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One of the key issues in the current development of complex KBS is the

necessity of incorporating learning capabilities to KBS. Speci�cally, the inte-

gration of learning components is considered as an essential topic for future

KBS building and design. In this paper we present as an integrated

framework that supports problem solving methods and learning methods. A

formalization of using feature terms is presented. We explain the notion

of episodic memory and its role in integrating learning and knowledge mod-

elling. Finally, the integration of several eager and lazy learning methods is

shown.

Knowledge-level analysis of expert systems and the knowledge modelling frame-

works developed for the design and construction of KBS are techniques for describ-

ing and reusing KBS components. These knowledge modelling frameworks, like

KADS [2], CommonKADS [27] or Components of Expertise [21], are based on the

task/method decomposition principle and the analysis of knowledge requirements

for methods.

Machine learning techniques usually play an important role as knowledge ac-

quisition tools in the process of knowledge modelling. Our approach is that certain

knowledge acquisition tasks can be delayed and performed when the KBS is solv-

ing problems in the task environment. Following this approach, we have developed

as an integrated framework that supports problem solving methods (PSMs)

and learning methods.

The delay of knowledge acquisition tasks implies that learning requirements

have to be supported also by the KM framework. The requirements for incorporat-

ing learning in a KM framework are the ability, the

ability, and the ability. Concretely, a system that has to learn
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from its own experience has to be able to 1) inspect its own behavior (that has

to be represented and stored in its memory), 2) analyze it and discover what as-

pects are responsible for a failure (or a success, or a delay, etc), and 3) decide how

to transform itself (its knowledge, procedures for decision, etc) so that its future

behavior is to be considered as improved.

Learning systems with memory storage and retrieval abilities need to represent

part of its own problem solving behavior in the language of the system itself. We

will call this kind of memory the of the system. The form of

this episodic memory is intimately bound to the scheme of representation used for

inference. is a representational framework where reasoning is represented in

terms of tasks, methods that may achieve them, the subtasks needed to realize

methods, and the knowledge or models used by these methods. In this approach,

the episodic memory will store the decisions taken during the inference: successful

methods engaged to tasks, results obtained by achieved tasks, methods that have

failed to achieve tasks, etc.

Another important issue in integrating learning methods in is the notion of

. Whenever there is a lack of knowledge directly usable by a problem solving

method, an impasse arises. For instance, a generate and test method requires

some knowledge to generate plausible hypotheses from problem descriptions: if

this knowledge is lacking in the needed form, an impasse arises. In fact, the

language then generates a metalevel task, the task of solving that impasse [16].

Learning methods are then integrated as methods to solve the tasks generated

by impasses in order to obtain the missing knowledge. In this way, using the

knowledge modelling framework, we can analyze the knowledge requirements of

a problem solving method (PSM) and, if this knowledge is not directly available,

include some learning methods that may derive the knowledge required by that

PSM. Thus, the role of a learning method is to generate knowledge in a form

directly usable by a PSM.

We can summarize the role of learning methods in our framework as follows:

a learning method is like a problem solving method with introspective capabilities

such that 1) examines selected parts of the episodic memory (these selected parts

are then considered \examples" or \cases" for learning) and 2) construct some new

piece of knowledge needed to solve new problems.

The next section introduces the approach to knowledge modelling and

learning. In Section 3 feature terms are described as the formal basis of the lan-

guage. Section 4 presents the integration of learning methods in our language

and discuss the integration of di�erent machine learning techniques as case-based

reasoning, induction, and analytical learning. Finally, Section 5 contains the con-

clusions of the paper.

Knowledge-based problem solving is characterized by the intensive use of highly

domain speci�c elements of knowledge. The purpose of knowledge modelling ap-

proaches is to describe this knowledge and how it is being used in a particular

problem in an implementation independent way. Di�erent knowledge modelling

approaches have proposed di�erent categories of knowledge elements and di�erent

abstractions to describe them.

We propose a model based on three knowledge categories: ,
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2.1 The Noos Modelling Framework

general-diagnosis

general-diagnosis

detect-complaint generate-hypothesis discriminate-hypothesis

problem solving knowledge metalevel knowledge

domain knowledge

concepts relations

\owner of a car"

problem solving knowledge

tasks

methods

Figure 1: A browser of partial task/method decomposition for general diagnosis

method. Tasks are drown with thin boxes and methods are drown with thick

boxes.

, and . Moreover, we o�er a mapping

from this model to a representation language in order to provide a real computa-

tional framework to construct KBS.

The �rst knowledge category of the framework is . The

domain knowledge category speci�es a set of and a set of among

them relevant for a given application. For instance, in the application of diagnosing

car malfunctions, domain knowledge will be speci�ed as a set of concepts capturing

knowledge about cars or malfunctions. An example of a relation from cars to

persons is the .

Another category of the framework is . Prob-

lems to be solved in a domain are modelled as . For instance, following

the previous example, the main task in the cars diagnosis domain is to estab-

lish car malfunctions. In our approach, model the ways to solve prob-

lems. Methods can be elementary or can be decomposed into subtasks. These

new (sub)tasks can be achieved by corresponding methods in the same way. For

a given task there may be multiple alternative methods (alternative ways to

solve that task). This recursive decomposition of task into subtasks by means

of a method is called the task/method decomposition. For instance, in Figure 1

the task/method decomposition of method (following [6]) is

shown. The method is decomposed three subtasks, namely

, , and . For

each subtask one or several alternative methods are speci�ed|e.g. subtask
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detect-complaint ask-user classify compare

methods

metalevel knowledge

about

metalevel concepts

metalevel relations metalevel tasks metalevel methods

preferences

Figure 2: The Noos modelling framework.

has methods , , and . A relation

can be described extensionally or intensionally. An intensional description of a

relation can be modelled by means of . For instance, the age of a given

person could be unknown but it is known that will be exactly the di�erence in years

between the current date and the person's birthday.

The last category of the framework is . Metalevel (or

reective) knowledge is knowledge domain knowledge and problem solving

knowledge. More speci�cally, metalevel knowledge can have models about concepts,

relations, tasks, and methods. These models are formed by ,

, , and (see Fig. 2). Moreover,

metalevel knowledge also includes to model decision making about sets

of alternatives present in domain knowledge and problem solving knowledge. For

instance, metalevel knowledge can be used to model criteria for preferring some

methods over other methods for a task in a speci�c situation. An example of

metalevel task is one that chooses a method for a given task. An example of

metalevel method is one that|for a speci�c situation|searches possible methods

for a task, selects some methods as suitable alternatives, and �nally ranks them

using a set of preferences. This uniform representation of metalevel knowledge

components by means of concepts, relations, methods, and tasks is the basis for

the integration of learning.

Our purpose in the design of the knowledge categories of was to use a set

of knowledge categories close to the KADS [2, 27] and Components of Expertise

[21] proposals. We are interested in proposing a compatible approach in order

to take advantage of their work. Speci�cally, the research of Richard Benjamins

on problem solving methods (PSM) for diagnosis [6] is able to help the design of

problem solving methods in . Nevertheless, there are some di�erences between

and the other proposals. The �rst di�erence is that since in our approach a

PSM de�nes a way in which a task can be achieved, PSMs determine the subtask

decomposition of tasks. In this sense we have join tasks and methods as elements
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of problem solving knowledge. Another di�erence is that task speci�cation and

method selection, as are understood in KADS, not exists as such, but may be

modelled as metalevel knowledge in .

Problem solving in is considered as the construction of an .

In this sense the approach to problem solving is close to that of CommonKADS

[27] and the TASK language [14]. The view of \problem solving as modelling" is

that problem solving is the construction of an episodic model from problem data and

problem solving knowledge. A clear and explicit separation between tasks, methods,

and domain knowledge permits the dynamical link between a given problem, tasks,

and methods as well as the dynamical choice of a suited method to achieve a task

in a given resolution context : a `task' applies a `method' on a `episode' (described

using domain knowledge and problem data). Thus, a episodic model gathers the

knowledge pieces used for solving a speci�c problem. Once a problem is solved

automatically memorizes (stores and indexes) the episodic model that has been

built. Episodic memory (see 2.3) is the (accessible and retrievable) collection of

the episodic models of the problems that a system has solved. The memorization

of episodic models is a basic building block for integrating learning into a KM

framework.

is an object-centered representation language based on .

are record-like data structures embodying a collection of . Intuitively,

a feature term is a syntactic expression that denotes sets of elements in some

appropriate domain of interpretation. In this way feature terms can be viewed also

as partial descriptions. Numbers, strings and symbols are considered as prede�ned

feature terms without features. Feature terms are described formally in the next

section.

All the knowledge elements of the model are represented into the language

by means of feature terms. This means that with a small set of computational

elements we capture all the elements of the knowledge model. Besides, this uniform

representation of the knowledge bene�ts the introspective capabilities of .

Concepts, as de�ned by the model, are mapped to the language

as feature terms. Relations are mapped to features. Speci�cally, a feature term

representing a concept embodies the set of features related to this concept .

The notion of is introduced as the methodology to de�ne feature

terms in the language. Re�nement involves two distinct aspects:

and . On the one hand, a new feature term is constructed reusing another

existing feature term: a new entity description de�ned as a re�nement of another

entity description includes all the feature descriptions de�ned in not rede�ned

in . For instance, the feature term can be de�ned with the common knowledge

about cars. Then, speci�c models of cars can be de�ned by re�nements of .

Finally, speci�c cars can be described as re�nements of models of cars.

Methods are also mapped to the language as feature terms. The subtasks of a

method are mapped to the language as features. Thus, the set of features de�ned in

a method description is interpreted as the subtask decomposition of that method.

This subtask decomposition of methods allows to de�ne (sub)methods for each

subtask in a uniform way. The language provides a set of built-in methods.

New methods can be de�ned from other existing methods by re�nement. New

methods can also be constructed as combinations of existing methods.
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2.3 Episodic Memory
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A detailed description of the language is o�ered in [4].

Inference in is on demand. Thus, inference starts when a user asks to solve

a speci�c task by means of a that engages such a task. When a

task is its corresponding method is evaluated. A method is decomposed

into subtasks; when it is evaluated its subtasks are consequently engaged. Thus, the

inference in can be viewed as a chaining process along the tree of task/method

decompositions. This recursive chaining ends when a method directly uses factual

knowledge. A task is achieved when its corresponding method is successful, and a

method is successful when all its required subtasks are achieved.

When no method is speci�ed for a given task, an occurs and the control

of the inference is passed to the corresponding metalevel task. The metalevel task

has to infer a partially ordered set of alternative methods for the originating task.

This set of alternative methods may be given or may be inferred by means of a

metalevel method. The partial order is interpreted as a preference order in the

selection of a method for the task that originated the impasse. At the end of the

inference of a task engaged by a query expression, the of the successful

methods in the tree of task/method decomposition will be maximal with respect to

the preference orders inferred by the metalevels tasks involved. The interpreter of

uses backtracking to search for a method combination maximal with respect

to the preferences involved.

As we have seen, the episodic memory requires to represent part of its prob-

lem solving behavior in the language itself. The decisions taken during infer-

ence for a task are automatically stored in . The set of such stored decisions

constitute the episodic memory of a system. The storage of the task/method de-

composition instantiated in the solution of a given problem will provide the case-

speci�c model that may be used later in learning methods: successful methods

engaged to tasks, results obtained by achieved tasks, and methods that have failed

to achieve tasks. Moreover, using introspective methods new knowledge can be

inferred: knowledge about achieved tasks (tasks with a successful method engaged

to the task), failed tasks (tasks where all methods have failed to achieve the task),

untried options (methods not tried while achieving a task).

Another required ability for incorporating learning mechanisms in is the

introspection capability. has to provide a way for recalling and reusing past

experience for solving new problems. That is, a way to examine the contents of

episodic memory. o�ers two ways to perform introspection: using metalevel

methods and using a set of retrieval methods provided by the language. Metalevel

methods provide a way to inspect speci�c portions of the episodic memory. This

�rst kind of introspection assumes some knowledge about the set of useful episodes.

On the other side, retrieval methods o�er introspection capabilities when not using

a set of �xed episodes. For instance, we can be interested in episodes where a

speci�c task has been solved using facts and characteristics similar to the current

problem. Since these requirements and the set of precedents only can be determined

dynamically, retrieval methods are necessary for these purposes.

provides a set of basic retrieval methods. Since retrieval methods are

methods like any other built-in methods provided in , new retrieval methods

can be designed re�ning and combining the existing ones. Retrieval methods al-

low to inspect and analyse previous similar episodes. The similarity criteria are
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A feature term is an expression of the form:

where is a variable in , is a sort in , are features in , ,

and each is either a feature term or a set of feature terms.

determined by speci�c domain knowledge about the relevance di�erent features or

requirements of problem solving methods.

Our approach to formalize is related to the research based on [1, 9],

and extensible records [8, 10] that propose formalisms to model object-oriented

programming constructs. As we have presented, is an object-centered rep-

resentation language based on . are record-like data

structures embodying a collection of .

The di�erence between feature terms and �rst order terms is the following: a

�rst order term, e. g. ( ( ) ), can be formally described as a tree and a

�xed tree traversal order|in other words, variables are identi�ed by position. The

intuition behind a feature term is that it can be described as a labeled graph|in

other words, variables are identi�ed by name (regardless of order or position). This

di�erence allows to represent partial knowledge.

We describe the signature � as the tuple such that:

is a set of including ;

is a set of ;

is a set of ;

is a decidable partial order on such that is the least element and is

the greatest element.

We de�ne an interpretation over the signature as the structure

= ( ) ( )

such that:

is a non-empty set, called of (or, universe);

for each symbol in , is a subset of the domain; in particular, =

and = ;

for each feature in , is a total unary function : ( ). When

the mapping is not de�ned it is assumed to have value .

Methods are interpreted as functions (see Section 3.3).

Given the signature � and a set of variables, we de�ne as

follows:

::= : [ = 	 = 	 ]

0
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Given two feature terms and , subsumes , , when :

1. , and

2. for every de�ned in , then has to be de�ned in as

and such that .

Given two subsets of terms we say that if for each ,

there is a such that .

Note that when = 0 we are de�ning only a sorted variable ( : ). We call

the variable in the above feature term the of , and say that is

by the sort (noted ( )) and has features .

Using this syntax for feature terms, the following expression

:

= Smith

= :
=

= :

is an example of a feature term denoting persons with a lastname Smith, who drive

a car. Moreover, these persons are the owner of the car that drive and the model

of the car is Ibiza.

A feature term is a syntactic expression that denotes sets of elements in some

appropriate domain of interpretation ([[ ]] ). Thus, given the previously

de�ned interpretation , the denotation [[ ]] of a feature term , under a valuation

: is given inductively by:

[[ ]] = [[ : [ = = ]]] = ( ) ( ) ([[ ]] )

where ( ), when is a function and is a set, stands for such that

( ) = ; i.e., denotes the set of all elements whose images by contains at least

.

Using this semantical interpretation of feature terms, it is legitimate to establish

a relation order between terms. Given two terms and , we will be interested

in determine when [[ ]] [[ ]] .

The semantical interpretation of feature terms brings an ordering relation among

feature descriptions. We call this ordering relation as . The intuitive

meaning of subsumption is that of . We say that a feature

term subsumes another feature term ( ) when all information in

is also contained in .

(Subsumption)

( ) ( )

= 	 	

= 	 	

Notice that this de�nition of subsumption provides a concrete interpretation of

the subsumption between two sets: given two subsets of terms we say that

if the terms provided in are extended and re�ned in ; formally,
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3.2 Understanding feature terms as clauses

3.3 Representing methods as feature terms

lower powerdomain

equivalence

Given two feature terms and , we say that they are syntactic variants if

and only if and .

evaluable

evaluable

X Person drives
:
Y Car

owner
:
V Person

model
:
Z Car model

  

    

X s f X; Y

 X s f
:
 f

:
 

�  

�  X s f X; Y �  f X; Y �  

Y ; ; Y  ; ;  

X Person lastname X;

drives X; Y Y Car owner Y;X

model Y; Z Z Ibiza

This subsumption notion between sets corresponds to the

interpretation of sets [11].

For instance, the previous presented feature term is subsumed by the next

feature term denoting persons driving a car with an owner and any car model:

: = :
= :

= :

Finally, we introduce the notion of among feature terms:

(Equivalence)

Feature terms can be also understood as conjunctions of clauses. This clausal

representation is useful and more usual for explaining learning methods. There are

two kinds of atomic clauses: sort clauses ( : ) and feature clauses ( ( )). A

given feature can be represented also as a conjunction of these two kind of atomic

clauses.

Thus, we associate each feature term = : [ = = ] with a

clause ( ) as follows:

( ) = : ( ) ( ) ( ) ( )

where are roots of respectively.

For instance, the �rst feature term presented as example is represented as a

clause in the following way:

: ( Smith)

( ) : ( )

( ) :

Methods are represented by means of feature terms. The features of a

given method indicates either a reference to some knowledge source required by

the method, or a subtask the method requires to be accomplished. Each (sub)task

has to be achieved by a corresponding (sub)method. In turn, (sub)methods are

represented by means of new feature terms. The evaluation of a method

performs a speci�c combination of the knowledge sources and the results of the

subtasks returning a value as a result. The value returned can be a number, a

string, a symbol, or any other feature term|including a method. provides an

initial set of built-in methods. Each built-in method has a set of built-in features.

For instance, built-in method is a comparison method that expects the

�rst element to compare as the feature value of its feature and the second

element in . Examples of built-in methods are arithmetic operations,

set operations, logic operations, operations for comparing feature terms and other

basic constructs such as conditional or sequencing. The semantics of conditional

9
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m

m f ; f ;

f ; ; f ; ;

conditonal method

condition
:
boolean

result
:

otherwise
:

m f

f
:

m

G T sequence
generate

:
generate method

test
:

test method

f
:

m

m f

conditional

condition result otherwise

conditional method

conditional condition

true false result otherwise

sequence

generate test

adder

A in B in

out voltage

add

and sequencing is the usual in declarative programming languages and they embody

the only control constructs in . New methods are de�ned by re�nement and

combination of built-ins or other already de�ned methods.

Methods are conceived of as functions the parameters of which are passed by

name (the required feature names) instead of position. An advantage of this rep-

resentation is that evaluation is not strict, since parameters of a method can be

passed in any order to the method. Formally, a method is interpreted as a

function

: ( 	 ) ( 	 ) 	

where are feature names, 	 	 are their corresponding actual val-

ues, and 	 is the result of the method.

An example of a built-inmethod is the method that has three

subtasks given by required features with name , , and .

Below the method is shown (being a re�nement of indicates

it is a built-in).

:

=

=

=

The method performs �rst the subtask and depending

on its result being or either the subtask or subtask

is performed and the value obtained is returned as the result.

In order to describe the corresponding method of a given subtask the syntax

for feature terms is extended. We use the # token as a way to introduce methods

engaged to subtasks: a given method for a subtask with name is described

using the = # syntax. Introducing the # token we can di�erentiate methods

from references for subtasks. For instance, a generate and test method applied to

a diagnosis task, being a re�nement of built-in method, is decomposed

in two subtasks called and and these two subtasks can be achieved

respectively by speci�c generate and test methods:

& :
= # 4

= # 7

We say that a method is when all the needed features (references and

subtasks) are speci�ed. Only closed methods can be evaluated and return a value.

Closed methods can be used as ways to infer feature values. Speci�cally, introducing

a closed method we describe a feature value by means of a task instead of a �xed

value. That is to say, using the syntax = # in some feature term we are

specifying that method will be used to solve task . Clearly, this syntax is

the same as in subtask decomposition of methods. For instance, in the domain

of electronic circuits an component can be represented as a feature term

with two input ports (represented by the features and ), one output port

(represented by the feature), and three wires . The value of the feature

of the output port can be expressed as the addition ( ) of the two input ports

as follows

10
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:
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=
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=
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2 =

=

= :

= :

= :

Machine Learning (ML) techniques have been used by Knowledge Modelling

methodologies as a way to acquire certain models in the knowledge acquisition

(KA) process conducive to building a KBS. Our interest is in developing KBS with

learning capabilities. This option means essentially that certain knowl-

edge acquisition tasks are from the KBS design and construction phase to

the phase in which the KBS system is actually used in the task environment. Since

KM methodologies views KA as a process that basically build models, our approach

means that some models are not built in the �rst phase, and their construction

is delayed to the second phase where appropriate ML methods are appointed to

generate those models.

This delay of KA tasks also implies the following:

Knowledge Modelling of the KBS has to include modelling of KA goals

ML techniques have to be modelled inside the framework, in our case ML

techniques are modelled as methods

knowledge requirements of ML methods have to be addressed; in our frame-

work is used to model the speci�c requirement of modelling

the \examples" or \cases" used by ML techniques.

Integrated learning is modelled as a process with three main subtasks:

, , . This scheme allows us to model di�erent ML methods

and their integration into a general problem solving system by developing speci�c

methods for the three main subtasks. Let us consider these tasks in turn:

This task is the process by which past experience (episodic memory

of the system itself or provided by a teacher) is accessed, selected and retrieved

for purposes of new problem solving. In simple situations this task may

merely select a subset of examples provided. In complex situations the system

may have to decide which (sub)parts of all the episodic memory qualify as

\examples", i. e. are interesting to learn from.
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The generic domainmodel is only needed for being used in constructing episodic models while

solving future problems.

Figure 3: Lazy and eager learning and the construction of domain models and

episodic models.

This task uses the relevant examples (cases) to generate some new

model or body of knowledge. Eager and lazy ML methods (see below) di�er

in the nature of what they construct.

This task decides whether and how the system knowledge is modi�ed by

the newly constructed model. In simple situations the new model just satis�es

a knowledge requirement or substitutes the old model. In more complex cases,

the task has to estimate whether the new model does improve the overall

performance of the system (e. g. preventing over�tting or \expensive" rules).

Construction task is what is usually called a . This is because

in o�-line learning the \introspection" task is simply done by a human engineer-

ing the system, while revision is present only in incremental algorithms|and in

interactive systems decisions about revision are taken by the human engineering

the system. These human-intensive processes are modelled in our framework as

methods for the introspection and revision tasks that interact with the human

expert/engineer.

Before proceeding to review how di�erent ML methods are integrated into the

framework, it is useful to distinguish between learning methods of eager and

lazy nature.

Past experience is used to provide a new model or body

of knowledge to be used for a speci�c problem solving method that will be

applied in all future problems (of a speci�c kind). The paradigmatic eager

learning methods are inductive techniques that generate abstract knowledge

from speci�c examples and teacher input. In non-incremental approaches,

past experience can be disposed of when the new model has been generated.

Past experience is accessed, selected and used in a problem-

centered approach. The paradigmatic example is CBR, where for each new

problem the system �lters out irrelevant past experiences, and focuses on

the relevant part from which it extracts or generates new knowledge to the

extend needed for solving that particular problem. We view lazy learning

as constructing an for the current problem|instead of con-

structing a generic model .
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4.2 Case-based Reasoning

X Car owner
:
Y Person

Nationality
:
Z Andorran

model
:
W Ibiza

average

case-based methods

retrieval methods

pattern

derivational reply

select

retrieve select

reuse

retrieve

select

retrieve

retrieve-by-pattern

retrieve-by-pattern

reuse

reuse

Lazy learning algorithms di�er from others in that they delay inference and

that they are problem-centered. Thus, they generally have low computational costs

during training and high costs during testing. Another di�erence is that eager ML

methods try to optimize on the outcome for the future (unseen) problems

based on the assumption that the past (seen) solved problems are a representative

sample of the problems appearing in the task environment. Lazy ML methods may

in principle incur on higher runtime costs|that should be nonetheless practicable

for the task environment|but can optimize performance on a problem by problem

basis.

Case-based reasoning (CBR) forms a family of techniques and systems that in-

tegrate lazy learning with problem solving where domain-speci�c knowledge and

methods are used. We model CBR in as . It is clear that

case-based methods can be integrated in our framework because of the notion of

memory: past problem solving episodes are stored in memory and can be recalled

using the retrieval methods. These stored problem solving episodes constitute the

set of precedents (also called cases) for case-based methods. Generally speaking,

case-based methods are decomposed into three subtasks: , , and

. Since there are several possible methods usable in each subtask, several

CBR techniques can be integrated in this way.

The �rst subtask requires a method that recovers previous solved

cases from the episodic memory using a relevance criterion. The goal of the

subtask is to rank the cases obtained in the retrieval subtask according to do-

main criteria. Since cases are represented as feature terms, introspection during

subtask is expressed in as operations over the memory of feature

terms representing past cases. Several basic are provided by the

language and they can be seen as queries to the episodic memory of a system. For

instance, is a retrieval method based on the subsumption

relation de�ned in Section 3.1. This retrieval method selects all feature terms in

episodic memory that are subsumed by a feature term called . If the pattern

is the following,

: = :
= :

= :

then retrieves from episodic memory all Ibiza cars whose

owner is a citizen of Andorra. More complex retrieval methods are described in

[15, 17].

Finally, the method engaged to the subtask will construct a solution for

the new problem|an episodic model for that problem. Usually in CBR the episodic

model is built either taking the solution given in the most relevant precedent or

constructing a new solution by adapting the solution(s) of one or more precedents.

A usual method for subtask is what Carbonell called . In

the language derivational reply is automatically supported and consists in the

following:

1. Once a most relevant precedent case is chosen by the subtask, the

method used to solve the same task the system is now involved in is accessed.
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4.3 Inductive learning

Specially in ILP (induction of logic programs) several di�erent semantics have been proposed

for the notions of generalization and subsumption.

Figure 4: Task/method decomposition of Case-based reasoning methods.

2. The method is copied and re-instantiated to the current problem | i. e.

method references are mapped from the past case to the current case and

bound to the feature term of the current problem.

3. The new method is used to solve the current task.

The derivational reply method can be used not only in planning tasks, as pro-

posed by Carbonell [26], it is a completely general method that can be used, in

principle, in any component-based framework supporting component reuse.

Induction also can be modelled in by methods. The goal of an inductive

method is to generate the knowledge needed by a problem solving method. In-

duction generalizes from a set of problem solving episodes. In general, the ML

community de�nes induction as a process that constructs a general description

that \generalizes" (in some sense that may vary ) the positive examples|and does

not generalize the negative examples. In our framework feature terms o�er a repre-

sentation formalism that is a subset of �rst order logic where provides

a well de�ned and natural way for de�ning generalization relationships:

is more general than i�

An example of the use of an inductive method is the generation of class descrip-

tion for a category or concept from a set of examples. The acquired knowledge

will be used by an identi�cation method deciding whether or not new examples

pertain to a certain category. In general inductive methods can be characterized

as search methods that follow certain : constrains upon the search space e�ec-

tively searched and strategies for searching certain subspaces before others. These

bias of ML methods are similar to assumptions for PSM, e.g. a ML inductive

method can be exhaustive (or complete|if it assures it will �nd a generalization if

it exists) or not exhaustive. However this comparison is left for future work.
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4.4 Analytical learning
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Figure 5: An example of induction by antiuni�cation in the domain of marine

sponges.

The induction methods currently developed in are based on the

and the operations of [15]. The antiuni�cation of a set of

descriptions gives a new description that is a most speci�c of them.

Formally, the antiuni�cation of a set of descriptions yields a greatest lower bound

with respect to subsumption ordering. Inductive methods are designed in

using antiuni�cation and speci�c biases. For instance, using relevance measures of

attributes we can establish a bias for the generation of disjunctive descriptions of

concepts. Figure 5 shows a generalization of two marine sponges using the antiu-

ni�cation method [17].

For the moment inductive methods work only on descriptions and not

on methods. In other words, inductive methods can build domain models

by generalization of episodic models. What is yet future work is learning of pro-

grams (methods) from examples (as in inductive logic programming), but analytical

learning of methods has been integrated in as shown in the next section.

Analytical learning techniques also can be modelled in by methods. The goal

of analytical learning methods (or EBL-like methods) is to construct a new PSM

for a given task from a training example solved by a PSM. The new PSM has

to obey some conditions of operationality determined by the domain model. The

training example is a problem for which the PSM is able to �nd a solution. This

learning approach needs to inspect the so called explanation (or trace) of the in-

ference performed by the PSM for the training example. In the task/method

decomposition instantiated in the solution (the episodic model) of the training ex-

ample constitute the explanation (proof) of the solution. Thus, analytical learning

methods in are metalevel methods that given an episodic model built by a

PSM (1) inspect the methods that succeeded in each subtask of the task/method

decomposition tree of , and (2) construct a new PSM for the task according to

an operational criterion.

We have developed , an EBL-like learning method that constructs new

operational problem solving methods according to operational criteria determined

for each speci�c problem. For instance, the following is a de�nition of a PSM that

determines whether or not an object (passed as a parameter in the feature)

is an example of a :
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episodic memory

inspected

incorporated

chunking

cup 33

cup 33

cup method

stable liftable open vessel

Cup 33

cup method conjunction

source
:
Y Cup

item
:
Y:stable

item
:
Y:liftable

item
:
Y:open vessel

Y:f f Y

Cup cup

owner
:
John

light
:
true

color
:
red

handle
:
true

bottom
:
Y bottom flat

:
true

concavity
:
X concavity upward pointing

:
true

X conjunction

source
:
Y

item
:
Y:bottom:flat

item
:
Y:handle

item
:
Y:light

item
:
Y:concavity:upward pointing

:

= : 33

1 =

2 =

3 =

where an expression like is interpreted as a reference to the feature in

( in this example) following the common dot notation for �eld selection in

records. This kind of references are out of the scope of the paper but interested

reader can �nd in [4] a detailed description of references in .

Training instance is de�ned with the following problem data:

33 :

=

=

=

? =

= : =

= : =

The application of the engages in turn other PSMs for determining

when a given object is , , and . Using the episodic

model built after a speci�c problem is solved, constructs a new operational

method for determining when an object is an example of a cup. The operational

criterion of is that the constructed method refers only to features present in

the problem (e.g. those present in in above). Thus, the new method built

by will be directly applicable to the problem and skip intermediate inferences.

The result obtained by for the previous example is the following operational

method for cup:

:

= :

1 =

2 = ?

3 =

4 =

In this paper we have presented as an integrated framework that supports

problem solving methods and learning methods. The integration of learning in a

KM framework implies that new requirements have to be supported in the frame-

work. The �rst requirement is : the necessity to store the episodic

models of the problems that the system solves in order to learn from its own expe-

rience. These episodic models have to be amenable to be and analised by

learning methods. Finally, the new knowledge generated by learning methods has

to be in the framework modifying the future behavior of the system.

Our work is related to cognitive architectures that integrate learning with prob-

lem solving like [13], [12], and [7]. learning is based on

a single method called while our purpose in has been to integrate

multiple learning methods within a problem solving framework. integrates

multiple learning methods but provides more restricted metalevel capabilities than
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|the metalevel methods allowed are prede�ned and ranked by a total order.

Regarding , problem solving is based on a state-space search planning en-

gine. Each learning method is an external module that learns from the planning

engine performance, and that modi�es this engine according to the learning re-

sults. These learning modules are external software packages that communicate to

and from the planning engine using a uniform read/write protocol to the Prodigy

database where all types of rules|inference rules, operators, and control rules|are

represented uniformly.

Related work on knowledge modelling frameworks includes the ComMet frame-

work [21], the KADS and CommonKADS methodologies [2, 27], and the Prot�eg�e-II

system [18]. Our purpose in the design of the knowledge components of was

to use a set of knowledge components close to the KADS and ComMet proposals.

KADS reective framework, called \knowledge-level reection" [25], speci�es the

system self-model of structure and process, very much like our metalevel model of

domain knowledge, tasks, and methods allows to have a self-model.

In the Prot�eg�e-II system there is a di�erence in implementation of the support

system: mechanisms, the basic building blocks in Prot�eg�e-II, are implemented in

Lisp and thus new mechanisms require new programs in Lisp. The philosophy of

is di�erent: methods can be decomposed in a �ner grain into elementary

subtasks that use a set of elementary methods (e.g. conditionals, set intersection,

etc.) provided by .

The research on problem solving methods (PSM) like [6, 23] is focussed on

acquiring a wide library of components and the reusability of them in several appli-

cations. This work is very related to methods. The construction of libraries is

a complementary work not tackled in . We plan to explore the incorporation

of reasoning about method applicability and reusability as a metalevel knowledge

in .

Related work on the use of knowledge level models to describe learning meth-

ods are [24], describing EBL methods, and [20], describing decision tree induction

methods and implementing them in KresT (the workbench of the ComMet frame-

work). Autognostic and Meta-Aqua are other related systems that use learning by

reecting on problem solving. Autognostic constructs structure-behaviour-function

(SBF) methods for monitoring the problem solving in order to improve its e�ciency

and produce better solutions [22]. Unlike , the Meta-Aqua approach is to use

introspection for reasoning about failure [19].

We have used to implement [5], a system for recommending a

plan for the puri�cation of proteins from tissues and cultures. learns from

experience using two learning methods: CBR learning and induction. The reective

capabilities of allow to analyze and decompose problem solving and

learning methods in a uniform way, and also to combine them in a simple and

e�cient way. is another system being developed using at our Institute.

is a sponge identi�cation system for a marine sponges of the family.

currently integrates a bottom-up induction method, a top-down induction

method, and an CBR method based on an entropy measure [17].

A main concern of as a representation language, has been to reconcile

the notions of knowledge modelling (KM) developed in the recent years, with the

principles of declarative programming languages. The result is that o�er a

uniform representation for KM notions, inference (computation), and control.

Let us review alternative approaches to this issue. For instance, approaches

to operationalize KADS have been proposed that augment the KM notions with
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some control constructs. These control constructs ultimately are the usual ones in

programming languages: sequence, iteration, conditional, etc. However, this ap-

proach separates concerns of representation of expertise based on KM notions from

\programming" constructs. Moreover, another necessity is de�ning the \atomic"

inferences (or atomic computation elements) that are not part of the KM repre-

sentation. For instance, the Prot�eg�e-II system implements atomic computation

elements as chunks of Lisp code (\mechanisms"). New PSM may require imple-

menting new \mechanisms". In summary, this \hybrid" approach use a program-

ming language as an extension language in order to implement elementary inference

or computation.

However, following the main trend in declarative programming languages, com-

putation can be seen as inference. There is no need, in principle, for a three-level

computational support to knowledge modelling: control superstructure, KM no-

tions, and computational infrastructure. The language is an example that

this is possible. The reason why KM notions can be naturally embedded into

has two parts. First, feature terms o�ers a declarative blend of functional pro-

gramming and object orientation. Object-orientation allows some KM notions to

be represented in a natural way while functions also allows a natural way to deal

with PSM. Thus, control constructs and atomic inferences are simply modelled as

functions ( methods). Second, the reective engine of supports back-

tracking and a declarative form of control by means of preferences. Operational-

izations of KM frameworks have mostly use rule-based implementations because

the use of backtracking was important. Backtracking allows an under-speci�cation

of control, something not so easy on functional or object-oriented languages but

that is supported by . The original blend of functions and backtracking that

proposes is in the foundation of its capability to support KM in a way that

is natural|once the user gets used to it.
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