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Abstract. Trust is an agent’s expectation of the value it will observe
when it evaluates the enactment of another agent’s commitment. There
are two steps involved in trust: first the action that another agent is ex-
pected to enact given that it has made a commitment, and second the
expected valuation of that action when the result of that action is even-
tually consumed. A computational model of trust is presented that takes
account of: prior knowledge of other agents, the evolution of trust esti-
mates in time, and the evolution of trust estimates in response to changes
in contert. This model is founded on the principle of information-based
agency that each and every utterance made contains valuable informa-
tion. The computational basis for the model is substantially simpler and
is more theoretically grounded than previously reported.

1 Introduction

The social concept of trust has received considerable attention. The seminal
paper [1I] describes two approaches to trust: first, as a belief that another agent
will do what it says it will, or will reciprocate for common good, and second,
as constraints on the behaviour of agents to conform to trustworthy behaviour.
This paper is concerned with the first approach where trust is something that is
learned and evolves. [2] presents a comprehensive categorisation of trust research:
policy-based, reputation-based, general and trust in information resources. [3]
presents an interesting taxonomy of trust models in terms of nine types of trust
model. The scope described there fits well with this work with the possible
exception of identity trust and security trust that are out of scope. [4] describes
a powerful model that integrates interaction and role-based trust with witness
and certified reputation that also relate closely to our model. Reputation is the
opinion (more technically, a social evaluation) of a group about something — in
a social environment — reputation feeds into trust [5].

The informal meaning of the statement “agent « trusts agent ” is that «
expects 5 to act in a way that is somehow preferred by . Human agents seldom
trust another for any action that they may take — it is more usual to develop
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Fig. 1. Contract signing, execution and evaluation

a trusted expectation with respect to a particular set of actions. For example,
“T trust John to deliver fresh vegetables” whilst the trustworthiness of John’s
advice on investments may be terrible. In this paper we discuss trust when the
set of actions is restricted to negotiating, signing and enacting contracts that are
expressed using some particular ontology. This then excludes morally founded
trust as in: “Can I trust you to do the right thing?”.

We assume that a multiagent system, {«, f1, ..., 50,&,01,...,0;}, containing
an agent « that interacts with negotiating agents, X = {;}, information provid-
ing agents, Z = {6,}, and an institutional agent, &, that represents the institution
where we assume the interactions happen. Institutions give a normative context
to interactions that simplify matters (e.g an agent can’t make an offer, have it
accepted, and then renege on it). The institutional agent £ may form opinions on
the actors and activities in the institution and may publish reputation estimates
on behalf of the institution. The agent £ also fulfils a vital role to compensate
for any lack of sensory ability in the other agents by promptly and accurately
reporting observations as events occur. For example, without such reporting an
agent may have no way of knowing whether it is a fine day or not.

Our agents are information-based [6], they are endowed with machinery for
valuing the information that they have, and that they receive. Information-based
agency was inspired by the observation that “everything an agent says gives away
information”. They model how much they know about other agents, and how
much they believe other agents know about them. Everything in their world, in-
cluding their information, is uncertain; their only means of reducing uncertainty
is acquiring fresh information. To model this uncertainty, their world model, M,
consists of random variables each representing a point of interest in the world.
Distributions are then derived for these variables on the basis of information re-
ceived. Over time agents acquire large amounts of information that are distilled
into convenient measures including trust. By classifying private information into
functional classes, and by drawing on the structure of the ontology, information-
based agents develop other measures including a map of the ‘intimacy’ [7] of
their relationships with other agents.

Section 2] discusses the notion of trust and develops a formal characterisa-
tion of it. The core mechanism for maintaining trust estimates is described in
Section [Bl Prior knowledge is then taken into account in Section M that in-
cludes a discussion of the reliability of an agent’s utterances. Time is discussed
in Section [ and Context in Section [6l Section [7] concludes with a discussion of
future work.
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2 The Notion of ‘Trust’

In this paper trust is concerned with valuing enactments made in fulfilment
of commitments expressed in contracts. The scenario is: two agents « and [
negotiate with the intention of leading to a signed contract that is a pair of
commitments, (a,b), where a is ’s and b is ’s. A contract is signed by both
agents at some particular time ¢. At some later time, ¢’, both agents will have
enacted their commitmentdl] in some way, as say (a’,V'). At some later time
again, t”, a will consume b’ and will then be in a position to evaluate the extent
to which §’s enactment of (a,b), b/, was in o’s interests. See Figure [Il

o’s trust of agent 3 is expressed as a’s expectation of its eventual valuation of
B’s future actions. We consider how « forms these expectations, how a will com-
pare those expectations with observations, and how « then determines whether
’s actions are preferred to «’s expectations of them.

« forms expectations of 8’s future actions on the basis of all that it has: its
full interaction history H, € H, where H, is the set of all possible interaction
histories that may be expressed in a’s ontologyﬁ. H, is a record of all interactions
with each negotiating agent in X and with each information providing agent in
Z. Let B = (b1,ba,...) denote that space of all enactments that 8 may make
and A the space of a’s enactments. Assuming that the space of contracts and
enactments are the same, the space of all contracts and enactments is: C = Ax B.

This raises the strategic question of given an expectation of some particular
future requirements how should « strategically shape its interaction history to
enable it to build a reliable expectation of f’s future actions concerning the
satisfaction of those particular requirements [§]. At time ¢” o compares b’ with
a’s expectations of 8’s actions, f having committed at time ¢ to enact b at time
t’. That is: ,

compare’, (E!, (Enactf (b)|sign, 5((a,b)), H),b')

where sign!, ;((a,b)) is a predicate meaning that the joint action by a and 8 of

signing the contract (a,b) was performed at time ¢, and Enactg (b) is a random
variable over B representing a’s expectations over [3’s enactment action at time
', E! () is o’s expectation, and compare(-,-) somehow describes the result of
the comparison.

Trust is the expectation of the evaluation of ’s enactments made in fulfilment
of its contractual commitments. Let V = (v1,vq,...,vy) be the valuation space
then a’s expectation of the evaluation of a particular action that 8 may make is
represented as a probability distribution over V: (fi, f2,. .., fi). We expect the
set V to be smaller than the set B, and so developing a sense of expectation for
the value of 8’s actions should be easier than for the actions themselves. That
is, we consider the expectation:

E (Valueg/ (b) |signta’5 ((a, b)), HY)

! For convenience we assume that both agents are presumed to have been completed
their enactments by the same time, t’.
2 The ontology is not made explicit to avoid overburdening the discussion.
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where Value! (b) is a random variable over V representing a’s expectations of the
value of 3’s enactment action given that he signed (a,b) and given H!. At time

1"

¢" it then remains to compare expectation, Ef (Valuej (b)|sign!, 5((a,b)), HY),
with observation, val, (b'), where val(-) represents a’s preferences — i.e. it is a’s
utility function.

We are now in a position to define ‘trust’. Trust, 7,5(b), is a computabltﬂ 9]
estimate of the distribution: Ef, (Valuetﬁ” (b)|sign}, 5((a,b)), HY). T is a summaris-
ing function that distils the trust-related aspects of the (probably very large) set
H,, into a probability distribution that may be computed. 7,5(b) summarises the
large set H,. The set of contracts C is also large. It is practically unfeasible to
estimate trust for each individual contract. To deal with this problem we appeal
to the structure of the ontology, and aggregate estimates into suitable classes
such as John’s trustworthiness in supplying Australian red wine.

In real world situations the interaction history may not reliably predict future
action, in which case the notion of trust is fragile. No mater how trust is defined
we expect trusted relationships to develop slowly over time. On the other hand
they can be destroyed quickly by an agent whose actions unexpectedly fall below
expectation. This highlights the importance of being able to foreshadow the
possibility of untrustworthy behaviour.

Tap(b) is predicated on a’s ability to form an expectation of the value of 5’s
future actions. This is related to the famous question posed by Laplace “what is
the probability that the sun will rise tomorrow?”. Assuming that it has always
previously been observed to do so and that there have been n prior observations
then if the observer is in complete ignorance of the process he will assume that the
probability distribution of a random variable representing the prior probability
that the sun will rise tomorrow is the maximum entropy, uniform distribution
on [0, 1], and using Bayes’ theorem will derive the posterior estimate Z—E The
key assumption being that the observer is “in complete ignorance of the process”.
There may be many reasons why the sun may not rise such as the existence of
a large comet on a collision trajectory with earth. These all important reasons
are the context of the problem.

Laplace’s naive analysis above forms the basis of a very crude measure of
trust. Suppose that the valuation space is: V = {bad,good}, and that « is
considering signing contract (a,b) with 8. Let the random variable B denote
the value of ’s next action. Then assuming that we know nothing about the
contract or about 3 except that this contract has been enacted by 8 on n prior
occasions and that the valuation was “good” on s of those occasions. Using the
maximum entropy prior distribution for B, [0.5,0.5], Bayes’ theorem gives us
a posterior distribution [ SEL] If at time ¢ o signs the contract under

n+2 ’ n+2
consideration then the expected probability of a “good” valuation at time ¢ is:

3 It is arguably more correct to consider: Value((a,b)) = Value(b) — Value(a), as §’s
actions may be influenced by his expectations of a’s enactment of a — we choose to
avoid this additional complication.

* Computable in the sense that it is easy to compute and not simply Turing
computable.
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2112 This crude measure has little practical value although it readily extends to
general discrete valuation spaces, and to continuous valuation spaces. The zero-
information, maximum entropy distribution is the trivial trust measure. The
crude Laplacian trust measure is in a sense the simplest non-trivial measure.
The weaknesses of the crude Laplacian trust measure above show the way to

building a reliable measure of trust [10]. These are:

Prior knowledge. The use of the maximum entropy priorﬁ is justified when
there is absolutely no prior knowledge or belief of an agent’s behaviour. In
practical scenarios we expect prior observations, reputation measures or the
opinions of other agents to be available to be reflected in the prior.

Time. There is no representation of time. In the crude trust measure all prior
observations have the same significance, and so an agent that used to perform
well and is deteriorating may have the same trust measure as one that used
to perform badly and is now performing well.

Context. There is no model of general events in the world or of how those
events may effect an agent’s behaviour. This includes modelling causality,
why an agent might behave as it does.

This section defines trust as a historidd estimator of the expected value of future
enactments, and concluded with three features of a reliable measure of trust.
This section also described the fundamental role that the structure of the ontol-
ogy plays in the trust model. Following sections describe such a measure that
uses new and improved computational methods of information-based agents [6]
particularly their information evaluation, acquisition and revelation strategies
that ideally suits them to this purpose. The core trust mechanism is detailed in
Section [3] and subsequent sections then detail the incorporation of prior knowl-
edge, time and context.

3 The Core Mechanism

Section [2] ends with three essential components of a reliable trust model. Those
three components will be dealt with in due course. In this section we describe
the core trust estimation mechanism. In subsequent sections we enhance the core
with the three essential components. The final component, context, is incomplete
as it relies on the solution to unsolved problems that are beyond the scope of
this paper.

The general idea is that trust estimates are updated whenever a evaluates
Valgl (v') for some previously signed contract (a, b). The contract space is typically
very large and so estimates are not maintained for individual contracts; instead
they are maintained for selected abstractions based on the ontology. Abstractions

® The maximum entropy prior expresses total uncertainty about what the prior dis-
tribution is.

5 Historic in the sense that the estimation can be performed on the basis of the agent’s
interaction history.
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are denoted by the ‘hat’ symbol: e.g. . For example, “red wine orders for more
that 24 bottles” or “supply of locally produced cheese”. As we will see when an
evaluation Valf; (b') is performed, the trust estimates, 7o (b), for certain selected
nearby abstractions, B, are updated.

In the absence of incoming information the integrity of an information-based
agent’s beliefs decays in time. In the case of the agent’s beliefs concerning trust,
incoming information is in the form of valuation observations val’;// (t') for each
enacted contract. If there are no such observations in an area of the ontology
then the integrity of the estimate for that area should decay.

In the absence of valuation observations in the region of b, Tap (l;) decays to

a decay limit distribution Top(b) (denoted throughout this paper by ‘overline’).
The decay limit distribution is the zero-data distribution, but not the zero-
information distribution because it takes account of reputation estimates and
the opinions of other agents [I1]. We assume that the decay limit distribution is
known for each abstraction b. At time s, given a distribution for random variable

Tap(b)*, and a decay limit distribution, 7,s(b)*, Tas(b) decays by:

Tap(0)"H! = ATag(b)*, 7as(0)*) (1)

where s is time and A is the decay function for the X satisfying the property

that lims_,o0 Tag(b)® = 7ap(b). For example, A could be linear:

Tap(0) ' = (1 — 1) X Tap(0)° + p X Tap(b)*

where 0 < 1 < 1 is the decay rate.

We now consider what happens when valuation observations are made. Sup-
pose that at time s, « evaluates 8’s enactment b’ of commitment b, val’ (b') =
vk € V. The update procedure updates the probability distributions for Tag(i))s
for each b that is “moderately close to” b. Given such a b, let P*(7,5(b) = vy)
denote the prior probability that v, would be observed. The update procedure
is in two steps. First, we estimate the posterior probability that vy would be
observed, P**!(7,5(b) = vy,) for the particular value vi. Second, we update the
entire posterior distribution for 7,4(b) to accommodate this revised value.

Given a B, to revise the probability that vy would be observed we work with

three things: the observation: val®, ('), the prior: P*(7,5(b) = v1.), and the decay

limit value: P*(7,3(b) = vi). The observation val} (b’) may be represented as a
probability distribution with a ‘1’ in the k’th place and zero elsewhere, uj. To
combine it with the prior we discount its significance for two reasons:

— b may not be semantically close to B, and
— vall (b') = vy, is a single observation whereas the prior distribution represents
the accumulated history of previous observations.

To discount the significance of the observation val’, (') = v, we determine a value

in the range between ‘1’ and the zero-data, decay limit value P*(7,3(b) = vi) by:
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§ = Sim(b, b) x k4 (1 — Sim(b, b) x k) X P*(145(b) = vy) (2)

where 0 < k < 1 is the learning rate, and Sim(-,-) is a semantic similarity
function. Then the posterior estimate P**1(7,5(b) = vy) is given by:
po(l —w)

PS+1(T&B(6):%>:p5(1—w)—|—(1—p)(1—5)w:y (3)

where ¢ is given by Equation 2, p = P*(745(b) = vy) is the prior value, and

w = P*(1o5(b) = vi) is the decay limit value. That is, we combine the two
‘observed’ probabilities p and ¢ in the context of the pre-observation value w.
It remains to update the entire posterior distribution for 7,4(b) to accommo-
date the constraint P5*(7,5(b) = v) = v. Information-based agents [6] employ
a standard procedure for updating distributions, P*(X = x) subject to a set of

linear constraints on X, ¢(X), using:
PHHX = z]c¢(X)) = MRE(PY(X = 2),¢(X))

where the function MRE is defined by: MRE(q, g) = argmin,. ), r; log % such
that r satisfies g, g is a probability distribution, and g is a set of n linear
constraints g = {g;(p) =a; -p—¢; =0},7 =1,...,n (including the constraint
>-;pi —1 = 0). The resulting r is the minimum relative entropy distribution[]

[12]. Applying this procedure to Toz(b):
P (705(b) = v) = MRE(P* (7ag (b) = v), P** (rap(b) = v) = v)

where v is the value given by Equation [Bl

Whenever « evaluates an enactment val’ (b’) of some commitment b, the above
procedure is applied to update the distributions for P(7,s3 (l;) = v). It makes sense
to limit the use of this procedure to those distributions for which Sim(b,b) > y
for some threshold value y.

4 Prior Knowledge

The decay-limit distribution plays a key role in the estimation of trust. It is not
directly based on any observations and in that sense it is a “zero data” trust
estimate. It is however not “zero information” as it takes account of opinions
and reputations communicated by other agents [11]. The starting point for con-
structing the decay-limit distribution is the maximum entropy (zero-data, zero-
information) distribution. This gives a two layer structure to the estimation of
trust: opinions and reputations shape the decay-limit distribution that in turn

" This may be calculated by introducing Lagrange multipliers X: L(p,A) =
> P logz—j + X - g. Minimising L, {z?TLj = gij(p) = 0},5 = 1,...,n is the set of

given constraints g, and a solution to g—pL_ =0,¢=1,...,I leads eventually to p.
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plays a role in forming the trust estimate that takes account of observed data
[13]. Communications from other agents may not be reliable. o needs a means
of estimating the reliability of other agents before they can be incorporated into
the decay-limit distribution — reliability is discussed at the end of this section.

Reputation is the opinion (more technically, a social evaluation) of a group
about something. So a group’s reputation about a thing will be related in some
way to the opinions that the individual group members hold towards that thing,
or to shared evaluations that they may hold. An opinion is an assessment, judge-
ment or evaluation of something. Opinions are represented in this paper as prob-
ability distributions on a suitable ontology that for convenience we identify with
the evaluation space V. That is, we assume that opinions communicated by
concerning another agent’s trustworthiness are expressed as predicates using the
same valuation space as V over which « represents its trust estimates.

An opinion is an evaluation of an aspect of a thing. A rainy day may be eval-
uated as being “bad” from the aspect of being suitable for a picnic, and “good”
from the aspect of watering the plants in the garden. An aspect is the “point of
view” that an agent has when forming his opinion. An opinion is evaluated in
context. The context is everything that the thing is being, explicitly or implic-
itly, evaluated with or against. The set of valuations of all things in the context
calibrates the valuation space. For example, “this is the best paper in the con-
ference”. The context can be vague: “of all the presents you could have given
me, this is the best”. If agents are to discuss opinions then they must have some
understanding of each other’s context.

Summarising the above, an opinion is an agent’s evaluation of a particular as-
pect of a thing in context. A representation of an opinion will contain: the thing,
its aspect, its context, and a distribution on V representing the evaluation of the
thing. « acquires opinions and reputations through communication with other
agents. o estimates the reliability of those communicating agents before incor-
porating that information into the decay-limit distributions. The basic process
is the same for opinions and reputations; the following sub-section [4.1] describes
the incorporation of opinions only.

4.1 The Decay-Limit Distribution and Reliability

Suppose agent 5 informs agent « of his opinion of the trustworthiness of an-
other agent 3 using an utterance of the form: v = inform(5’, o, 75/ 3(b)), where
conveniently b is in a’s ontology. This information may not be useful to « for
at least two reasons: 8 may not be telling the truth, or 8’ may have a utility
function that differs from o’s. We will shortly estimate 5'’s “reliability”, RY, (3’)
that measures the extent to which 8 is telling the truth and that « and 8’ “are
on the same page” or “think alike’. Precisely, 0 < R’ (') < 1; its value is used
to moderate the effect of the utterance on a’s decay-limit distributions. The
estimation of R (/') is described below.

8 The reliability estimate should perhaps also be a function of the commitment,
RL(B',b), but we choose to avoid that complication.
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Suppose that a maintains the decay limit distribution 74 (b)* for a chosen b. In

the absence of utterances informing opinions of trustworthiness, 7,(b)* decays
to the distribution with maximum entropy. As previously this decay could be
linear:

Talg(i))s"'l = (1 - p,) X MAX + p X Talg(i))s
where 1 < 1 is the decay rate, and MAX is the maximum entropy, uniform
distribution.
When « receives an utterance of the form u above, the decay limit distribution
is updated by:

Taﬁ(5)5+1 | inform(8', o, 7/3(b)) =
(1= s x Sim(b,b) x B5(8")) % ap()® + 1 x Sim(b, b) x R3(8) x 7(0)

where 0 < k < 1 is the learning rate and R (/') is « estimate of 5’’s reliability.
It remains to estimate RS (3').

Estimating R? (8') is complicated by its time dependency. First, in the absence
of input of the form described following, RS, (8') decays to zero by: RET(B') =
w x RE(B"). Second, we describe how RZ(f’) is increased by comparing the

efficacy of 7o5(b)* and 745(b)* in the following interaction scenario. Suppose
at a time s, « is considering signing the contract (a,b) with 8. a requests §’s
opinion of B with respect to b, to which 8 may respond inform(5’, a, 75:3(b)). &

now has two estimates of 5’s trustworthiness: 7,5 (b)* and 75:5(b)°. If « then signs
the contract (a,b) at time ¢, and at some later time ¢” evaluates 8’s enactment

valg/ (0') = vg, say. Tap(b)® and 75/5(b)® are both probability distributions that
each provide an estimate of P*(Valueg(b) = vy). If:

P(755(b)° = vi) > P(ras(b)* = vt)
then ("’s estimate is better than «’s and « increases R2(S’) using:
RFY(B) = k+ (1K) x Ro(B')

where 0 < k < 1 is the learning rate.

5 Time

The core trust mechanism in Section Bl and the prior knowledge in Section @
both give greater weight to recent observations than to historic. This may be a
reasonable default assumption but has no general validity. Trust, 743 (f))s, esti-
mates how we expect [ to act. If an agent is considering repeated interaction
with 8 then he may also be interested in how (’s actions are expected to change

in time.
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The way in which the trust estimate is evolving is significant in understanding
which agents to interact with. For example, and agent for whom 7;5(b) is fairly
constant in time may be of less interest than an agent who is slightly less trust-
worthy but whose trust is consistently improving. To capture this information
we need something like the finite derivative: %7’; (l;) The sum of the elements
in such a vector will be zero, and in the absence of any data it will decay to the
Zero vector. .

Estimating the rate of change of 7;5(b) is complicated by the way it evolves
that combines continual integrity decay with periodic updates. Evolution due to
decay tells us nothing about the rate of change of an agent’s behaviour. Evolution
caused by an update is performed following a period of prior decay, and may
result in compensating for it. Further, update effects will be very slight in the
case that the commitment b is semantically distant from b. In other words, the
evolution of 7;5(b) itself is not directly suited to capturing the rate of change of
agent behaviour.

The idea for an indirect way to estimate how (’s actions are evolving comes
from the observation that TaB(B)S is influenced more strongly by more recent
observations, and the extent to which this is so depends on the decay rate.

For example, if the decay rate is zero then 7,3(b)° is a time-weighted “average”
y B g g

of prior observations. Suppose that 7,5(b)® has been evaluated. We perform a

parallel evaluation using a lower decay rate to obtain 7_, 5(1))37 then the vector

difference, 7,3(b)* — of (b)*, is a vector the sum of whose elements is zero, and
in which a positive element indicates a value that is presently “on the increase”
compared to the historic average.

The preceding method for estimating change effectively does so by calculating
a first difference. If we calculate another first difference using an even lower decay
rate then we can calculate a second difference to estimate the rate of change.
This may be stretching the idea too far!

6 Trust in Context

The informal meaning of context is information concerning everything in the
environment that could effect decision making together with rules that link that
information to the deliberative process. That is, context consists of facts about
the environment and rules that link those facts to the agent’s reasoning. Those
rules may rely on common sense reasoning.

Human and artificial agents have rather different practical problems in deal-
ing with context. One practical difficulty for human agents is assimilating new
information in an information-overloaded environment. Humans then rely on
common sense and experience to learn how to key contextual information to
their deliberation. Storage permitting, artificial agents can assimilate real-time
data flows with ease, and can manage the integrity decay of old information. Af-
ter that things become tricky for artificial agents; identifying and dealing with
inconsistency is a hard problem, and so is keying context to deliberation.
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To make matters worse, both human and artificial agents can reasonably as-
sume that their knowledge of their context is substantially incomplete. Dealing
with context is arguably the major impediment to delivering trustworthy ne-
gotiation by artificial agents in the real world. After this grim observation we
consider the context of trust.

Following the procedure described in Section [l an agent builds up a sense of
trust on the basis of its own past experience and statements of opinion and repu-
tation from other agents. In a sense those statements of opinions and reputation
are contextual information for the business of estimating trust.

Suppose that an agent has built up a sense of trust in another agent based
on their prior interaction, before relying on that trust estimate as an indicator
of future performance the agent will consider whether there are any perceivable
changes in the context that cause it to distrust its previous observations as an
indicator of future behaviour. As a simple example, if John has an impeccable
history of delivering goods on time then the contextual information that John
has sprained his ankle, or that he is overseas, may cause us to distrust our
experience as an indicator of John’s timeliness in the near future.

In this paper ‘trust in context’ is concerned with just one issue: is there any
reason to distrust our trust estimate due to a change in context. Supposing
that « is considering signing a contract (a,b) at time ¢, to address this issue we
require:

1. knowledge of the context of previous observations of behaviour. Their context
is the state of each of the observables in the environment and of the states of
the other agents when those previous observations of behaviour were made
— given the way that observations are aggregated in Section Bl the more
recent the observation the greater its significance.

2. founded beliefs concerning the context that will pertain at the future time of
the evaluation of the presumed future behaviour — i.e. at time ¢” in Figure[dl

3. some reasoning apparatus that enables us to decide whether differences be-
tween the believed future context and the observed previous contexts cause
us to modify our experience-based trust estimate.

Taken together these three points are the context of the trust estimate that «
has for the act of signing (a,b) with 3. As stated the context of an observation
of behaviour is the state of all observables at the time the observation is made.
This is a potentially massive exercise. A causal model that identified only those
observables that could be seen to cause or affect the behaviour would simplify
things but is a major issue in its own right and is beyond the scope of this
discussion.

The information-based architecture makes a modest contribution to the main-
tenance of trust estimates through the persistent decay of information integrity
by Equation [l Beyond that we offer no ‘magic bullet’ solutions to the con-
textual problems described above and leave the discussion as a pointer to the
work that is required to increase the reliability of trust estimation in dynamic
environments.
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Future Work

Current work is focussed heavily on the issues of context identified in Section [6l
In particular we are exploring the application of the minimum message length
principle to reduce the complexity of models of context — unfortunately this
comes with a very high computational overhead.
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