pro) (!y pro)

(w1
(Wi
(Wa
(Wa
(W2
(WO

(W2
(w1

W6
W3
W3
W2
W6
Wi

W3
w2

(app-scheudling ?scheudling-x 7timeout-x)))
(W2 W1 (propose (!x pro) (!y pro)

(app-scheudling ?scheudling-x 7timeout-x)))
(inform (!'y pro) (!x pro)

(accept-scheudling !scheudling-x)))
(decline (!y pro) (!x pro) (reason 7r)))
(decline (!y pro) (!x pro) (reason 7r)))
(propose (!y pro) (!x pro)

(app-scheudling ?scheudling-y 7timeout-y)))
(accept (!x pro) (!y pro)

(accept-scheudling !scheudling-y)))
(propose (7x pro) (?7y pro)

(app-scheudling ?scheudling-x 7timeout-x)))
(decline (!'x pro) (!'y pro) (reason 7r)))
(propose (!y pro) (!x pro)

(app-scheudling ?scheudling-y 7timeout-y)))

(W5
)
)

W3

(define-scene

roles =

(decline (!'x pro) (!y pro) (reason 7r)))

InformationGatheringScene as

(IG B)

scene—-dialogic-framework = CC-DF
(WO W2 W3 W1)
initial-state = WO

states =

final-states

= (W3)

access-states = ((IG (WO W1)) (B (W0)))
exit-states

= ((IG (W3 W1)) (B (W3)))

agents-per-role = (
(1 <= B <= 1))
connections

(W2
(W1
(W1
(Wi

Wi
Wi
Wi
Wi

= (

(inform (!x B) (!y IG) (interested-people 7agents))

(accept
(inform

(?7y IG) (?z IG) (app-nego 7presentation)))
(?7y IG) (!'x B) (subscribe 7presentation)))

(propose (7y IG) (?z IG) (app-nego 7presentation)))

)

A.2. Conferen Centre 169

(W1 W2 (request (7y IG) (!'x B) (interested 7topic)))
(W1 W1 (decline (7u IG) (?v IG) (app-nego 7presentation)))
(W1 W3 (inform (!x B) (all) (close)))
(W1 W1 (accept (?y IG) (7z IG) (advertisement 7event)))
(W1 W1 (propose (7y IG) (?z IG) (advertisement 7event)))
(W1 W1 (decline (7u IG) (?v IG) (advertisement 7event)))
(WO W1 (inform (?x B) (all) (opem)))
)
)

(define-scene AppointmentProposalScene as
roles = (pro)
scene-dialogic-framework = CC-DF
states = (WO W3 W5 Wi W6 W4 W2)
initial-state = WO
final-states = (W6 W3)
access-states = ((pro (W0)))
exit-states = ((pro (W3 W6)))
agents-per-role = (
(2 <= pro <= 2))
connections = (
(W5 W2 (propose (!y pro) (!x pro)
(app-topics 7topics-y 7timeout-y)))
(W1 W2 (propose (!y pro) (!x pro)
(app-topics 7topic-y 7timeout-y)))
(W1 W4 !'time-out-x)
(W1 W6 (inform (!y pro) (!x pro) (accept-topics 7topic-x)))
(W2 W3 (decline (!'x pro) (!y pro) (reason 7r)))
(WO W1 (propose (7x pro) (7y pro)
(app-topics 7topic-x ?timeout-x)))
(W2 W5 !time-out-y)
(W5 W3 (decline (!y pro) (!x pro) (reason 7r)))
(W4 W1 (propose (!x pro) (!y pro)
(app-topics 7topic-x timeout-x)))
(W1 W3 (decline (!y pro) (!x pro) (reason 7r)))
(W2 W1 (propose (!x pro) (!y pro)
(app-topics 7topic-x timeout-x)))
(W2 W6 (inform (!x pro) (!'y pro) (accept-topics 7topic-y)))
(W4 W3 (decline (!'x pro) (!y pro) (reason 7r)))
)
)

(define-scene root_scene as
roles = (B D IG AW)
scene-dialogic-framework = CC-DF

170 Appendix A. ISLANDER specifications

states = (W0)

initial-state = WO

final-states = (WO)

access—-states = ((B (W0)) (D (W0)) (IG (WO)) (AW (W0)))
exit-states = ((B (W0)) (D (W0)) (IG (WO)) (AW (WO)))
()

connections

)

(define-scene ContextScene as
roles = (CM AW)
scene—-dialogic-framework = CC-DF
states = (WO W2 W1)
initial-state = WO
final-states = (W2)
access-states = ((CM (WO W1)) (AW (WO)))
exit-states = ((CM (W2 W1)) (AW (W2)))
agents-per-role = (
(1 <= AW <= 1))
connections = (
(W1 W2 (inform (!x AW) (all) close()))
(WO W1 (inform (?x AW) (all) (open)))
(W1 W1 (inform (!x AW) (7y CM) (context_info 7info)))
(W1 W1 (request (7x CM) (!'y AW)
(contextSubscription 7presentation)))

(define-dialogic-framework CC-DF as
ontology = CC-ontology
content-language = PROLOG
illocutionary-particles = (inform accept request failed decline propose)
external-roles = (IF AD pro IG IP CM)
internal-roles = (D AW B)
social-structure = ()

(define-ontology CC_ontology as
(datatype name = Name of String)
(datatype topic = Topic of String)
(datatype location = Location of String)
(datatype scheudling = Scheudling of String)
(datatype eventType = EventType of String)
(datatype event = Event of name * eventType * location * topic list)
(datatype presentation = Presentation of name * topic list * event list)
(open: boolean)

A.2. Conferen Centre 171

(close: boolean)

(context_info: String -> boolean)
(contextSubscription: presentation -> boolean)
(push: String * String -> boolean)
(app-topics: topic list * int -> boolean)
(accept-topics: topic list -> boolean)
(app-scheudling: scheudling * int -> boolean)
(accept-scheudling: scheudling -> boolean)
(reason: String -> boolean)

(pushed: String -> boolean)

(advertisement: event -> boolean)

(subscribe: presentation ->boolean)
(advertisement: event -> boolean)

(app-nego: presentation -> boolean)
(interested-people: AgentID list -> boolean)
(interested: topic -> boolean)

(info: String -> boolean)

(activity: event -> boolean)

(define-norm app-notification as
antecedent =
(((ACS (accept (?x pro) (?y pro) (app 7date-y)))))
defeasible-antecedent =
((DS (request (7x IP) (?z D) (push ?personID 7info))))
consequent =
((obl (?x (request (?x IP) (7z D) (push 7personID 7info)) DS)))

Bibliography

[3APL, URL] 3APL (URL). 3apl url. http://www.cs.uu.nl/3apl/.

[Apt, 1997] Apt, K. R. (1997). From Logic Programming to Prolog. Prentice-
Hall, UK.

[Arcos and Plaza, 2002] Arcos, J. L. and Plaza, E. (2002). Context-aware per-
sonal information agents. International Journal on Cooperative Information
Systems, 11(3):245-264.

[Ashri and Luck, 2001] Ashri, R. and Luck, M. (2001). Towards a layered ap-
proach for agent infrastructure: the right tools for the right job. In Sec-

ond International Workshop on Infrastructure for Agents, MAS, and Scalable
MAS.

[Austin, 1962] Austin, J. L. (1962). How to Do Things With Words. Oxford
University Press.

[Barbuceanu and Fox, 1995] Barbuceanu, M. and Fox, M. S. (1995). Cool: A
language for describing coordination in multi-agent systems. In Proceedings
of the First International Conference in Multi-Agent Systems (ICMAS-95),
pages 17-24. AAAI Press.

[Bauer et al., 2001] Bauer, B., Mller, J. P., and Odell, J. (2001). Agent uml: A
formalism for specifying multiagent software systems. International Journal
of Software Engineering and Knowledge Engineering, 11(3):207-230.

[Bellifemine et al., 2002a] Bellifemine, F., Caire, G., Trucco, T., and Rimassa,
G. (2002a). JADE Administrator’s guide. CSELT, TILab, http://jade.cselt.it.

[Bellifemine et al., 2002b] Bellifemine, F., Caire, G., Trucco, T., and Rimassa,
G. (2002b). JADE Programmer’s Guide. CSELT, TILab, http://jade.cselt.it.

[Bellifemine et al., 2001] Bellifemine, F., Poggi, A., and Rimassa, G. (2001). De-
veloping multi-agent systems with jade. In Castelfranchi, C. and Lesperance,
Y., editors, Intelligent Agents VII, number 1571 in Lecture Notes in Artificial
Intelligence, pages 89-103. Springer-Verlag.

173

174 Bibliography

[Bushnell and Oren, 1993] Bushnell, J. and Oren, S. (1993). Two dimensional
auctions for efficient franchising of public monopolies. Technical Report ERL-
93-41, University of California, Berkeley.

[Carriero and Gelernter, 1989] Carriero, N. and Gelernter, D. (1989). Linda in
Context. Comm. of the ACM, 32(4):444-458.

[Chauhan, 1997] Chauhan, D. (1997). JAFMAS: A Java-based Agent Frame-
work for Multiagent Systems Development and Implementation. PhD thesis,
ECECS Department, University of Cincinnati.

[Clearwater, 1995] Clearwater, S. (1995). Market-Based Control: A Paradigm
for Distributed Resource Allocation. World Scientific Press.

[Corkill and Lesser, 1983] Corkill, D. D. and Lesser, V. (1983). The use of meta-
level control for coordination in a distributed problem solving network. In
Bond, A. H. and Gasser, L., editors, Proceedings of the Fighth International
Joint Conference on Artificial Intelligence, pages 748-756. Karlsruhe, Federal
Republic of Germany, Morgan Kaufmann Publishers.

[Cost et al., 1999] Cost, R. S., Chen, Y., Finin, T., Labrou, Y., and Peng, Y.
(1999). Modeling agent conversations with colored petri nets. In AGENTS’99
Workshop on Specifying and Implementing Conversation Policies.

[de la Cruz, 2001] de la Cruz, D. (2001). Islander un editor d’institucions
electroniques. Master’s thesis, Universitat Autonoma de Barcelona.

[Dellarocas and Klein, 1999] Dellarocas, C. and Klein, M. (1999). Civil agent
societies: Tools for inventing open agent-mediated electronic marketplaces. In
Proceedings ACM Conference on Electronic Commerce (EC-99).

[Dignum, 2002] Dignum, F. (2002). Abstract norms and electronic institutions.
In Proceedings of International Workshop on Regulated Agent-Based Social
Systems: Theories and Applications (RASTA02).

[Dignum and Greaves, 2000] Dignum, F. and Greaves, M. (2000). Issues in agent
communication: An introduction. In Dignum, F. and Greaves, M., editors,
Issues in Agent Communication, volume 1916 of Lecture Notes in Computer
Science, pages 1-16. Springer Verlag.

[Diller, 1990] Diller, A. (1990). Z An Introduction to Formal Methods. John
Wiley & Sons, Inc.

[d'Inverno et al., 1998] d’Inverno, M., Kinny, D., and Luck, M. (1998). Interac-
tion protocols in agentis. In Proceedings of the Third International Conference
on Multi-agent Systems (ICMAS-98), pages 112-1109.

[Esteva et al., 2002a] Esteva, M., de la Cruz, D., and Sierra, C. (2002a). Is-
lander: an electronic institutions editor. In Proceedings of The First Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2002), pages 1045-1052.

Bibliography 175

[Esteva and Padget, 2000] Esteva, M. and Padget, J. (2000). Auctions without
auctioneers: distributed auction protocols. In Moukas, A., Sierra, C., and
Yegge, F., editors, Agent-mediated Electronic Commerce II, volume 1788 of
Lecture Notes in Artificial Intelligence, pages 20-38. Springer Verlag.

[Esteva et al., 2002b] Esteva, M., Padget, J., and Sierra, C. (2002b). Formaliz-
ing a language for institutions and norms. In Tambe, M. and Meyer, J.-J.,
editors, Intelligent Agents VIII, volume 2333 of Lecture Notes in Artificial
Intelligence, pages 348-366. Springer Verlag.

[Esteva et al., 2001] Esteva, M., Rodriguez-Aguilar, J. A., Sierra, C., Arcos,
J. L., and Garcia, P. (2001). Agent-mediated Electronic Commerce: The Eu-
ropean AgentLink Perspective, chapter On the Formal Specification of Elec-
tronic Institutions, pages 126-147. Number 1991 in Lecture Notes in Artificial
Intelligence. Springer-Verlag.

[Ferber and Gutknetch, 1998] Ferber, J. and Gutknetch, O. (1998). A meta-
model for the analysis of organizations in multi-agent systems. In Proceedings
of the Third International Conference on Multi-Agent Systems (ICMAS-98),
pages 128-135.

[Finin et al., 1995] Finin, T., Labrou, Y., and Mayfield, J. (1995). Kqml as an
agent communication language. In Bradshaw, J., editor, Software Agents.
MIT Press, Cambridge. invited chapter.

[FIPA, 1997] FIPA (1997). Specification part 2: Agent communication language.
Technical report, Foundation for Intelligent Physical Agents.

[FIPA, 2001] FIPA (2001). Fipa agent management specification. Tech-
nical Report XCO00023H, Foundation for Intelligent Physical Agents,
http://www .fipa.org, Geneva, Switzerland.

[FIPA, 2002] FIPA (2002). Ffipa agent message transport service speci-
fication. Technical report, Foundation for Intelligent Physical Agents,
http://www .fipa.org, Geneva, Switzerland.

[FishMarket, URL] FishMarket (URL). The Fishmarket Project. http://-
www iiia.csic.es/Projects/fishmarket.

[Forgy, 1982] Forgy, C. L. (1982). Rete: A fast algorithm for the many pattern/
many object pattern match problem. Artificial Intelligence, 19:17-37.

[Franklin and Reiter, 1996] Franklin, M. and Reiter, M. (1996). The Design and
Implementation of a Secure Auction Service. IEEE Transactions on Software
Engineering, 22(5):302-312.

[Gagliano et al., 1995] Gagliano, R. A., Fraser, M. D., and Schaefer, M. E.
(1995). Auction allocation of computing resources. Communications of the
ACM, 38(6):88-102.

176 Bibliography

[Galan, 2000] Galan, A. K. (2000). JiVE: JAFMAS integrated Visual Environ-
ment. PhD thesis, University of Cincinnati.

[Garcia et al., 1998] Garcia, P., Giménez, E., Godo, L., and Rodriguez-Aguilar,
J. A. (1998). Possibilistic-based design of bidding strategies in electronic
auctions. In The 13th biennial European Conference on Artificial Intelligence
(ECAI-98).

[Gasser et al., 1987] Gasser, L., Braganza, C., and Herman, N. (1987). Dis-
tributed Artificial Intelligence, chapter MACE: A flexible test-bed for dis-
tributed AT research, pages 119-152. Pitman Publishers.

[Genesereth and Ketchpel, 1994] Genesereth, M. R. and Ketchpel, S. P. (1994).
Software agents. Communications of the ACM, Special Issue on Intelligent
Agents, 37(7):48-53.

[Giunchiglia et al., 2002] Giunchiglia, F., Mylopoulos, J., and A-Perini (2002).
The tropos software development methodology: Processes, models and di-
agrams. In AAMAS’ 02 Workshop on Agent Oriented Software Engineering
(AOSE-2002), pages 63-74.

[Greaves et al., 2000] Greaves, M., Holmback, H., and Bradshaw, J. (2000).
What is a conversation policy? 1In Issues in Agent Communication, num-
ber 1916 in Lecture Notes in Artificial Intelligence, pages 118-131. Springer-
Verlag.

[Hewitt, 1986] Hewitt, C. (1986). Offices are open systems. ACM Transactions
of Office Automation Systems, 4(3):271-287.

[Hoare, 1985] Hoare, C. A. R. (1985). Communcating Sequential Processes.
Prentice Hall.

[Holzmann, 1997] Holzmann, G. J. (1997). The model checker spin. IEEE Trans-
actions on Software Engineering, 25(3).

[Howden et al., 2001] Howden, N., Romquist, R., Hodgson, A., and Lucas, A.
(2001). Jack intelligent agents - summary of an agent infrastructure. In
Proceedings of the Fifth InternationalConference on Autonomous Agents.

[Huberman and Clearwater, 1995] Huberman, B. A. and Clearwater, S. (1995).
A multi-agent system for controlling builging environments. In Proceedings
of the First International Conference on Multi-Agent Systems (ICMAS-95),
pages 171-176. AAAT Press.

[Huguet et al., 2002] Huguet, M.-P., Esteva, M., Phelps, S., Sierra, C., and
Wooldridge, M. (2002). Model checking electronic institutions. In ECAI
Workshop on Model Checking and Artificial Intelligence (MoChart-2002).

Bibliography 177

[Iglesias et al., 1999] Iglesias, C. A., Garijo, M., and Gonzalez, J. C. (1999). A
survey of agent-oriented methodologies. In Muller, J. P., Singh, M., and Rao,
A. S, editors, Intelligent Agents V, Lecture Notes in Artificial Intelligence.
Springer-Verlag.

[ISLANDER, URL] ISLANDER (URL). ISLANDER editor. http://e-
institutor.iiia.csic.es/e-institutor/software/islander.html.

[JADE, URL] JADE (URL). The Java Agent Development Framework.
http://jade.cselt.it.

[Jennings, 2000] Jennings, N. R. (2000). On agent-based software engineering.
Artificial Intelligence, 117(2):277-296.

[Jennings, 2001] Jennings, N. R. (2001). An agent-based approach for building
complex software systems. Comms. of the ACM, 44(4):35-41.

[Jennings et al., 1998] Jennings, N. R., Sycara, K., and Wooldridge, M. (1998).
A roadmap of agent research and development. Autonomous Agents and Multi-
agent Systems, 1:275-306.

[Jennings and Wooldridge, 1998] Jennings, N. R. and Wooldridge, M. J. (1998).
Applications of intelligent agents. In Jennings, N. R. and Wooldridge, M. J.,
editors, Agent Technology: Foundations, Applications, and Markets, pages
3-28. Springer-Verlag: Heidelberg, Germany.

[JESS, URL] JESS (URL). JESS Webpage. http://herzberg.ca.sandia.gov/jess.

[Juan et al., 2002] Juan, T., Pierce, A., and Sterling, L. (2002). Roadmap: Ex-
tending the gaia methodology for complex open systems. In Proceedings of The
First International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2002), pages 3—10.

[Koning et al., 1998] Koning, J.-L., Franois, G., and Demazeau, Y. (1998). For-
malization and pre-validation for interaction protocols in multiagent systems.
In Prade, H., editor, Proceedings of the 13th European Conference on Artificial
Intelligence, pages 298-302. John Wiley & Sons, Ltd.

[Labrou et al., 1999] Labrou, Y., Finin, T., and Peng, Y. (1999). Agent com-
munication languages: The current landscape. IEEE Intelligent Systems,
14(2):45-52.

[Lamport et al., 1982] Lamport, L., Shostak, R., and Pease, M. (1982). The
Byzantine generals problem. ACM Transactions on Programming Languages
and Systems, 4(3):382-401.

[Lynch, 1996] Lynch, N. (1996). Distributed Algorithms. Morgan Kaufmann.
ISBN 1-55860-348-4.

178 Bibliography

[Martin et al., 2000] Martin, F. J., Plaza, E., and Rodriguez-Aguilar, J. A.
(2000). An infrastructure for agent-based systems: An interagent approach.
International Journal of Intelligent Systems, 15(3):217-240.

[MASFIT, URL] MASFIT (URL). The MASFIT project.
http://www.masfit.net.

[Mazoui et al., 2002] Mazoui, H., Fallah, A. E., and Haddad, S. (2002). Open
protocol design for complex interactions in multi-agent systems. In Proceed-
ings of The First International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2002), pages 517-526.

[Milner, 1980] Milner, R. (1980). A Calculus of Communicating Systems.
Springer, Berlin, 1 edition.

[Milner, 1991] Milner, R. (1991). The Polyadic 7-Calculus: a Tutorial. Preprint
of Proceedings International Summer School on Logic and Algebra of Specifi-
cation.

[Milner, 1999] Milner, R. (1999). Communicating and Mobile Systems: the m-
Calculus. Cambridge University Press.

[Nodine and Unruh, 1999] Nodine, M. H. and Unruh, A. (1999). Constructing
robust conversation policies in dynamic agent communities. In AGENTS’99
Workshop on Specifying and Implementing Conversation Policies.

[Noriega, 1997] Noriega, P. (1997). Agent-Mediated Auctions: The Fishmarket
Metaphor. Number 8 in IITA Monograph Series. Institut d’Investigacié en
Intel.ligencia Artificial (ITTA). PhD Thesis.

[North, 1990] North, D. (1990). Institutions, Institutional Change and Eco-
nomics Perfomance. Cambridge U. P.

[Nwana et al., 1999] Nwana, H. S., Ndumu, D. T., Lee, L. C., and Collis, J. C.
(1999). ZEUS: a toolkit and approach for building distributed multi-agent sys-
tems. In Etzioni, O., Miller, J. P., and Bradshaw, J. M., editors, Proceedings
of the Third International Conference on Autonomous Agents (Agents’99),
pages 360-361, Seattle, WA, USA. ACM Press.

[Odell et al., 2000] Odell, J., Parunak, H., and Bauer, B. (2000). Extending uml
for agents. In Agent-Oriented Information Systems Workshop at AAAI 2000,
pages 3—17.

[Ontafién and Plaza, 2002] Ontandn, S. and Plaza, E. (2002). A bartering ap-
proach to improve multiagent learning. In Proceedings of the First Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2002), pages 386-393. ACM press.

Bibliography 179

[Padget, 2001] Padget, J. (2001). Modelling simple market structures in process
algebras with locations. In Moreau, L., editor, AISB’01 Symposium on Soft-
ware Mobility and Adaptive Behaviour, pages 1-9. The Society for the Study
of Artificial Intelligence and the Simulation of Behaviour.

[Padget and Bradford, 1998] Padget, J. and Bradford, R. (1998). A m-calculus
model of a spanish fish market. In Sierra, C. and Noriega, P., editors, Agent-
Mediated Electronic Trading, number 1571 in Lecture Notes in Artificial In-
telligence, pages 166-188. Springer-Verlag.

[Padget and Bradford, 1999] Padget, J. and Bradford, R. (1999). A m-calculus
model of the spanish fishmarket. In Proceedings of AMET’98, volume 1571 of
Lecture Notes in Artificial Intelligence, pages 166—188. Springer Verlag.

[Padgham and Winikoff, 2002] Padgham, L. and Winikoff, M. (2002).
Prometheus: A methodology for developing intelligent agents. In AA-
MAS’02 Workshop on Agent Oriented Software Engineering (AOSE-2002),
pages 135-145.

[Parunak, 2000] Parunak, H. V. D. (2000). A practitioners? review of industrial
agent applications. Autonomous Agents and Multi-Agent Systems, 3(4):389—
407.

[Parunak and Odell, 2002] Parunak, H. V. D. and Odell, J. (2002). Representing
social structures in uml. In Wooldridge, M., Ciancarini, P., and Weiss, G.,
editors, Agent-Oriented Software Engineering Workshop II, volume 2222 of
Lecture Notes in Computer Science, pages 1-16.

[Pattison et al., 1987] Pattison, H. E., Corkill, D. D., and Lesser, V. R. (1987).
Distributed Artificial Intelligence, chapter Instantiating Descriptions of Orga-
nizational Structures, pages 59-96. Pitman Publishers.

[Pierce, 1996] Pierce, B. C. (1996). Foundational calculi for programming lan-
guages. In Tucker, A. B., editor, Handbook of Computer Science and Engi-
neering, chapter 139. CRC Press.

[Pierce and Turner, 1997] Pierce, B. C. and Turner, D. N. (1997). Pict: A Pro-
gramming Language Based on the Pi-Calculus. Technical Report 476, Indiana
University.

[Poslad et al., 2000] Poslad, S., Buckle, P., and Hadingham, R. (2000). The
fipa-os agent platform: Open source for open standards. In Proc. of the
5th International Conference and Exhibition on the Practical Application of
Intelligent Agents and MultiAgents, pages 355—368.

[Rodriguez-Aguilar, 2001] Rodriguez-Aguilar, J. A. (2001). On the Design and
Construction of Agent-mediated Electronic Institutions. PhD thesis, Univer-
sitat Autonoma de Barcelona. Also to appear in IITTA monography series.

180 Bibliography

[Rodriguez-Aguilar et al., 1998] Rodriguez-Aguilar, J. A., Martin, F. J., Nor-
iega, P., Garcia, P., and Sierra, C. (1998). Towards a test-bed for trading
agents in electronic auction markets. AI Communications, 11(1):5-19.

[Rodriguez-Aguilar et al., 2000] Rodriguez-Aguilar, J. A., Martin, F. J., Nor-
iega, P., Garcia, P., and Sierra, C. (2000). Towards a formal specification of
complex social structures in multi-agent systems. In Padget, J. A., editor,
Collaboration between Human and Artificial Societies, volume 1624 of Lecture
Notes in Artificial Intelligence, pages 284-300. Springer-Verlag.

[Rodriguez-Aguilar et al., 1997] Rodriguez-Aguilar, J. A., Noriega, P., Sierra,
C., and Padget, J. (1997). Fm96.5 a java-based electronic auction house. In
Second International Conference on The Practical Application of Intelligent
Agents and Multi-Agent Technology(PAAM’97), pages 207-224.

[Searle, 1969] Searle, J. R. (1969). Speech acts. Cambridge U.P.

[Sibertin et al., 2000] Sibertin, C., Hamachi, C., and J.Cardoso (2000). Com-
munication protocols as a first-class components of multiagent systems. In

Proceedings of the Fourth International Conference on Multi-agent Systems
(ICMAS-00), pages 437-438.

[Sibertin-Blanc, 2001] Sibertin-Blanc, C. (2001). Cooperative objects: Princi-
ples, use and implementation. Lecture Notes in Computer Science: Concur-

rent Object-Oriented Programming and Petri Nets, Advances in Petri Nets,
2001:216-246.

[SICS, 2000] SICS (2000). SICStus Prolog User’s Man-
ual. Swedish Institute of Computer Science, available at
http://www.sics.se/isl/sicstus2.html#Manuals.

[Sterling and Shapiro, 1994] Sterling, L. and Shapiro, E. (1994). The Art of
Prolog: Advanced Programming Techniques. MIT Press, 2nd edition.

[Tremblay and Sgrenson, 1985] Tremblay, J.-P. and Sgrenson, P. G. (1985). The
theory and practice of compiler writing. McGraw-Hill. ISBN 0-07-065161-
2,Pag 275-286.

[Varian, 1995] Varian, H. R. (1995). Economic mechanism design for computer-
ized agents. In First USENIX Workshop on Electronic Commerce.

[Vasconcelos et al., 2003] Vasconcelos, W. W., Robertson, D., Sierra, C., Esteva,
M. Sabater, J., and M., W. (2003). Rapid prototyping of large multi-agent
systems through logic programming. Annals of Mathematics and Artifical
Intelligence. (to appear).

[Vasconcelos et al., 2002a] Vasconcelos, W. W., Sabater, J., Sierra, C., and
Querol, J. (2002a). Skeleton-based Agent Development for Electronic Insti-
tutions. In Proc. 1st Int’l Joint Conf. on Autonomous Agents €& Multi-Agent
Systems (AAMAS 2002), Bologna, Italy. ACM, U.S.A.

Bibliography 181

[Vasconcelos et al., 2002b] Vasconcelos, W. W., Sierra, C., and Esteva, M.
(2002b). An Approach to Rapid Prototyping of Large Multi-Agent Systems.
In Proc. 17th IEEE Int’l Conf. on Automated Software Engineering (ASE
2002), Edinburgh, UK. IEEE Computer Society, U.S.A.

[Vézquez-Salceda and Dignum, 2003] Vazquez-Salceda, J. and Dignum, F.
(2003). Modelling electronic organizations. In Proceedings of the 3rd Inter-
national/Central and Eastern European Conference on Multi-Agent Systems.
(to appear).

[Werner, 1987] Werner, E. (1987). Distributed Artificial Intelligence, chapter
Cooperating Agents: A Unified Theory of Communication and Social Struc-
ture, pages 3—-36. Pitman Publishers.

[Wooldridge et al., 2002] Wooldridge, M., Fischer, M., Huguet, M.-P., and Par-
sons, S. (2002). Model checking multiagent systems with mable. In Proceed-
ings of The First International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2002).

[Wooldridge and Jennings, 1999] Wooldridge, M. and Jennings, N. (1999). Soft-
ware engineering with agents: Pitfalls and pratfalls. IEEE Internet Comput-
ing, 3(3):20-27.

[Wooldridge et al., 1999] Wooldridge, M., Jennings, N. R., and Kinny, D.
(1999). A methodology for agent-oriented analysis and design. In Proceedings
of the Third International Conference on Autonomous Agents (AGENTS’99).

[Wooldridge et al., 2000] Wooldridge, M., Jennings, N. R., and Kinny, D.
(2000). The gaia methodology for agent-oriented analysis and design. Journal
of Autonomous Agent and Multi-Agent Systems, 3(3):285-312.

[Wooldridge and P.Ciancarini, 2001] Wooldridge, M. and P.Ciancarini (2001).
Agent-oriented software engineering: The state of the art. In Ciancarini, P.
and Wooldridge, M., editors, Agent-Oriented Software Engineering, volume
1957 of Lecture Notes in Al Springer Verlag.

[Ygge and Akkermans, 1996] Ygge, F. and Akkermans, H. (1996). Power load
management as a computational market. In Proceedings of the Second Inter-
national Conference on Multi-Agent Systems (ICMAS-96).

[Ygge and Akkermans, 1997] Ygge, F. and Akkermans, H. (1997). Making a
case for multi-agent systems. In Boman, M. and de Velde, W. V., editors,
Advances in Case-Based Reasoning, number 1237 in Lecture Notes in Artificial
Intelligence, pages 156-176. Springer-Verlag.

