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Abstract. In this paper we extend the notion of multi-unit combinatorial reverse
auction by adding a new dimension to the goods at auction. In such a new type
of combinatorial auction a buyer can express substitutability relationships among
goods: some goods can be substituted with others at a substitution cost. Substi-
tutability relationships allow a buyer to introduce his uncertainty as to whether it is
more convenient to buy some goods or others. We introduce such uncertainty in the
winner determination problem (WDP) so that not only does the auction help allo-
cate the optimal set of offers —taking into account substitutability relationships—,
but also assesses the substitutability relationships that apply. In this way, the buyer
finds out what goods to buy, to whom, and whatoperations(substitutions) to apply
to the acquired goods in order to obtain the initially required ones.
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1. Introduction

Since many auctions involve the selling or buying of a variety of different assets, com-
binatorial auctions [1] (CA) have recently deserved much attention in the literature. In
particular, a significant amount of work has been devoted to the problem of selecting the
winning set of bids [5,6]. Nonetheless, while the literature has considered the possibility
to express relationships among goods on the bidder side —such as complementarity and
substitutability (e.g. [6])—, the impact of the eventual relationships among the different
assets to sell/buy on the bid-taker side has not been conveniently addressed so far.

Consider that a company devoted to the assembly and repairing of personal com-
puters (PCs) requires to assembly new PCs in order to fulfil his demand. Say that its
warehouse contains most of the components composing each PC. However, there are no
components to assemble motherboards (we consider that a motherboard is composed of
1 CPU, 4 RAM units, and 3 USB connectors). Therefore, the company would have to
start a sourcing [2] process to acquire such components. For this purpose, it may opt for
running a combinatorial reverse auction [6] with qualified providers. But before that, a



professional buyer may realise that he faces a decision problem: shall he buy the required
components to assemble them in house into motherboards, or buy already-assembled
motherboards, or opt for amixed purchaseand buy some components to assemble them
and some already-assembled motherboards? This concern is reasonable since the cost
of components plus transformation (assembly) costs may eventually be higher than the
cost of already-assembled motherboards. To tackle this issue, the buyer could think of
running separate auctions for motherboards and their components, and after that decide
whether to buy the whole or the parts. Notice though that besides impractical and costly
(in general, the more transformation relationships among goods we consider, the larger
number of auctions would be required) this method would be missing the opportunity
represented by mixed purchases. Hence, the buyer requires a combinatorial reverse auc-
tion mechanism that provides: (a) a language to express required goods along with the
relationships that hold among them; and (b) a winner determination solver that not only
assesses what goods to buy and to whom, but also the transformations to apply to such
goods in order to obtain the initially required ones.

In this paper we try to provide solutions to both issues. Firstly, notice that we can
resort to a more general semantics when referring to relationships among goods: the
semantics ofsubstitutability. In the example above, if a buyer requires a motherboard,
we can say that it can besubstitutedwith 1 CPU, 4 RAM units, and 3 USB connec-
tors at a certainsubstitution(transformation in our example) cost. Notice though that
this notion of substitutability among goods is different from the classic notion of sub-
stitutability on the bidder side that we find in the CA literature [6]. Since commercial
e-sourcing tools only allow buyers to express fixed number of units per required good
as part of the so-calledRequest for Quotation(RFQ), we have extended this notion to
allow for the definition of substitutability relationships among goods. Thus, we introduce
a formal definition of aSubstitutability Network Structure(SNS) that largely borrows
from Place/Transition Nets [3], where transitions stand for substitution relationships and
places stand for required goods. Secondly, we present the formalisation of the winner
determination problem for multi-unit combinatorial reverse auctions with substitutabil-
ity relationships among goods (MUCRASG) by applying the expressiveness power of
multi-set theory. Additionally, we provide a mapping of our formal model to integer pro-
gramming that takes into account substitutability relationships to asses the winning set
of bids along with the substitutions to apply in order to obtain the buyer’s initial require-
ments. Introducing these relationships allows a buyer to put together to compete bidders
that otherwise would not be competing (e.g. CPU and memory manufactures compete
with motherboard manufacturers).

In what follows we provide an extended version of the example introduced above to
illustrate the type of substitutability relationships that we are interested in representing.
Figure 1 graphically represents the way a PC is assembled. Each circle (corresponding
to a PTNplace) represents a good to negotiate upon. Assembly/splitting operations are
represented as horizontal bars connecting goods, likewisetransitionsin a PTN. The as-
sembling and splitting operations are labelled with an indexed capital T, and shall be
referred to assubstitutability relationships. In particularT1 andT2 represent the effects
of splitting operations whereasT3 andT4 stand for assembling operations. The values
in parentheses, labelling good transformations, stand for the cost of each transformation
every time it isfired (carried out). The arcs connecting a set of goodsG1 to a transforma-
tion T1 indicates that the goods inG1 are aninput to transformationT1. The arcs con-



necting a transformationT1 to a set of goodsG2 indicates that goods inG2 are anoutput
from transformationT1. In the example in figure 1, theT2 transformation, representing
the way a motherboard is taken into pieces, has a motherboard asinput goodand CPUs,
RAM memories, USBs and empty motherboards asoutput goods. We callinput weights
the labels on the arcs connectinginput goodsto transitions, andoutput weightsthe labels
on the arcs connectingoutput goodsto transitions. They indicate the units required of
eachinput goodto perform a transformation and the units generated peroutput good
respectively. For instance, the labels on the arcs connected toT3 in figure 1 indicate that
1 motherboard is composed of 1 CPU, 4 RAM units, 3 USBs and 1 empty motherboard
at a cost of 8 EUR.
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Figure 1. Graphical representation of an RFQ with substitutability relationships.

The paper is organised as follows. Section 2 provides some background knowledge
on multisets and Place Transition Nets. Section 3 presents the formal model of multi-
unit combinatorial reverse auctions with substitutability relationships among goods along
with its winner determination problem and its mapping to integer programming. Finally,
section 4 draws some conclusions and outlines directions for future research.

2. Background

A multi-set is an extension to the notion of set, considering the possibility ofmultiple
appearancesof the same element. Amulti-setMX over a setX is a functionMX :
X → NmappingX to the cardinal numbers. For anyx ∈ X,MX(x) ∈ N is called the
multiplicity of x. An elementx ∈ X belongsto the multi-setMX if MX(x) 6= 0 and
we writex ∈MX . We denote the set of multi-sets overX by XMS .

In what follows we recall some definitions forPlace/Transition Nets(PTN) [3]:

Definition 2.1. A Place/Transition Net(PTN) is a tuplePTN = (G, T, A,E,M0)
where:G is a set ofplaces; T is a finite set oftransitionssuch thatP ∩ T = ∅; A ⊆



(G × T ) ∪ (T × G) is a set ofarcs; E : A → N
+ is anarc expressionfunction; and

M0 ∈ GMS is theinitial marking.

Definition 2.2. A Place Transition Net StructureN = (G, T, A,E) does not specify
any initial marking. A Place Transition Net with a given initial markingM0 is denoted
by PTN = (N,M0).

The graphical representation of a PTN structure is composed of the following graph-
ical elements: places are represented as circles, transitions are represented as bars, arcs
connect places to transitions or transitions to places, andE labels arcs with values.

Definition 2.3. A markingis a multi-set overG. A stepis a non-empty and finite multi-
set overT . Theinitial markingM0 ∈ GMS denotes the initial tokens distribution.

Definition 2.4. A stepS ∈ TMS is enabledin a markingM ∈ GMS if the following
property is satisfied:∀g ∈ G

∑
t∈S E(g, t)S(t) ≤M(g).

Definition 2.5. Let the stepS be enabled in a markingM1. Then, the stepS mayoccur,
changing the markingM1 to another markingM2 ∈ GMS , defined as follows:

∀g ∈ G : M2(g) = M1(g) +
∑

t∈S Z(g, t)S(t)

whereZ(g, t) = E(g, t) − E(t, g). Moreover, we say that theM2 marking isdirectly
reachablefrom theM1 marking by the occurrence of stepS, and we denote it by
M1[S > M2.

Definition 2.6. A finite occurrence sequenceis a finite sequence of steps and markings
M1[S1 > M2...Mn[Sn > Mn+1 such thatn ∈ N andMi[Si > Mi+1 ∀i ∈ {1, .., n}.
M1 is called thestart marking, whileMn+1 is called theend marking.

We also define thefiring count vectorK ∈ TMS , associated to the finite occurrence
sequence, as the union of all its steps:K =

⋃
i∈{1,2,..,n} Si

Definition 2.7. A markingM′′ is reachablefrom a markingM′ iff there exists a finite
occurrence sequence havingM′ as start marking andM′′ as end marking. In this case we
say thatM′′ is reachablefromM′ in n steps and we denote it asM′[K > M′′, where
K =

⋃
i=1..n Si. Furthermore the start and end markings are related by the following

equation:

∀g ∈ G : M′′(g) = M′(g) +
∑
t∈K

Z(g, t)K(t) (1)

The set of all possible markings reachable from a markingM is called itsreachability
set, and is denoted as[M >.

Proposition 2.8. In an acyclic Petri Net (with no directed circuits) a markingM′′ is
reachable from a markingM′ iff there exists a multi setK ∈ TMS such that expression
1 holds ([4]).

As a consequence, the reachability set[M0 > is represented by:

[M0 >= {M | ∃K ∈ TMS s.t. ∀g ∈ G : M(g) = M0(g) +
∑
t∈K

Z(g, t)K(t)} (2)



3. Multi-Unit Combinatorial Reverse Auctions with Substitutability Relationships

3.1. Winner Determination Problem for MUCRASGs

A Substitutability Network Structure describes the different ways in which our business
is allowed to transform goods and at which cost. More formally, we define it as follows:

Definition 3.1 (Substitutability network structure). A Substitutability network struc-
ture (SNS) is a pairS = (N,C), where:

• N is a Place-Transition Net StructureN = (G, T, A,E) such that: theplaces
in G represent a set of goods to negotiate upon; thetransitionsin T represent a
set of possiblesubstitutability relationshipsamong goods; thedirected arcsin A
connect goods to substitutability relationships; and the weights assigned by the
arc expressionfunctionE indicate the number of units of each good that are either
consumed or produced by a substitution. The values ofE are the arc labels in
figures 1 and 2.

• C : T → R
+ ∪ {0} is a cost function that associates asubstitution costto each

substitutability relationship. The values ofC are enclosed in parenthesis next to
each transition in figures 1 and 2.

Notice thatT represents the set of possible substitutions among subsets ofG. The arcs
in A relate either goods to substitutions or substitutions to goods. The goods connected
to a substitutability relationship by incoming arcs (input goods) can substitute the goods
connected to the very same substitutability relationship by outgoing arcs (output goods).
The weights on the arcs connected to a substitutability relationship indicate the number of
units of input and output goods consumed and produced respectively by the substitution.

Given a place transition netPTN = (N,M0), if we considerM0 as a good config-
uration,PTN defines the space of good configurationsreachableby means of applying
substitutions toM0. The application of substitutions is obtained by firing transitions on
the PTN . Henceforth, we define the concepts ofsubstitution step, enabling of a sub-
stitution step, occurrence of a substitution stepandsubstitution sequenceas the equiva-
lent to, respectively,step, enabling of a step, occurrence of a step, andfinite occurrence
sequenceon aPTN .

We also need to define the concept of substitution cost, taking into account the cost of
transforming good configurationM0 into another good configurationM1 ∈ [M0 > by
means of some substitution sequence. TheKmultiset associated to substitution sequence
M0[K > M1 accounts for the number of times a transition is fired. Thus, the cost of
transforming good configurationM0 into good configurationM1 amounts to adding the
substitution cost of each transition in theK substitution sequence, namely:

Definition 3.2 (Substitution Cost). Given a firing count vectorK associated to a sub-
stitution sequence, we define the substitution cost associated to it as:

C(K) =
∑
t∈K

c(t)K(t) (3)



In the following example we formally specify the Substitutability Network Struc-
tureS = (N,C) graphically represented in figure 2:G = {g1, g2, g3, g4}; T = {T1};
A = {(g1, T1), (g2, T1), (T1, g3), (T1, g4)}; E(g1, t1)=3, E(g2, t1)=4, E(t1, g3)=2,
E(t1, g4)=1; andC(T1) = 200 EUR. It describes a buyer’s capacity of transforming
a pair of goods(g1, g2) into a pair(g3, g4) by means of substitutiont1. The arc la-
bels indicate that 3 units of goodg1 and 4 units of itemg2 can be transformed into
(substituted for) 2 units of goodg3 and one unit of goodg4. C sets the substitution
cost ofT1 to 200 EUR. Say that we assign an initial markingM0 to S: M0(g1) = 6,
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Figure 2. Graphical representation of a substitutability relationship

M0(g2) = 8, M0(g3) = 0, M0(g4) = 0. The underlyingPTN allows to transform
it via substitutability relationshipt1 into a new good configurationM1: M1(g1) = 0,
M1(g2) = 0, M1(g3) = 4, M1(g4) = 2. In such a case, the firing count vector
would beK = {t1, t1} (t1 is fired twice), and the substitution cost would amount to
C(K) = 2 ∗ 200EUR = 400EUR.

In a classic multi-unit combinatorial reverse auction scenario, a Request For Quo-
tation (RFQ), a buyer’s requirement, can be expressed as a multisetU ∈ GMS whose
multiplicity indicates the number of units required per good. In the example of figure 2,
if U(g1) = 2,U(g2) = 2,U(g3) = 2,U(g4) = 1, U would be representing a buyer’s
need for 2 units ofg1, g2, andg3, and 1 unit ofg4. Nonetheless, since substitutability
relationships hold among goods, the buyer may have different alternatives depending on
the bids he receives:

1. M0 = [g1 g1 g2 g2 g3 g3 g4 ]. Buy all items as requested.
2. M1 = [g1 g1 g1 g1 g1 g2 g2 g2 g2 g2 g2 ]. Buy 5 units of itemg1 and 6 units of

item g2 to transform 2 units and 4 units into 2 units ofg3 and 1 unit ofg4 at cost
c = 200 EUR. The overall cost results from the cost of the acquired units plus
transformation costc. Thus, there is an extra cost.

Notice that both possibilities allow the buyer to obtain his initial requirement, namely 2
unit of g1, 2 units ofg2, 2 units ofg3, and 1 unit ofg4, each one at a different cost. Notice
also that a bid can be represented as a multisetB ∈ GMS , whose multiplicity indicates
the number of units offered per good.

Definition 3.3 (Winner Determination Problem). Given a set of bidsB, their costs
p : B → R

+ ∪ {0}, an RFQU , and a substitutability network structureS = (N,C),
the winner determination problem amounts to selecting a subset of bids (W ⊆ B) and to



assessing a substitution sequence to apply to them in order to fulfil the requirements in
U while minimising the total cost of the substitution sequence plusW .

We begin by defining the set of possible auction outcomes. A possible auction out-
come is a pair(W,K), whereW ⊆ B contains a set of bids, andK represents a sub-
stitution sequence. The application ofK to PTN = (N,∪B∈BB) allows to obtain a
good configuration that fulfils a buyer’s requirementU . More formally, the set of possible
auction outcomes is defined as:

Ω = {(W,K),W ⊆ B,K ∈ TMS | ∃X ∈ GMS s.t. (
⋃
B∈W

B)[K > X ,X ⊇ U}. (4)

For each outcome(W,K), we associate an auctionoutcome costc(W,K) =∑
B∈W p(B) + C(K)

Given a set of auction outcomes, the aim of the WDP for a MUCRASG is to find the
optimal outcome(W opt,Kopt) ∈ Ω that minimises the outcome costc(W,K). Formally,

(W opt,Kopt) = arg min
(W,K)∈Ω

c(W,K) (5)

3.2. Mapping to Integer Programming

We model the problem of assessing(W opt,Mopt) as an Integer Programming problem.
For this purpose, we need to express as integer variables: (1) generic subset of bids
(W ⊆ B); and a generic firing vector sequence (K) associated to a substitution. In order
to representW we assign a binary decision variablexB to each bidB ∈ B, standing for
B is being included (xB = 1) or not (xB = 0) in W . A multiset is uniquely determined by
its mapping functionK : T → N. Hence, we represent multisetsK T by considering an
integer bounded decision variableqt for eacht ∈ T . Eachqt represents the multiplicity of
elementt in theKmulti-set. Thus, the translation into integer programming of expression
(5) becomes:

min
∑
B∈B

xBp(B) +
∑
t∈T

qtc(t)

subject toxB ∈ {0, 1}, qt ∈ {0, 1, ...maxt}
Now we have to capture the side constraints enforcing that the selected bids, along

with the transformations applied to them, fulfilU , the initial buyer’s requirement. For this
purpose we translate expression 4 into linear programming. We consider a set of PTNs
such thatPTN = (N,L), whereL = ∪B∈WB.

Moreover. we must consider all the finite occurrence sequences ofPTN = (N,L)
that transformL into a configuration that at least fulfilsU . Under the hypothesis ofN
being acyclic we explicit the reachability set ofL as follows:

∀g ∈ G : M(g) = L(g) +
∑
t∈K

Z(g, t)K(t). (6)

Next, we select the elements in the reachability set[L > that at least fulfilU :



∀g ∈ G : L(g) +
∑
t∈K

Z(g, t)K(t) ≥ U(g) (7)

Hence, expressingL as
∑

B∈B xBB(g) we finally obtain the side constraints repre-
sented by expression 4 as:

∀g ∈ G
∑
B∈B

xBB(g) +
∑
t∈T

Z(g, t)qt ≥ U(g).

4. Conclusions

In this paper we have presented a formalisation and an integer programming solution
to the winner determination problem of a new type of multi-unit combinatorial reverse
auction that allows for expressing substitutability relationships on the buyer side. Several
advantages derive from such a new type of auction. On the one hand, it allows a buyer to
incorporate his uncertainty as to whether it is better to buy a required bundle of goods,
or alternatively buy some goods to transform them into the former ones, or even opt for
a mixed purchase and buy some goods as required and some others to be transformed.
This is achieved by introducing substitutability relationships among goods into the win-
ner determination problem. Therefore, not only does the winner determination solver
assess what goods to buy and to whom, but also the transformations to apply to such
goods in order to obtain the initially required ones. To the best of our knowledge, this
is the first type of auction aimed at also handling buyers’ uncertainty. As a side effect,
the introduction of substitutability relationships is expected to increase competitiveness
among bidders, and thus obtain better deals since bidders that otherwise would not be
competing are put together to compete. Finally, our integer programming solution can be
readily implemented with the aid of linear programming libraries.
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