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Abstract

IMTL logic was introduced in [12] as a generalization of the infinitely-valued logic of
 Lukasiewicz, and in [11] it was proved to be the logic of left-continuous t-norms with an
involutive negation and their residua. The structure of such t-norms is still not known.
Nevertheless, Jenei introduced in [20] a new way to obtain rotation-invariant semigroups
and, in particular, IMTL-algebras and left-continuous t-norm with an involutive negation,
by means of the disconnected rotation method. In order to give an algebraic interpretation
to this construction, we generalize the concepts of perfect, bipartite and local algebra used
in the classification of MV-algebras to the wider variety of IMTL-algebras and we prove
that perfect algebras are exactly those algebras obtained from a prelinear semihoop by
Jenei’s disconnected rotation. We also prove that the variety generated by all perfect
IMTL-algebras is the variety of the IMTL-algebras that are bipartite by every maximal
filter and we give equational axiomatizations for it.

Keywords: Algebraizable logics, bipartite algebras, cancellative hoops, disconnected
rotation, filters, IMTL-algebras, local algebras, many-valued logic, MV-algebras, perfect
algebras, prelinear semihoops, Wajsberg hoops

1 Introduction

MV-algebras were introduced by C.C. Chang in [5, 6] as an algebraic tool to study the
infinitely-valued logic of  Lukasiewicz. They form a variety that gives an algebraic semantics
for this multivalued logic. Furthermore, since  Lukasiewicz logic is a finitary algebraizable logic
in the sense of Blok and Pigozzi (see [3]), there is a correspondence between its axiomatic
extensions and the subvarieties of MV-algebras. In fact, this lattice of subvarieties was in-
tensively studied and finally fully described, obtaining thus a classification of all axiomatic
extensions of  Lukasiewicz logic (see [22]).

Some years after, some logics weaker than  Lukasiewicz logic were introduced, namely the
logic BL defined by Hájek in [18], and the logics MTL and IMTL defined by Esteva and Godo
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in [12]. In particular, IMTL proves, as  Lukasiewicz logic, the law of involution of the negation,
¬¬ϕ→ ϕ, and it is complete with respect to the semantics given by involutive left-continuous
t-norms and their residua (see [11]). The structure of such t-norms is still not known. There
are only partial results by Jenei giving some methods to construct left-continuous involutive
t-norms. They are summarized in [21].

IMTL is also an algebraizable logic whose equivalent algebraic semantics, the variety of
IMTL-algebras, contains the variety of MV-algebras. Therefore, the study of all axiomatic
extensions of IMTL, or equivalenty the study of all subvarieties of IMTL-algebras, will be
a generalization of the work done for MV-algebras. Some of these subvarieties have been
studied in [7, 16, 17].

In this paper we do a new step towards this aim, extending the work done in [1, 2, 9] for the
perfect, bipartite and local MV-algebras to IMTL-algebras. As it was done for BL-algebras in
[10], we translate these notions into the language of IMTL using the multiplicative conjunction
instead of the multiplicative disjunction and using the notion of filter instead of the notion
of ideal, since the concept of filter is useful in the whole variety of MTL-algebras. Indeed, for
MTL-algebras there is a correspondence between filters and congruences. This will help in
extending the work done here for IMTL-algebras to all MTL-algebras in future research. We
also use some of the methods introduced by S. Jenei in [20] for obtaining IMTL-algebras and
put them in relation with the concept of perfect algebras.

2 Preliminaries

In this section we will introduce some definitions and facts needed for the discussion of the
paper. For any unexplained notion on Universal Algebra see [4].

IMTL logic is presented in [12] by means of a Hilbert-style calculus in the language
L = {∗,→,∧, 0} of type (2, 2, 2, 0). The only inference rule is Modus Ponens and the axiom
schemata are the following (taking → as the least binding connective):

(A1) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))
(A2) ϕ ∗ ψ → ϕ
(A3) ϕ ∗ ψ → ψ ∗ ϕ
(A4) ϕ ∧ ψ → ϕ
(A5) ϕ ∧ ψ → ψ ∧ ϕ
(A6) ϕ ∗ (ϕ→ ψ)→ ϕ ∧ ψ
(A7a) (ϕ→ (ψ → χ))→ (ϕ ∗ ψ → χ)
(A7b) (ϕ ∗ ψ → χ)→ (ϕ→ (ψ → χ))
(A8) ((ϕ→ ψ)→ χ)→ (((ψ → ϕ)→ χ)→ χ)
(A9) 0→ ϕ
(A10) ¬¬ϕ→ ϕ

The usual defined connectives are introduced as follows:

ϕ ∨ ψ := ((ϕ→ ψ)→ ψ) ∧ ((ψ → ϕ)→ ϕ);

ϕ↔ ψ := (ϕ→ ψ) ∗ (ψ → ϕ);
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¬ϕ := ϕ→ 0;

ϕ⊕ ψ := ¬(¬ϕ ∗ ¬ψ);

1 := ¬0.

We denote the set of L-formulas by FmL. Given Γ ∪ {ϕ} ⊆ FmL we write Γ `IMTL ϕ if
ϕ is provable from Γ in the system IMTL.

In order to give an algebraic semantics for IMTL, the following algebras are also introduced
in [12]:

Definition 2.1 ([12]). Let A = 〈A, ∗,→,∧,∨, 0, 1〉 be an algebra of type (2, 2, 2, 2, 0, 0). We
define a unary operation by ¬a := a→ 0. A is an IMTL-algebra if it is a bounded residuated
lattice satisfying the prelinearity equation:

(x→ y) ∨ (y → x) ≈ 1,

and the involution equation:

¬¬x ≈ x.

The algebra has negation fixpoint if there is a ∈ A such that ¬a = a. In [19] it is proved
that there is at most one fixpoint.

If the lattice order is total we will say that A is an IMTL-chain.
IMTL will denote the variety of all IMTL-algebras.

Definition 2.2. Let EqL be the set of L-equations, i.e. the set of expressions of the form
ϕ ≈ ψ where ϕ,ψ ∈ FmL. Let Σ ∪ {ϕ ≈ ψ} ⊆ EqL. We define:

Σ �IMTL ϕ ≈ ψ if for every A ∈ IMTL and every evaluation v in A, it holds:
If for every α ≈ β ∈ Σ, v(α) = v(β), then v(ϕ) = v(ψ).

Now, having this notion of equational consequence, we can state the strong link existing
between the logic IMTL and the variety IMTL:

Theorem 2.3. The relation of derivability in IMTL and the equational consequence deter-
mined by the variety IMTL are mutually translatable. Indeed, given Γ ∪ {γ} ⊆ FmL and
Σ ∪ {ϕ ≈ ψ} ⊆ EqL, we have:

1. Γ `IMTL γ iff {ψ ≈ 1 : ψ ∈ Γ} �IMTL γ ≈ 1.

2. Σ �IMTL ϕ ≈ ψ iff {α↔ β : α ≈ β ∈ Σ} `IMTL ϕ↔ ψ.

Moreover, each one of these translations is the inverse of the other one in the following
sense:

3. ϕ ≈ ψ �IMTL ϕ↔ ψ ≈ 1 and ϕ↔ ψ ≈ 1 �IMTL ϕ ≈ ψ.

4. γ `IMTL γ ↔ 1 and γ ↔ 1 `IMTL γ.

3



In the terminology of [3] this means that IMTL is an algebraizable logic whose equiva-
lent algebraic semantics is IMTL. As a consequence, there is an order-reversing isomorphism
between the axiomatic extensions of IMTL and the subvarieties of IMTL, given by the trans-
lations of the above theorem.

Some IMTL-algebras are well-known. For instance, Boolean algebras are those IMTL-
algebras where the equation of the excluded middle, x ∨ ¬x ≈ 1, is valid, and MV-algebras
are those IMTL-algebras satisfying the equation of divisibility x ∧ y ≈ x ∗ (x→ y). Another
interesting class of IMTL-algebras are the so-called NM-algebras. They were defined in [12]
as those IMTL-algebras satisfying the following equation:

(x ∗ y → 0) ∨ (x ∧ y → x ∗ y) ≈ 1

There is, up to isomorphism, only one NM-algebra defined over the real unit interval [0, 1],
given by the nilpotent minimum t-norm (introduced by Fodor in [14]):

a ∗NM b =
{

min{a, b} if a > 1− b,
0 otherwise.

and its residuated implication:

a→NM b =
{

1 if a ≤ b,
max{1− a, b} otherwise.

We will denote this algebra as [0, 1]NM . It generates the whole variety of NM-algebras
([12]).

For a general study of IMTL-algebras we need some definitions.

Definition 2.4. If A is an IMTL-algebra, the sets of positive and negative elements are
respectively defined as:

A+ := {a ∈ A : a > ¬a}
A− := {a ∈ A : a ≤ ¬a}

The following characterization of these sets will be useful.

Proposition 2.5. Let A be an IMTL-algebra. Then:
A+ = {a ∨ ¬a : a ∈ A, a 6= ¬a}
A− = {a ∧ ¬a : a ∈ A}

Proof. If a ∈ A+ then a = a ∨ ¬a. Conversely, if a is not a fixpoint, we have a ∨ ¬a >
¬(a ∨ ¬a) = a ∧ ¬a, since a ∨ ¬a ≥ a,¬a ≥ a ∧ ¬a. The other equality is provable with a
similar reasoning. 2

Recall that a filter in an IMTL-algebra is any set F such that:

• 1 ∈ F .

• If a ∈ F and a ≤ b, then b ∈ F .
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• If a, b ∈ F , then a ∗ b ∈ F .

F is proper if 0 /∈ F . F is a prime filter if it is proper and for every a, b ∈ A if a ∨ b ∈ F ,
then a ∈ F or b ∈ F .

Using Zorn’s Lemma one can prove that for any proper filter F there is a maximal proper
filter G such that F ⊆ G. Moreover, every maximal filter is prime. The radical of A is defined
as Rad(A) =

⋂
{M ⊆ A : M is a maximal filter}. Notice that in a chain the set of filters is

totally ordered, hence the radical is the maximum proper filter.

Recall this known property of maximal filters:

Proposition 2.6. Let A be an IMTL-algebra and M ⊆ A a maximal filter. Then for every
a ∈ A, a /∈M if, and only if, there exists n such that ¬an ∈M .

We state also, for the reader’s convenience, the known correspondence between filters and
congruences in IMTL-algebras.

Proposition 2.7. Let A be an IMTL-algebra. For every filter F ⊆ A we define Θ(F ) :=
{〈a, b〉 ∈ A2 : a ↔ b ∈ F}, and for every congruence θ of A we define Fi(θ) := {a ∈ A :
〈a, 1〉 ∈ θ}. Then, Θ is an order isomorphism from the set of filters onto the set of congruences
and Fi is its inverse.

Recall also that all IMTL-algebras are representable as a subdirect product of IMTL-
chains, as proved in [12].

Now, in order to introduce some methods for constructing IMTL-algebras defined by Jenei
(see [20]), we need first to define the notion of prelinear semihoop.

Definition 2.8 ([13]). An algebra A =
〈
A, ∗A,→A,∧A, 1A

〉
of type (2, 2, 2, 0) is a semihoop

if it satisfies the following conditions:

• A =
〈
A,∧A, 1A

〉
is an inf-semilattice with upper bound.

•
〈
A, ∗A, 1A

〉
is a commutative monoid isotonic w.r.t. the inf-semilattice order.

• For every a, b ∈ A, a ≤A b if, and only if, a→A b = 1A.

• For every a, b, c ∈ A a ∗A b→A c = a→A (b→A c).

If in addition it satisfies the prelinearity equation, it is a prelinear semihoop.1

A semihoop A is a hoop if A |= x ∗ (x→ y) ≈ y ∗ (y → x).
A hoop A is cancellative if a ∗A b ≤ c ∗A b implies a ≤A c, for every a, b, c ∈ A.
A Wajsberg hoop is a hoop satisfying (x→ y)→ y ≈ (y → x)→ x.

In [13] is proved that cancellative hoops coincide with unbounded Wajsberg hoops.
1In [13] that kind of semihoops are called basic semihoops but here we prefer to use the more descriptive

adjective prelinear.
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Definition 2.9. Let A be a prelinear semihoop. We define an algebra, A∗, called the dis-
connected rotation of A. Let A × {0} be a disjoint copy of A. For every a ∈ A we write a′

instead of 〈a, 0〉. Consider 〈A′ = {a′ : a ∈ A},≤〉 with the inverse order and let A∗ := A∪A′.
We extend these orderings to an order in A∗ by putting a′ < b for every a, b ∈ A. Finally, we
take the following operations in A∗:

1A
∗

:= 1A, 0A
∗

:= (1A)′, ∧A∗ the minimum w.r.t. the ordering, ∨A∗ the maximum w.r.t.
the ordering,

¬A∗a :=
{
a′ if a ∈ A
b if a = b′ ∈ A′

a ∗A∗ b :=


a ∗A b if a, b ∈ A
¬A∗(a→A ¬A∗b) if a ∈ A, b ∈ A′
¬A∗(b→A ¬A∗a) if a ∈ A′, b ∈ A
0A

∗
if a, b ∈ A′

a→A∗ b :=


a→A b if a, b ∈ A
¬A∗(a ∗A ¬A∗b) if a ∈ A, b ∈ A′
1A

∗
if a ∈ A′, b ∈ A

¬A∗b→A ¬A∗a if a, b ∈ A′

Proposition 2.10 ([20]). Disconnected rotations are IMTL-algebras without fixpoint.

3 Main results

Let A be an IMTL-algebra.

Definition 3.1. For a ∈ A we define a0 := 1, a1 := a and for every n > 1 an := an−1 ∗ a.
Using this notation we can define the order of a ∈ A as:

ord(a) =
{
min{n : an = 0} if it exists,
∞ otherwise.

Note that:

• ord(1) =∞.

• If F is a proper filter and a ∈ F , then ord(a) =∞.

• If a ∈ A−, then ord(a) <∞.

The definition of order gives rise to the notion of perfect algebra.

Definition 3.2. A is perfect if for every a ∈ A, ord(a) <∞ if, and only if, ord(¬a) =∞.

Some easy examples of perfect IMTL-algebras are the Boolean algebra of two elements
B2, the Chang MV-algebra defined in [5] and all NM-chains without negation fixpoint. In all
these algebras one can check that all positive elements have infinite order.

We also want to extend the notion of bipartite MV-algebra to the class of all IMTL-
algebras. To this end, we need a previous proposition.
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Proposition 3.3. Let F ⊆ A be a filter of A. Then the subuniverse of A generated by F is
F ∪ ¬F , where ¬F = {¬a : a ∈ F}.

Proof. Let X be the subuniverse of A generated by F . We must see that X = F ∪ ¬F . The
inclusion from right to left is obvious, so we only prove the other one. Note that F ⊆ F ∪¬F ,
thus it is enough to show that F ∪ ¬F is a subuniverse. This is easily done by proving that
it is closed under all the operations. 2

Definition 3.4. A is bipartite if there is a maximal filter F ⊆ A such that A = F ∪¬F , i.e.,
such that F generates A. In this case we will say that A is bipartite by F .

The filter F in the previous definition need not to be unique; it is possible to have an
algebra bipartite by more than one maximal filter. In fact, we define a special class of bipartite
IMTL-algebras, BP0, as those that are bipartite by all maximal filters.

Definition 3.5. A ∈ BP0 if for every maximal filter F ⊆ A, A = F ∪ ¬F .

All the examples given above of perfect algebras are also algebras of BP0. But not all the
algebras in BP0 are perfect, for instance take the Boolean algebra of four elements: B4 ∈ BP0

but is not perfect.  L3×B2 (where  L3 denotes the MV-algebra of three elements) is a bipartite
algebra that is not in BP0. Notice that perfect and bipartite algebras do not have negation
fixpoint.

The notions so far presented coincide in the case of IMTL-chains. Indeed we can prove:

Theorem 3.6. Let A be an IMTL-chain. The following are equivalent:

(1) A is bipartite.

(2) A ∈ BP0.

(3) A = Rad(A) ∪ ¬Rad(A).

(4) Rad(A) = A+ and A has no fixpoint.

(5) A is perfect.

(6) A is isomorphic to the disconnected rotation of a linearly ordered semihoop.

(7) A |= (¬(¬x)2)2 ≈ ¬(¬x2)2.

(8) A/Rad(A) ∼= B2.

Proof. (1)⇒ (2), (2)⇒ (3), (3)⇒ (4) and (4)⇒ (5) are straightforward.
[(5) ⇒ (6)]: If the chain is perfect, then all positive elements have infinite order, hence

A+ is closed under ∗. Therefore, if B is the prelinear semihoop given by A+, then A ∼= B∗,
since the operation ∗ restricted to A+ determines the whole operation in A.

[(6) ⇒ (7)]: Suppose that there is a totally ordered semihoop B such that A ∼= B∗. An
easy computation shows that for every a ∈ A+ (¬(¬a)2)2 = ¬(¬a2)2 = 1 and for every a ∈ A−
(¬(¬a)2)2 = ¬(¬a2)2 = 0.
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[(7) ⇒ (8)]: Suppose that A validates the equation. Note that in this case the set of
positives is a proper filter. Indeed, if a ∈ A+, then ¬a ∈ A−, so (¬a)2 = 0. Therefore
(¬(¬a)2)2 = 1 = ¬(¬a2)2 and this implies a2 ∈ A+. Now, take a, b ∈ A+ such that a ≤ b.
Then a2 ≤ a ∗ b and a2 ∈ A+, so a ∗ b ∈ A+. Thus A+ = Rad(A). Consider the algebra
A/Rad(A) and take a ∈ A. If a is positive, then a → 1 = 1 ∈ Rad(A) and 1 → a =
a ∈ Rad(A), so a/Rad(A) = 1/Rad(A). If a is negative, then a → 0 = ¬a ∈ Rad(A) and
0→ a = 1 ∈ Rad(A), so a/Rad(A) = 0/Rad(A). Therefore A/Rad(A) ∼= B2.

[(8)⇒ (1)]: Suppose that the quotient by the radical is the two-element Boolean algebra.
It will be enough to prove that for every a ∈ A (a ∈ Rad(A)⇔ ¬a /∈ Rad(A)). Indeed: a is
in the radical iff a/Rad(A) = 1/Rad(A) iff ¬a/Rad(A) = 0/Rad(A) iff ¬a /∈ Rad(A). 2

3.1 The radical of IMTL-algebras

In this section we will extend to IMTL the characterization of the radical given in [15] for
MV-algebras.

Lemma 3.7. Let A be an IMTL-chain. Then:
Rad(A) = {a ∈ A : an > ¬a ∀n ≥ 1}.

Proof. If a ∈ Rad(A), then for every n ≥ 1, an ∈ Rad(A) ⊆ A+. Since an ≤ a, we obtain
¬a ≤ ¬an < an. Conversely, take a ∈ A such that for every n ≥ 1, an > ¬a. Then,
in particular, for every n, an 6= 0, so the filter generated by a, Fi(a), is proper. Thus,
a ∈ Fi(a) ⊆ Rad(A), since in chains the filters are totally ordered. 2

Lemma 3.8. Let A and B be IMTL-algebras and h : A → B a homomorphism.

(a) If F ⊆ B is a filter, then h−1[F ] is a filter.

(b) If F ⊆ B is a proper filter, then h−1[F ] is a proper filter.

(c) If F ⊆ B is a prime filter, then h−1[F ] is a prime filter.

(d) If F ⊆ B is a maximal filter, then h−1[F ] is a maximal filter.

(e) If F ⊆ B is a filter, then h−1[¬F ] = ¬(h−1[F ]).

Proof. All the proofs are routine. 2

Now we can generalize the characterization of the radical to all IMTL-algebras.

Theorem 3.9. Let A be an IMTL-algebra. Then:
Rad(A) = {a ∈ A : an > ¬a ∀n ≥ 1}.
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Proof. Suppose first that a belongs to the set on the right side. If there is a maximal filter
M such that a /∈ M , then, by Proposition 2.6 there exists n ≥ 1 such that ¬an ∈ M . But,
since an > ¬a, we have ¬an < a, so a ∈ M and this is absurd. To prove the other inclusion,
consider a representation of A as a subdirect product of IMTL-chains, ϕ : A ↪→ Πi∈IAi. For
every i ∈ I, let ϕi be the i-th projection of ϕ. By the previous lemma, for every i ∈ I,
ϕ−1

i [Rad(Ai)] is a maximal filter of Ai, thus:

Rad(A) ⊆
⋂
i∈I

ϕ−1
i [Rad(Ai)]

So we only need to prove this inclusion:⋂
i∈I

ϕ−1
i [Rad(Ai)] ⊆ {a ∈ A : an > ¬a ∀n ≥ 1}

Suppose that for every i ∈ I, a ∈ ϕ−1
i [Rad(Ai)]. Then for every i ∈ I, ϕi(a) ∈ Rad(Ai)

and, since Ai are chains, for every n ≥ 1, (ϕi(a))n > ¬(ϕi(a)). Therefore, for every n ≥ 1,
ϕ(a)n > ¬ϕ(a), hence for every n ≥ 1, an ≥ ¬a. This implies that for every n ≥ 1, an > ¬a.
2

Corollary 3.10. Let A be an IMTL-chain. Then Rad(A) ⊆ A+.

Corollary 3.11. Let A be an IMTL-algebra. Then:
A+ is a filter if, and only if, A+ = Rad(A).

Proof. Suppose that A+ is a filter. We have to prove that A+ ⊆ Rad(A). Let a ∈ A+, then
for every n ≥ 1 an ∈ A+. We have an ≤ a, hence ¬a ≤ ¬an < an ≤ a and this means that
a ∈ Rad(A). 2

3.2 Local IMTL-algebras

Note that in every IMTL-algebra A, we have: Rad(A) ⊆ {a ∈ A : ord(a) = ∞}. We will
study now the algebras where this inclusion is an equality, the local IMTL-algebras.

Definition 3.12. An IMTL-algebra A is local if for every a ∈ A, ord(a) <∞ or ord(¬a) <
∞.

It is clear that chains are local algebras. Also all perfect algebras are local. In fact, we
have this characterization:

Proposition 3.13. An IMTL-algebra A is local if, and only if, it has a unique maximal filter.

Proof. Suppose that M is the unique maximal filter of A. If there is a ∈ A such that
ord(a) = ord(¬a) = ∞ then a,¬a ∈ M and this is a contradiction since M is proper.
Conversely, suppose that A is local and let M be a maximal filter. Then it is easy to prove
that M = {a ∈ A : ord(a) = ∞}. Clearly M is contained in this set. If a /∈ M and
ord(a) = ∞, then ∃n such that ¬an ∈ M , so ord(¬an) = ∞. Hence ord(an) < ∞, so
ord(a) <∞, a contradiction. 2
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Corollary 3.14. Let A be an IMTL-algebra.
A is local if, and only if, Rad(A) = {a ∈ A : ord(a) =∞}.

There is a special type of filter related to local algebras, namely the primary filters. To
define it we need a new operation ⊕ in IMTL-algebras, which is the dual operation of ∗:

Definition 3.15. Let A be an IMTL-algebra. For every a, b ∈ A we define a⊕b := ¬(¬a∗¬b),
1a := a and for every n > 1 na := (n− 1)a⊕ a.

Definition 3.16. P is a primary filter of an IMTL-algebra A if it is a proper filter such that
for every a, b ∈ A such that a⊕ b ∈ P , there is n ≥ 1 such that na ∈ P or nb ∈ P .

Theorem 3.17. Let A be an IMTL-algebra and P ⊆ A a filter. Then:
A/P is local if, and only if, P is primary.

Proof. Suppose that the quotient is local and take a ⊕ b ∈ P such that for every n ≥ 1,
na /∈ P . From one hand, a/P ⊕ b/P = (a⊕ b)/P = 1/P , hence ¬(b/P ) ≤ a/P . To the other
hand, for every n ≥ 1, n(a/P ) 6= 1/P , so for every n ≥ 1, n¬(b/P ) 6= 1/P . It follows that
ord(b/P ) = ∞, but A/P is local, so ord(¬(b/P )) < ∞. This implies that there is a m ≥ 1
such that mb/P = 1/P , therefore mb ∈ P . To prove the converse, take an arbitrary a/P and
observe that a ⊕ ¬a = 1 ∈ P . Then, using that P is primary, we have that there is n ≥ 1
such that na ∈ P or n(¬a) ∈ P . In the first case it is easy to prove that ord(¬a/P ) < ∞,
and the second implies ord(a/P ) <∞. Thus, the algebra is local. 2

Corollary 3.18. Let A be an IMTL-algebra and let F ⊆ A be a prime filter. Then, F is
primary.

Proposition 3.19. Let F be a proper filter of an IMTL-algebra A. Then, F is primary if,
and only if, there is a unique maximal filter M such that F ⊆M .

Proof. F is primary iff A/F is local iff A/F has a unique maximal filter iff there is a unique
maximal filter M such that F ⊆ M , since there is an order isomorphism between the filters
of A/F and the filters of A containing F . 2

Corollary 3.20. An IMTL-algebra is local if, and only if, all its proper filters are primary.

Corollary 3.21. Let A be a local IMTL-algebra. Then for each filter F ⊆ A, A/F is local.

Hence, the class of local IMTL-algebras is closed under homomorphic images. It is easy to
prove that is also closed under subalgebras. Nevertheless, this class is neither a variety nor a
quasivariety since it is not closed under direct products. For instance, the standard nilpotent
minimum algebra [0, 1]NM is local but the direct product of two copies of it, ([0, 1]NM )2, is
not local. In fact, since all chains are local, the variety generated by the local algebras is the
whole IMTL.

In order to state a classification theorem of local algebras, we define two new classes of
IMTL-algebras.
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Definition 3.22. An IMTL-algebra A is locally finite if for every a ∈ A \ {1} ord(a) < ∞.
A is peculiar if it is local and there are a, b ∈ A \ {0, 1} such that ord(a) = ∞, ord(b) < ∞
and ord(¬b) <∞.

Locally finite and peculiar algebras can have negation fixpoint; for instance the standard
 Lukasiewicz algebra on [0, 1] is locally finite and [0, 1]NM is peculiar, since ord(1

2) = ord(¬1
2) <

∞.

Theorem 3.23. Let A be a local IMTL-algebra such that A 6∼= B2. Then A satisfies one, and
only one, of the following:

• A is perfect.

• A is locally finite.

• A is peculiar.

3.3 Perfect IMTL-algebras and disconnected rotations of prelinear semi-
hoops

For perfect algebras there is also a special type of filters:

Definition 3.24. P is a perfect filter of an IMTL-algebra A if it is a proper filter such that
for every a ∈ A, there exists n such that na ∈ P if, and only if, for every m, m(¬a) /∈ P .

Proposition 3.25. Let A be an IMTL-algebra and F ⊆ A a proper filter. Then:
F is perfect if, and only if, A/F is a non-trivial perfect algebra.

Proof. It is straightforward to check. 2

Corollary 3.26. Every perfect filter is primary.

Proof. By the last proposition and Theorem 3.17. 2

Theorem 3.27. Let A be an IMTL-algebra. Then:
A is perfect if, and only if, every proper filter of A is perfect.

Proof. If every proper filter is perfect, then A is perfect since A ∼= A/{1}. Now suppose that
the algebra is perfect and take an arbitrary proper filter F ⊆ A, and a ∈ F . We must prove
(∃n na ∈ F ⇔ ∀m m(¬a) /∈ F ). Indeed, na ∈ F ⇒ ord(na) = ∞ ⇒ ord(¬(na)) < ∞ ⇒
ord((¬a)n) < ∞ ⇒ ord(¬a) < ∞ ⇒ ord(a) = ∞. If there is m such that m(¬a) ∈ F , then
ord(¬a) =∞ and this is absurd.

For the other implication: ∀m m(¬a) /∈ F ⇒ ∀m m(¬a) 6= 1 ⇒ ∀m am 6= 0 ⇒ ord(a) =
∞⇒ ord(¬a) <∞⇒ ∃n (¬a)n = 0⇒ ∃n na = 1 ∈ F . 2
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Therefore, we obtain that the class of perfect IMTL-algebras is closed under homomorphic
images and obviously is closed under subalgebras. However, considering the subalgebra A of
[0, 1]NM generated by [0, 1]\{1

2} we obtain that A is a perfect algebra while A2 is not perfect.
So, this class is not closed under direct products.

It is also possible to characterize these algebras in the following way:

Theorem 3.28. Let A be an IMTL-algebra. Then:
A is perfect if, and only if, A = Rad(A) ∪ ¬Rad(A).

Proof. Suppose that A is perfect. By Corollary 3.14 we know that Rad(A) = {a ∈ A :
ord(a) =∞} and then the result follows immediately. Conversely, if A = Rad(A)∪¬Rad(A)
then every a ∈ Rad(A) has infinite order and every a ∈ ¬Rad(A) has finite order, hence the
algebra is perfect. 2

Corollary 3.29. Every perfect algebra is bipartite.

Proof. If the algebra is perfect, then it is local, so the radical is the only maximal filter and
the result is obvious. 2

Another easy consequence is the following proposition about perfect subalgebras:

Corollary 3.30. Given an IMTL-algebra A, Rad(A) ∪ ¬Rad(A) is a perfect subalgebra and
contains all perfect subalgebras of A.

Interestingly, the notion of perfect algebra turns out to be the same as the notion of
disconnected rotation, as the following theorem proves:

Theorem 3.31. Let A be an IMTL-algebra. Then the following are equivalent:

(1) A is perfect.

(2) A/Rad(A) ∼= B2.

(3) A is isomorphic to the disconnected rotation of a prelinear semihoop.

Proof. [(1) ⇒ (2)]: If the algebra is perfect, then the radical is perfect and maximal, hence
A/Rad(A) is simple and perfect, so it must be isomorphic to B2.

[(2)⇒ (3)]: For every a ∈ A, (a/Rad(A) = 1/Rad(A)⇒ a ∈ Rad(A)) and (a/Rad(A) =
0/Rad(A) ⇒ a ∈ ¬Rad(A)). So A = Rad(A) ∪ ¬Rad(A). Then, considering the prelinear
semihoop B given by Rad(A), we obtain that A ∼= B∗.

[(3)⇒ (1)]: If A ∼= B∗ for some prelinear semihoop B, then it is obvious that all positive
elements have infinite order and all negative elements have finite order. 2

It is also interesting to particularize this result to MV-algebras:
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Theorem 3.32. Let A be an IMTL-algebra. The following are equivalent:

(1) A is a perfect MV-algebra.

(2) A is isomorphic to the disconnected rotation of a cancellative hoop.

Proof. [(1) ⇒ (2)]: It is clear that Rad(A) is a Wajsberg hoop. We only need to show
that it has no minimum element and then it will be a cancellative hoop. Suppose that a
is the minimum of Rad(A) and take any x < a different from 0. Then a ∧ x = x, but
a ∗ (a→ x) = a ∗ ¬(a ∗ ¬x) = ¬(a→ a ∗ ¬x) = ¬(a→ a) = 0, a contradiction with A being a
MV-algebra.

[(2) ⇒ (1)]: The rotation of a cancellative hoop is always an MV-algebra as it is proved
in Lemma 3.13 of [13] and by the last theorem it is perfect. 2

3.4 Bipartite IMTL-algebras

Finally, we will study the class of bipartite algebras. Let A be a bipartite IMTL-algebra.
Recall that these algebras do not have negation fixpoint. It is clear that for every a ∈ A,
ord(a) = ∞ or ord(¬a) = ∞. Take A1 := {a ∈ A : ord(a) = ∞ ⇔ ord(¬a) < ∞} and
A2 := {a ∈ A : ord(a) = ord(¬a) =∞}. Then, we have:

• A = A1 ∪A2.

• A1 = {0, 1} if, and only if, A ∈ BA.

• A2 = ∅ if, and only if, A is perfect.

Lemma 3.33. Let A be an IMTL-algebra. We have:
For every a, b ∈ A, if ord(¬(a ∗ b)) <∞, then ¬a ∗ ¬b = 0.

Proof. It is just an easy computation. 2

Proposition 3.34. If A1 is a subuniverse, then A1 = A+ ∪A− and A+ is a filter.

Proof. First we prove that for every a ∈ A1, ord(a) =∞ implies a ∈ A+. Indeed, if ord(a) =
∞, then ord(a2) = ∞, so ord(¬a2) < ∞ (since a2 ∈ A1), and thus ¬a ∗ ¬a = 0 (by the
previous lemma), i.e. a < ¬a.

Now we check that A1 = A+ ∪ A−. Take a ∈ A1. If ord(a) = ∞, then a ∈ A+. If
ord(a) <∞, then ord(¬a) =∞, so ¬a ∈ A+ and a ∈ A−. Take a ∈ A+∪A−. If a ∈ A+, then
ord(¬a) <∞ and ord(a) =∞, hence a ∈ A1. If a ∈ A−, then ord(a) <∞ and ord(¬a) =∞,
hence a ∈ A1.

Finally we prove that A+ is a filter. It is enough to prove that it is closed under ∗. Take
a ∈ A+, then ord(a2) =∞, so a2 ∈ A+. If a, b ∈ A+, we only need to prove that the order of
a ∗ b is infinite. Suppose that it is finite. Then there is n such that (a ∗ b)n = 0. This implies
that there is m such that (a ∗ b)2m

= 0, so a2m ≤ ¬b2m
but this is a contradiction because

a2m
and b2

m
are positive elements. 2
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Proposition 3.35. Let A be an IMTL-algebra without negation fixpoint and let M ⊆ A be a
prime filter. Then the following are equivalent:

(1) A+ ⊆M .

(2) M is maximal and A = M ∪ ¬M .

(3) A/M ∼= B2.

(4) M is maximal and perfect.

Proof. [(1)⇒ (2)]: If a ∈ A, then by Proposition 2.5, a∨¬a ∈ A+ ⊆ F , but since F is prime,
a ∈ F or ¬a ∈ F .

[(2) ⇒ (3)]: On one hand, M is primary by Corollary 3.18, so A/M is local. On the
other hand, for every a ∈ A, a/M ∨ ¬(a/M) = (a ∨ ¬a)/M = 1/M , hence A/M is Boolean.
Therefore, it must be the two-element Boolean algebra.

[(3)⇒ (4)]: If A/M ∼= B2, then M is perfect since B2 is perfect, and M is maximal since
B2 is simple.

[(4)⇒ (1)]: Take a ∨ ¬a ∈ A+ and suppose that is not in M . Then there is a n ≥ 1 such
that ¬(a ∨ ¬a)n ∈M , so n(¬a) ∧ na ∈M in contradiction with M being perfect.

2

This gives a characterization of bipartite IMTL-algebras:

Theorem 3.36. An IMTL-algebra A is bipartite if, and only if, the filter generated by A+ is
proper.

Proof. The implication from left to right follows immediately from the last theorem. For the
other one, suppose that Fi(A+) is proper. Then it must be contained in some maximal filter
M , so A+ ⊆M and by the last theorem A = M ∪ ¬M . 2

Lemma 3.37. Let A be an IMTL-algebra without negation fixpoint and let F ⊆ A be a filter.
Then: A/F ∈ BA if, and only if, A+ ⊆ F .

Proof. Suppose that the quotient is a Boolean algebra and take a ∈ A+. Then a/F∨¬(a/F ) =
(a ∨ ¬a)/F = 1/F . Thus: a = a ∨ ¬a ∈ F . Conversely, it is straightforward to check that
A/F satisfies the law of the excluded middle. 2

Lemma 3.38. Let A be a bipartite IMTL-algebra. Then:
A is bipartite only by Fi(A+) if, and only if, Fi(A+) is a maximal filter.

Proof. Suppose that Fi(A+) is a maximal filter. A+ ⊆ Fi(A+), so A = Fi(A+)∪¬Fi(A+). If
M is a maximal filter and A = M ∪ ¬M , then A+ ⊆M , hence Fi(A+) = M . 2
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Proposition 3.39. Let A be a bipartite IMTL-algebra. If A+ is a filter, then A1 = A+∪A−.

Proof. By Lemma 3.37, A/A+ ∈ BA. If there exists a ∈ A1 \ (A+∪A−), then a/A+ is neither
1/A+ nor 0/A+, so ord(a/A+) = ord(¬a/A+) =∞ but this is inconsistent with a ∈ A1 since
ord(a) <∞ or ord(¬a) <∞. 2

Using these results we obtain a good characterization of the algebras in BP0:

Theorem 3.40. For every IMTL-algebra A the following are equivalent:

(1) A ∈ BP0.

(2) A/Rad(A) ∈ BA.

(3) Rad(A) = A+ and A has no fixpoint.

Proof. [(1) ⇔ (2)]: For every maximal filter M , A = M ∪ ¬M iff (by Theorem 3.35) A+

is contained in every maximal filter iff A+ ⊆ Rad(A). By Lemma 3.37 this is equivalent to
A/Rad(A) ∈ BA.

[(2) ⇒ (3)]: By Lemma 3.37 we obtain A+ ⊆ Rad(A) and the other inclusion is always
true.

[(3)⇒ (2)]: Also by Lemma 3.37.
2

Inside the class of bipartite algebras, this characterization gives:

Proposition 3.41. For every bipartite IMTL-algebra A the following are equivalent:

(1) A1 is a subuniverse.

(2) A+ is a filter.

(3) A ∈ BP0.

Proof. [(1)⇒ (2)]: Seen in Proposition 3.34.
[(2)⇒ (3)]: By the last theorem.
[(3) ⇒ (1)]: If A ∈ BP0, then by the last theorem A+ is a filter. By Proposition 3.39 we

obtain the result.
2

Corollary 3.42. Every perfect IMTL-algebra is in BP0.

In addition this special class of bipartite algebras is a variety:
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Theorem 3.43. BP0 is a variety. One equational axiomatization of it is obtained by adding
the next set of equations to the usual axiomatization for IMTL:

{(x ∧ ¬x)→ (x ∨ ¬x)n ≈ 1 : n ≥ 1}.

Proof. Let A be an IMTL-algebra. A ∈ BP0 iff Rad(A) = A+ iff (by Theorem 3.9) for every
a ∈ A+ and every n ≥ 1 an ≥ ¬a iff (by Proposition 2.5) A |= (x ∧ ¬x)→ (x ∨ ¬x)n ≈ 1 for
every n ≥ 1. 2

Corollary 3.44. BP0 is the variety generated by all perfect IMTL-algebras, i.e. by all dis-
connected rotations of prelinear semihoops.

Proof. Let K be the variety generated by all perfect IMTL-algebras. By Corollary 3.42,
K ⊆ BP0. The other inclusion follows from the subdirect representation theorem and Theorem
3.6. 2

There is a simpler axiomatization for BP0:

Corollary 3.45. BP0 can be axiomatized by adding to the axioms of IMTL only the following:

(¬(¬x)2)2 ≈ ¬(¬x2)2.

Proof. Let K be the variety of IMTL-algebras satisfying this equation. We will prove K = BP0.
If A ∈ K, then by the subdirect representation theorem A is representable as a subdirect
product of chains satisfying the equation. By Theorem 3.6 these chains are in BP0, soA ∈ BP0.
Conversely, take A ∈ BP0. Then A is isomorphic to a subdirect product of IMTL-chains in
BP0, so A satisfies the equation. 2

Therefore, we have found a new logic whose algebraic semantics is the variety BP0. We
call this logic BP0. Obviously, it can be presented in a Hilbert-style calculus by adding
the axiom schema (¬(¬ϕ)2)2 ↔ ¬(¬ϕ2)2 to the calculus given for IMTL. Notice that there
are no algebras of BP0 defined over [0, 1], since all standard IMTL-algebras have negation
fixpoint but perfect algebras do not have it; thus the logic BP0 has no standard completeness.
Nevertheless, we can prove that this logic has the following Glivenko-style theorem2 w.r.t. the
classical propositional calculus:

Theorem 3.46. Let `CPC denote the relation of derivability in the classical propositional
calculus. Then, for every ϕ ∈ FmL, `CPC ϕ if, and only if, `BP0 (¬(¬ϕ)2)2.

2For a general study of this type of theorems in the framework of natural expansions of BCK logic see [8].
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Proof. Suppose that `CPC ϕ. It suffices to prove that for each chain A ∈ BP0, A |=
(¬(¬ϕ)2)2 ≈ 1. Let A be such a chain and v : FmL → A an evaluation. We know that
A/Rad(A) ∼= B2, so v(ϕ)/Rad(A) = 1/Rad(A), i.e. v(ϕ) ∈ A+, hence (¬(¬v(ϕ))2)2 = 1.
Conversely, if `BP0 (¬(¬ϕ)2)2, then B2 |= (¬(¬ϕ)2)2 ≈ 1, i.e. B2 |= ϕ ≈ 1, hence `CPC ϕ. 2

BP0 does not contain all bipartite algebras. So we can ask also for the properties of the
class of all bipartite IMTL-algebras.

Proposition 3.47. The class of bipartite IMTL-algebras is closed under subalgebras.

Theorem 3.48. Let {Ai : i ∈ I} be a set of IMTL-algebras and take their direct product A.
If there is j ∈ I such that Aj is bipartite, then A is bipartite.

Proof. Using the same reasoning as in Theorem 4.5 of [9]. 2

Corollary 3.49. The class of bipartite IMTL-algebras is closed under direct products.

Corollary 3.50. The variety generated by all bipartite IMTL-algebras is IMTL.

Proof. Let A be an arbitrary IMTL-algebra. Consider A × B2, that is a bipartite IMTL-
algebra since B2 is bipartite. Thus, taking the projection over the first component, we obtain
A as a homomorphic image of a bipartite algebra. Therefore, every IMTL-algebra is in the
variety generated by all bipartite algebras. 2

3.5 Varieties of prelinear semihoops and subvarieties of BP0

In this section we will prove that the lattice of subvarieties of BP0 is really big and complex.
Indeed we show that it is isomorphic to the lattice of subvarieties of prelinear semihoops.

We will need the next notation: given a class of prelinear semihoops K, we define K∗ :=
{A∗ : A ∈ K}.

Lemma 3.51. If K is a class of prelinear semihoops, then H(K∗) = H(K)∗.

Proof. Take A ∈ K and B ∈ H(A) and consider B∗. We know that B is the image of some
homomorphism h : A → B. We must prove that B∗ ∈ H(A∗). It suffices to consider the
following homomorphism:

g : A∗ → B∗ defined by:

g(a) =
{
h(a) if a ∈ (A∗)+
¬h(¬a) if a ∈ (A∗)−

Take now B ∈ H(K∗), i.e., B is the image of some homomorphism h : A∗ → B, where
A ∈ K. Then B ∼= h[(A∗)+]∗, so B ∈ H(A)∗ ⊆ H(K)∗. 2
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Lemma 3.52. If K is a class of prelinear semihoops, then S(K∗) = S(K)∗.

Proof. Take A ∈ K and B ∈ S(A∗). Since B is a subalgebra of the disconnected rotation of A,
we have that B+ ⊆ (A∗)+ = A and B− ⊆ (A∗)−. Actually, B+ is the universe of a subalgebra
of A and B is the disconnected rotation of this subalgebra. Therefore, A ∈ S(K)∗.

Conversely, if A ∈ K and B ∈ S(A)∗, then B = C∗ for some C ⊆ A. It follows that
C∗ ⊆ A∗, so B ∈ S(A∗) ⊆ S(K∗). 2

Lemma 3.53. If K is a class of prelinear semihoops, then PU (K)∗ ⊆ ISPU (K∗).

Proof. Take {Ai : i ∈ I} ⊆ K and consider an ultraproduct
∏I
U Ai. Consider also the

ultraproduct of {A∗i : i ∈ I} corresponding to the same index set and the same ultrafilter,
i.e.,

∏I
U A∗i . It suffices to take the embedding α : (

∏I
U Ai)∗ →

∏I
U A∗i defined by:

• If ā/U ∈ (
∏I
U Ai)∗+, α(ā/U) := ā/U .

• If ¬(ā/U) ∈ (
∏I
U Ai)∗−, α(¬(ā/U)) := ¬ā/U , where for every i ∈ I (¬ā)(i) = ¬(ā(i)).

We obtain (
∏I
U Ai)∗ ∈ IS(

∏I
U A∗i ) ⊆ ISPU (K∗). 2

Lemma 3.54. If K is a class of prelinear semihoops, then PU (K∗) ⊆ IS(PU (K)∗).

Proof. Take {Ai : i ∈ I} ⊆ K and an ultraproduct
∏I
U A∗i . Given ā ∈

∏I A∗i , we define
j(ā) ∈

∏I Ai as:

j(ā)(i) :=
{
ā(i) if ā(i) > ¬ā(i),
¬ā(i) otherwise.

In order to show that
∏I
U A∗i ∈ IS((

∏I
U Ai)∗) ⊆ IS(PU (K)∗) it is enough to consider the

embedding α :
∏I
U A∗i → (

∏I
U Ai)∗ defined by:

• If ā/U ∈
∏I
U A
∗
i is such that {i ∈ I : ā(i) > ¬ā(i)} ∈ U , then α(ā/U) := j(ā)/U .

• If ā/U ∈
∏I
U A
∗
i is such that {i ∈ I : ā(i) < ¬ā(i)} ∈ U , then α(ā/U) := ¬α(¬ā/U).

2

Theorem 3.55. Let K and L be classes of totally ordered prelinear semihoops. Then, V(K) =
V(L) if, and only if, V(K∗) = V(L∗).

Proof. From Jónsson’s Lemma (see [4]) we deduce that given a class M of prelinear semihoops
or IMTL-algebras, HSPU (M) coincides with the class of the chains in V(M). Therefore, due
to the representation in subdirect products of chains, we only need to prove: HSPU (K) =
HSPU (L) iff HSPU (K∗) = HSPU (L∗).
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Suppose first that HSPU (K) = HSPU (L). Therefore, K ⊆ HSPU (L), so K∗ ⊆ (HSPU (L))∗ =
HS(PU (L))∗ ⊆ HSISPU (L∗) ⊆ HSPU (L∗). Thus, HSPU (K∗) ⊆ HSPU (L∗), and the other
is inclusion is provable in the same way.

Suppose now that HSPU (K∗) = HSPU (L∗). Then, K∗ ⊆ HSPU (L∗) ⊆ HSIS(PU (L))∗ =
(HSISPU (L))∗ ⊆ (HSPU (L))∗. Therefore, K ⊆ HSPU (L), and the other inclusion is prov-
able in the same way. 2

4 Concluding remarks

We have done some first steps in the general study of the variety IMTL, the algebraic coun-
terpart of involutive fuzzy logics.3 By generalizing the concepts of perfect, local and bi-
partite algebra defined formerly for MV-algebras we have characterized several classes of
IMTL-algebras. In particular, we have given a new insight to Jenei’s disconnected rotation
presented in [20] showing that the algebras obtained by this method are exactly the class of
perfect IMTL-algebras. Futhermore, we have studied the variety generated by those algebras
and we have proved that it is BP0. This gives, of course, a new fuzzy logic, namely the
extension of IMTL obtained by adding the axiom (¬(¬ϕ)2)2 ↔ ¬(¬ϕ2)2. However, this logic
has no standard completeness, i. e. is not complete w.r.t. the semantics given by the algebras
over [0, 1] because there are no IMTL-algebras over [0, 1] without negation fixpoint.

Notice that BP0 is much bigger than the variety obtained in the case of MV-algebras.
Indeed, the variety generated by perfect MV-algebras has only one proper non-trivial subva-
riety, the class of Boolean algebras, while our BP0 in IMTL has infinitely many (for instance,
all the varieties of NM-algebras without fixpoint classified in [16]) and, moreover, this lattice
of subvarieties is isomorphic to the lattice of varieties of prelinear semihoops. This strong
difference suggests that the study of the structure of subvarieties of BP0, and in general of
IMTL, will be a deep and challenging task.
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