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Abstract. Substructural logics extending the full Lambek calculus FL have largely
benefited from a systematical algebraic approach based on the study of their algebraic
counterparts: residuated lattices. Recently, a non-associative generalization of FL (which
we call SL) has been studied by Galatos and Ono as the logic of lattice-ordered residuated
unital groupoids.

This paper is based on an alternative Hilbert-style presentation for SL which is almost
(MP)-based. This presentation is then used to obtain, in a uniform way applicable to
most (both associative and non-associative) substructural logics, a form of local deduction
theorem, description of filter generation, and proper forms of generalized disjunctions.

A special stress is put on semilinear substructural logics (i.e. logics complete w.r.t.
linearly ordered algebras). Axiomatizations of the weakest semilinear logic over SL and
other prominent substructural logics are provided and their completeness with respect to
chains defined over the real unit interval is proved.

§1. Introduction Substructural logics form a wide family of non-classical log-
ics that can be roughly defined as those logical systems such that, when presented
by means of a Gentzen-style calculus, lack some of the structural rules, i.e. rules
not involving any connective of the language (see e.g. Paoli (2002); Restall (2000);
Schroeder-Heister & Dosen (1994)). As such they encompass a variety of systems
independently developed since mid XXth century, including relevant logics (An-
derson & Belnap, 1975) or many-valued logics like monoidal logic (Höhle, 1995)
(not satisfying contraction), linear logic (Girard, 1987) (which, besides contraction,
also fails to enjoy weakening) or Lambek calculus (Lambek, 1958) (which, besides
the former two, does not satisfy exchange either). The study of such heterogenous
landscape has greatly benefited from a uniform approach, developed in the last two
decades in the tradition of Algebraic Logic, which deals with substructural logics
as logics of residuated lattices, i.e. propositional logics algebraizable in the sense
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of Blok & Pigozzi (1989) whose equivalent algebraic semantics are classes of lattice-
ordered residuated monoids (called residuated lattices for short). The weakest logic
considered in this line of research is the full Lambek logic FL, whose equivalent
algebraic semantics is the variety of all residuated lattices. Most results on the
algebraic study of FL and its extensions are collected in the monograph (Galatos
et al., 2007).

These systematical efforts, nevertheless, have neglected the algebraic study of
systems lacking another important structural rule: associativity. Indeed, FL does
satisfy associativity and for this reason its algebraic semantics interprets (multi-
plicative) conjunction by a monoidal operation. Actually, there have been several
studies on non-associative substructural logics, starting with the original Lambek
non-associative calculus (Lambek, 1961) (without lattice connectives), and followed
(in the full language) e.g. by Buszkowski & Farulewski (2009). Galatos & Ono (2010)
introduced a Gentzen-style and a Hilbert-style calculus for the non-associative
version of the Full Lambek calculus. They proved that it is an algebraizable logic
with the variety of lattice-ordered residuated unital groupoids as its equivalent
algebraic semantics; and thus they obtained a natural generalization of the approach
used for FL and its extensions. In this paper we work with the bounded extension
of this logic, denoted as SL.

Building on this, Cintula & Noguera (2011) presented a general algebraic frame-
work to deal with substructural logics with SL as the base logic. The authors
introduced, as a crucial tool, the notion of almost (MP)-based logic: a logic with a
Hilbert-style presentation where modus ponens is the only binary rule, there are no
rules with more than two premises, and all unary rules are of the form ϕ ` γ(ϕ),
for γ ∈ DT, where the set of terms DT satisfies a natural technical condition. They
proved that every almost (MP)-based substructural logic enjoys a local deduction
theorem and a certain form of Proof by Cases Property (PCP), which can arguably
be seen as the defining property of a reasonable generalized notion of disjunction
(as studied by Abstract Algebraic Logic). From this, one can extract a number of
interesting consequences for logical systems in general (Cintula & Noguera, 2013;
Czelakowski, 2001) and for substructural logics in particular (Cintula & Noguera,
2011), such as (parameterized) local deduction theorem, description of intersection
of filters, axiomatization of logics given by positive universal classes of algebras,
or axiomatization of intersection of axiomatic extensions of a given logic. It was
shown (Cintula & Noguera, 2011) that FL, and hence all its axiomatic extensions,
are indeed almost (MP)-based and, therefore, the authors could apply their general
theory to all these logics and obtain, in a uniform way, the mentioned consequences.
However, the question whether SL and other non-associative logics are almost (MP)-
based was left open.

The main purpose of the present paper is to answer this question. Indeed we
present an alternative Hilbert-style axiomatization of SL which, besides modus
ponens, has the following unary rules:1

1 The rules (α) and (β) are taken from corresponding algebraic terms introduced by
Botur (2011) where, in the context of the study of a non-associative version of Hájek’s
logic BL, they were used to describe filters in commutative integral lattice-ordered
residuated unital groupoids. To cope with the lack of exchange and weakening (i.e.
lack of commutativity and integrality in the algebras), we also need to consider unit-
adjunction and a modified version of those rules: (α′) and (β′). As stated later in
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(Adju) ϕ ` ϕ ∧ 1

(α) ϕ ` δ & ε→ δ & (ε& ϕ)

(α′) ϕ ` δ & ε→ (δ & ϕ) & ε

(β) ϕ ` δ → (ε→ (ε& δ) & ϕ)

(β′) ϕ ` δ → (ε (δ & ε) & ϕ)

We show that this axiomatization is indeed almost (MP)-based which allows us
(as mentioned above) to naturally extend to the non-associative case many results
so far only known for associative logics. This clearly demonstrates that the algebraic
approach started by Galatos & Ono (2010) and Cintula & Noguera (2011) is the
right generalization of that used for associative logics by Galatos et al. (2007).

Among others we obtain a method to find an axiomatization of the minimum
logic L` extending a given logic L which is complete with respect to linearly or-
dered L-algebras (usually simply called L-chains). The class of logics complete with
respect to chains has been introduced in a very general framework by Cintula &
Noguera (2010) under the name semilinear logics.2 When restricted to the frame-
work of substructural logics, semilinear logics form a distinctive subfamily that
contains most systems referred to in the literature as fuzzy logics. The discipline
that studies these systems, Mathematical Fuzzy Logic (Cintula et al., 2011), has
shown an interest in finding the basic fuzzy logic contained in all others.

Several systems have been proposed as such and later replaced by weaker ones, for
instance: Hájek’s logic BL (Hájek, 1998; Cignoli et al., 2000), FL`ew = MTL (Esteva
& Godo, 2001; Jenei & Montagna, 2002), FL`w = psMTLr (Jenei & Montagna,
2003), and FL`e = UL (Metcalfe & Montagna, 2007).3 One can observe that the com-
mon feature of all the mentioned logics is that they enjoy a standard completeness
theorem, i.e. completeness with respect to a semantics of algebras defined on the real
unit interval [0, 1], which is implicitly regarded by many authors (and sometimes
even explicitly, e.g. by Metcalfe & Montagna (2007)) as an essential requirement
for fuzzy logics. Interestingly enough, the logic FL` of FL-chains does not enjoy
standard completeness (Wang & Zhao, 2009), therefore, for these authors it can
hardly be taken as a good candidate for a really basic fuzzy logic (even though for
some it is fuzzy enough (Běhounek & Cintula, 2006)). Moreover, one can also argue
that FL` is still not basic enough because it satisfies a remaining structural rule:
associativity. This brings us again to the main motivation of this paper, the algebraic
study of non-associative logics, and now also the study of their semilinear exten-
sions. Following the methods and results from previous works (Cintula & Noguera,
2011; Horč́ık, 2011) for semilinear associative substructural logics, the second aim
of the present paper, thus, is to use the terms appearing in almost (MP)-based

Proposition 3.10., in the presence of associativity the rules (α) and (β) are trivialized
and the terms used in (α′) and (β′) become (when δ = 1) equivalent to the usual
terms that appear in product normality rules; moreover, in the presence of exchange
the terms in (α) and (β) become respectively equivalent to those in (α′) and (β′).

2 The term semilinear refers to the fact that these logics can be characterized as those
logics such that their (relatively) subdirectly irreducible algebras are linearly ordered.

3 An alternative path in the search for weaker systems, instead of removing logical laws,
has consisted in restricting the language by considering fragments of fuzzy logics (see
e.g. Esteva et al. (2003); Cintula et al. (2007)).
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presentations to obtain axiomatizations of semilinear non-associative substructural
logics and study their standard completeness properties. In particular, we obtain a
presentation of SL` and prove that it enjoys completeness with respect to residuated
unital groupoids over [0, 1]. Therefore SL` can be seen as a new good candidate for a
basic fuzzy logic, for it does not even satisfy associativity and is standard complete.

Structure of the paper In Section §2. we briefly recall the necessary syntactical
and semantical preliminaries for the paper: 2.1. shows the Hilbert-style presenta-
tion of SL given by Galatos and Ono, lists some important syntactical properties
that hold in the system and introduces prominent axiomatic extensions, while 2.2.
introduces the semantics for these logics based on lattice-ordered residuated unital
groupoids. Section §3. is devoted to the general algebraic study of (non-associative)
substructural logics. Subsection 3.1. presents an alternative Hilbert-style axiomatic
system for SL (the formal proof of the equivalence of this new system with the orig-
inal one can be found in Appendix A) and uses it to show that it is an almost (MP)-
based logic. Subsection 3.2. derives from this result a form of (parameterized) local
deduction theorem for SL and its extensions and some results on filter generation.
Subsection 3.3. extracts from the terms appearing in the almost (MP)-based presen-
tation a description of a p-disjunction for SL, shows its simplifications in prominent
extensions, and considers the aforementioned applications of these p-disjunctions.
Section §4. is devoted to semilinear extensions of non-associative substructural
logics, i.e. the logics given by their linearly ordered algebras. Subsection 4.1., as
yet another application of almost (MP)-basedness and p-disjunctions, shows several
equivalent ways to axiomatize these semilinear logics. Finally, Subsection 4.2. gives,
by means of algebraic constructions, a proof of completeness of SL and other non-
associative logics with respect to their chains defined over the real and the rational
unit intervals.

§2. Preliminaries

2.1. Syntactical properties The weakest logic we consider in this paper is the
bounded version of the non-associative full Lambek calculus (Galatos & Ono, 2010).
We call it SL and formulate it in the language LSL = {∧,∨,&,→, , 0, 1,⊥,>}
(we also use the defined connective ϕ ↔ ψ = (ϕ → ψ) ∧ (ψ → ϕ)). When
writing formulae in this language we will assume that the increasing binding order
of connectives is: first &, then {∧,∨}, and finally {→, }. This logic can be
axiomatized by means of the following Hilbert-style calculus presented in Table 1 (it
is obtained from that of (Galatos & Ono, 2010, Figure 5) by expanding its language
with a new basic connective ⊥ and derived connective > defined as ⊥ → ⊥ and by
adding the axiom ⊥ → ϕ).

Galatos & Ono (2010) provide a Gentzen-style calculus which can be easily
extended to a calculus for SL. On the other hand, SL is implicitly presented by
an alternative Hilbert-style system in (Cintula & Noguera, 2011, Definition 2.5.1).
By using any of these presentations, one may obtain other well-known properties
of substructural logics which already hold in SL:

(T) χ→ ϕ,ϕ→ ψ ` χ→ ψ (Pf) ψ → χ ` (ϕ ψ)→ (ϕ χ)

(E 2) ψ → (ϕ χ) ` ϕ→ (ψ → χ) (Adju) ϕ ` ϕ ∧ 1

(Res2) ϕ& ψ → χ ` ψ → (ϕ→ χ) (Symm2) ϕ→ ψ ` ϕ ψ
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Table 1. Axiomatic system of SL

(R) ϕ→ ϕ (As) ϕ ` (ϕ→ ψ) → ψ

(MP) ϕ,ϕ→ ψ ` ψ (As``) ϕ→ ((ϕ ψ) → ψ)

(Sf) ϕ→ ψ ` (ψ → χ) → (ϕ→ χ) (Symm1) ϕ ψ ` ϕ→ ψ

(Pf) ψ → χ ` (ϕ→ ψ) → (ϕ→ χ) (E 1) ϕ→ (ψ → χ) ` ψ → (ϕ χ)

(Res1) ψ → (ϕ→ χ) ` ϕ& ψ → χ (R′) 1 → (ϕ→ ϕ)

(Adj&) ϕ→ (ψ → ψ & ϕ) (Push) ϕ→ (1 → ϕ)

(Bot) ⊥ → ϕ (1) 1

(∧1) ϕ ∧ ψ → ϕ (∨1) ϕ→ ϕ ∨ ψ
(∧2) ϕ ∧ ψ → ψ (∨2) ψ → ϕ ∨ ψ
(∧3) (χ→ ϕ) ∧ (χ→ ψ) → (χ→ ϕ ∧ ψ) (∨3) (ϕ→ χ) ∧ (ψ → χ) → (ϕ ∨ ψ → χ)

(Adj) ϕ,ψ ` ϕ ∧ ψ (∨3 ) (ϕ χ) ∧ (ψ  χ) → (ϕ ∨ ψ  χ)

We list some other properties that will be useful later; (PSL2)–(PSL24) are taken
from (Cintula & Noguera, 2011, Proposition 2.5.5) (where one can find their proofs),
the remaining ones can be proved easily (e.g. in the Gentzen calculus for SL).

(PSL2) ` ϕ& (ϕ→ ψ)→ ψ
(PSL8) ϕ→ ψ ` χ& ϕ→ χ& ψ
(PSL9) ϕ→ ψ ` ϕ& χ→ ψ & χ
(PSL10) ϕ1 → ψ1, ϕ2 → ψ2 ` ϕ1 & ϕ2 → ψ1 & ψ2

(PSL20) ` χ& (ϕ ∨ ψ)↔ (χ& ϕ) ∨ (χ& ψ)
(PSL21) ` (ϕ ∨ ψ) & χ↔ (ϕ& χ) ∨ (ψ & χ)
(PSL22) ` (ϕ ∧ 1) & (ψ ∧ 1)→ ϕ ∧ 1
(PSL23) ` (ϕ ∧ 1) & (ψ ∧ 1)→ ψ ∧ 1
(PSL24) ` (ϕ→ ψ) ∧ 1→ (ϕ ∧ 1→ ψ ∧ 1)
(PSL25) ` (ϕ→ ψ) ∧ 1→ (ϕ ∨ χ→ ψ ∨ χ)
(PSL26) ` (ϕ→ ψ) ∧ 1→ (ϕ ∨ ψ → ψ)
(PSL27) ` (ψ → ϕ) ∧ 1→ (ϕ ∨ ψ → ϕ)
(PSL28) ` ϕ ∧ 1→ (ϕ ∧ 1) ∧ 1

Some important extensions of SL are obtained by adding the axioms a1, a2, e, c, i, o
corresponding to structural rules (see Table 2). Given any S ⊆ {a1, a2, e, c, i, o}, by
SLS we denote the axiomatic extension of SL by S. If {a1, a2} ⊆ S, then instead
of them we write the symbol ‘a’. Analogously if {i, o} ⊆ S, instead of them we
write the symbol ‘w’. Equivalent ways to formulate these axioms may be found e.g.
in (Cintula & Noguera, 2011, Theorem 2.5.7).

SLa is, in fact, the bounded version of full Lambek logic FL, i.e., our framework
encompasses the associative systems as well. For the sake of simplicity we keep the
language fixed and we only consider finitary logics (i.e. logics enjoying a Hilbert-
style calculus where all rules have finitely-many premises). Therefore we set the
following convention to delimit, in this paper (!), the class of substructural logics.
You can check (Cintula & Noguera, 2011; Galatos et al., 2007) for other possible
conventional definitions of this family of logics.

Convention 2.1. A logic is substructural if it is a finitary extension of SL.
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Table 2. Structural rules

a1 ϕ& (ψ & χ) → (ϕ& ψ) & χ re-associate to the left

a2 (ϕ& ψ) & χ→ ϕ& (ψ & χ) re-associate to the right

e ϕ& ψ → ψ & ϕ exchange

c ϕ→ ϕ& ϕ contraction

i ψ → (ϕ→ ψ) left weakening

o 0 → ϕ right weakening

2.2. Algebraic semantics In this subsection we present the algebraic seman-
tics for SL and other substructural logics. For this we need to recall several algebraic
notions and fix some notation and terminology.4

A poset P = 〈P,≤〉 is a partially ordered set. If ≤ is a total order, then P is
called a chain. A map γ : P → P is said to be a closure operator on P if it is
expanding (x ≤ γ(x)), monotone (x ≤ y implies γ(x) ≤ γ(y)) and idempotent
(γ(γ(x)) = γ(x)). Dually, a map σ : P → P is called an interior operator on P
provided that it is contracting (σ(x) ≤ x), monotone and idempotent. The elements
in the image γ[P ] (resp. σ[P ]) are called γ-closed (resp. σ-open).

Let P be a poset. A map f : P → P is residuated if there is a map f† : P → P such
that for all x, y ∈ P we have f(x) ≤ y iff x ≤ f†(y). Equivalently, f is residuated iff
f is monotone and the inverse image of any principal downset is a principal downset
as well (recall that a principal downset is a subset of P of the form {y ∈ P | y ≤ x}
for some x ∈ P ). A binary operation ◦ : P 2 → P is residuated if it is residuated
component-wise, i.e. for every a ∈ P the maps given by x 7→ a ◦ x and x 7→ x ◦ a
are residuated. Equivalently, there are maps \ : P 2 → P and / : P 2 → P such that
for all a, b, c ∈ P we have

a ◦ b ≤ c iff b ≤ a\c iff a ≤ c/b .

The maps \, / are called respectively left and right residual of ◦.
A lattice is a poset where every pair of elements x, y has a greatest lower bound

x∧ y and a least upper bound x∨ y. A lattice A is called bounded provided that it
has a minimum ⊥ and a maximum >. We call an algebra A = 〈A,∧,∨, 0, 1,⊥,>〉
a doubly pointed bounded lattice (shortly dpb-lattice) if 〈A,∧,∨,⊥,>〉 is a bounded
lattice endowed with additional constants 0, 1. Let T ⊆ {i, o}. Then a dpb-lattice
is said to be a dpbT-lattice provided that 1 = > if i ∈ T and 0 = ⊥ if o ∈ T. We
apply the same convention also for chains, i.e., a dpbT-chain is a chain which is also
a dpbT-lattice.

An algebra A = 〈A,∧,∨, ·, \, /, 0, 1,⊥,>〉 is called a (semiunital) residuated
lattice ordered groupoid (shortly r`-groupoid) if 〈A,∧,∨, 0, 1,⊥,>〉 is a dpb-lattice
satisfying x ≤ (1 · x) ∧ (x · 1), the groupoid operation · is residuated, and its
residuals are the operations \ and /. Note that the element 1 is assumed to be only
a semiunit, i.e., we have x ≤ 1 · x and x ≤ x · 1. Although we are interested mainly
in the cases where 1 is actually a unit (see Definition 2.2.), we need this more

4 For any unexplained notions, notations, and terminology of Universal Algebra used in
the paper see e.g. Burris & Sankappanavar (1981).



ZU064-05-FPR semilinear-SL 22 February 2013 10:25

Non-associative substructural logics 7

general definition due to technical reasons which become apparent in Section 4.2.
Let S ⊆ {e, c, i, o}. An r`-groupoid A = 〈A,∧,∨, ·, \, /, 0, 1,⊥,>〉 is said to be an
r`S-groupoid provided that

• if e ∈ S, then x · y = y · x for all x, y ∈ A,5

• if c ∈ S, then x ≤ x · x for all x ∈ A,

• 〈A,∧,∨, 0, 1,⊥,>〉 is a dpbT-lattice for T = S \ {e, c}.

Definition 2.2. Let A = 〈A,∧,∨, ·, \, /, 0, 1,⊥,>〉 be an r`S-groupoid for some
S ⊆ {e, c, i, o}. We say that A is

• totally ordered (or just rtS-groupoid, for short) if 〈A,∧,∨〉 forms a chain.

• unital if 1 is a neutral element for the groupoid operation, i.e., 1·x = x = x·1.

Unital (totally ordered) r`S-groupoids are also called SLS-algebras (resp. SLS-chains).

For S = ∅ we speak about SL-algebras and SL-chains. Observe that the residu-
ation condition together with the fact that 1 is a neutral element implies that for
every SL-algebra A and each a, b ∈ A we have

a ≤ b iff 1 ≤ a\b iff 1 ≤ b/a .

Given an SL-algebra A = 〈A,∧,∨, ·, \, /, 0, 1,⊥,>〉 an A-evaluation is an homo-
morphism from the algebra of formulae to A such that the connectives ∧,∨,&,→
, , 0, 1,⊥,> are respectively interpreted by the operations ∧,∨, ·, \, /, 0, 1,⊥,>.
By means of this notion, we can give, more generally, the following definition for
the algebraic counterpart of any substructural logic, which can easily be seen to
encompass the previous cases.

Definition 2.3. Let L be the substructural logic obtained by adding a set of
axioms AX and a set of rules R to SL. A = 〈A,∧,∨, ·, \, /, 0, 1,⊥,>〉 is an L-
algebra if it is an SL-algebra such that:

• for every ϕ ∈ AX and every A-evaluation e, e(ϕ) ≥ 1,

• for every 〈Γ, ϕ〉 ∈ R and every A-evaluation e, if e(ψ) ≥ 1 for every ψ ∈ Γ,
then e(ϕ) ≥ 1.

The class of all SL-algebras, denoted as SL, is well-known to be a variety and it
gives a semantics for the logic SL. In general, for every substructural logic L the
class L of L-algebras (clearly, a subquasivariety of SL) gives a semantics for L. To
formulate the corresponding completeness theorems, we need to define a notion of
semantical consequence. Given a class K ⊆ SL, a set of formulae Γ and a formula ϕ,
Γ |=K ϕ if for every A ∈ K and every A-evaluation e, if e(ψ) ≥ 1 for every ψ ∈ Γ,
then e(ϕ) ≥ 1.

Theorem 2.4. Let L be a substructural logic. Then for every set of formulae Γ
and every formula ϕ we have: Γ `L ϕ if, and only if, Γ |=L ϕ.

Technically speaking, SL is an algebraizable logic in the sense of Blok & Pigozzi
(1989), SL is its equivalent algebraic semantics, and the translations are E(p, q) =
{p → q, q → p} and E(p) = {p ∧ 1 ≈ 1}. The same holds for every substructural
logic L and its corresponding quasivariety L.

5 Note that in this case the residuals coincide and we so we can denote them both by →.
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Given a substructural logic L and an LSL-algebra A, a set F ⊆ A is an L-filter
if for every set of formulae Γ and every formula ϕ such that Γ `L ϕ and every
A-evaluation e it holds: if e[Γ] ⊆ F , then e(ϕ) ∈ F . By FiL(A) we denote the set
of all L-filters over A. Since FiL(A) is a closure system (it clearly contains A and
is closed under arbitrary intersections), one can define a notion of generated filter.
Given X ⊆ A, the L-filter generated by X, denoted as FiAL (X) is the least L-filter
containing X (we omit the indexes when clear from the context).

We will need the following generic characterization for membership in the filter
generated by a set (later we will show more usual algebraic descriptions of filters).

Proposition 2.5. Let L be the substructural logic obtained by adding a set of
axioms AX and a set of rules R to SL. Furthermore let A be an L-algebra and
X ∪ {a} ⊆ A. Let us define sets VAX ⊆ A and VR ⊆ P(A)×A as6

VAX = {e(ψ) | e is an A-evaluation and ψ ∈ AX }
VR = {〈e[Γ], e(ψ)〉 | e is an A-evaluation and 〈Γ, ψ〉 ∈ R}

Then a ∈ FiAL (X) iff there is a finite sequence 〈a0, . . . , an〉 (called proof of a from X)
of elements of A such that

• an = a,

• for each i ≤ n, either ai ∈ X∪VAX or there is a non-empty Z ⊆ {a0, . . . , ai−1}
such that 〈Z, ai〉 ∈ VR.

Algebraizability gives a correspondence between filters and (relative) congruences
in L-algebras. Let ConL(A) denote the lattice of congruences of A relative to L,
i.e. giving a quotient in L. If L is a variety, then ConL(A) contains all congruences
of A. The Leibniz operator ΩA is a mapping defined, for any F ∈ FiL(A), as
ΩA(F ) = {〈a, b〉 ∈ A2 | a\b ∈ F and b\a ∈ F}.

Proposition 2.6. Let L be a substructural logic and A an L-algebra. The Leibniz
operator ΩA is a lattice isomorphism from FiL(A) to ConL(A). Its inverse is the
function that maps any θ ∈ ConL(A) to the filter {a ∈ A | 〈a ∧ 1, 1〉 ∈ θ}.

Observe that the minimum filter is the one generated by the emptyset, Fi(∅), and
it must correspond to the identity congruence IdA. Therefore, using the previous
proposition, we obtain that, on any L-algebra A, Fi(∅) = {a ∈ A | a ≥ 1}. This set
is, of course, contained in any other filter.

We can also use the previous proposition to show that for any axiomatic extension
L of SL (i.e., substructural logic L such that L is a variety), FiL(A) forms a distribu-
tive lattice. Indeed the lattice of congruences on A is distributive (as it has a lattice
reduct) and the L-relative congruences and congruences on A are the same. This
reasoning cannot be used when L is not a variety because in this case the relative
congruences do not form a sublattice of the congruence lattice (Raftery, 2001).

Given a class of algebras K a non-trivial algebra A is (finitely) subdirectly irre-
ducible relative to K if for every (finite non-empty) subdirect representation α of A
with a family {Ai | i ∈ I} ⊆ K there is i ∈ I such that πi ◦ α is an isomorphism.
The class of all (finitely) subdirectly irreducible algebras relative to K is denoted
as KR(F)SI. Of course KRSI ⊆ KRFSI.

6 Note that if A = FmL, then VAX = AX and VR = R.
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§3. Almost (MP)-based non-associative substructural logics In this sec-
tion we present our new general results on non-associative substructural logics. They
are based on the notion of almost (MP)-based logic, which has been firstly intro-
duced and studied by Cintula & Noguera (2011). Before we recall this notion, we
need to introduce same technical notions. Let Var be the fixed set of propositional
variables in which we are writing the formulae of the language LSL and ? be a new
symbol, which acts as placeholder for a special kind of substitutions. A ?-formula is
built using variables Var∪{?} and a ?-substitution is a substitution in the extended
language. Let ϕ be a ?-formula, δ be a ?-formula, and σ a ?-substitution defined as
σ(?) = ϕ and σp = p for p ∈ Var . By δ(ϕ) we denote the ?-formula σδ; note that
if ϕ is a formula in the original set of variables, so is δ(ϕ).

Definition 3.7. Given a set of ?-formulae Γ, we define the set Γ∗ of ?-formulae
as the smallest set such that

• ? ∈ Γ∗ and

• δ(γ) ∈ Γ∗ for each δ ∈ Γ and each γ ∈ Γ∗.

We are ready now to give the formal definition of almost (MP)-based logic.

Definition 3.8. Let bDT be a set of ?-formulae closed under all ?-substitutions
σ such that σ(?) = ?. A substructural logic L is almost (MP)-based w.r.t. the set
of basic deduction terms bDT if:

• L has a presentation where the only deduction rules are modus ponens and
those from {〈ϕ, γ(ϕ)〉 | ϕ ∈ FmLSL , γ ∈ bDT}, and

• for each β ∈ bDT and each formulae ϕ,ψ, there exist β1, β2 ∈ bDT∗ such
that:7

`L β1(ϕ→ ψ)→ (β2(ϕ)→ β(ψ)).

L is called (MP)-based if it admits the empty set as a set of basic deduction terms.

The goal of the first subsection is to obtain an equivalent Hilbert-style presen-
tation of SL showing that this logic and thus its axiomatic extensions are almost
(MP)-based. In the second subsection we use this result to obtain local deduction
theorems and a descriptions of generated filters in non-associative substructural
logics. Finally, in the third subsection the terms appearing in the unary rules of
almost (MP)-based presentations are used to build a generalized disjunction connec-
tive satisfying the Proof by Cases Property. Using this and following general results
by Cintula & Noguera (2013), we obtain other logical and algebraic properties.

3.1. Almost (MP)-based presentations of substructural logics We start
by providing (in Table 3) an alternative system for SL. Appendix A contains all
(rather tedious) formal proofs necessary to prove the next theorem.

Theorem 3.9. The axiomatic system from Table 3 is a presentation of SL.

7 Here we are deviating from the original definition from Cintula & Noguera (2011) where
β1, β2 were required to be in bDT. This alteration has no effect on the notion of almost
(MP)-based logic as shown by claim 2 in Lemma 3.16. which can be read as: if bDT
is a set of basic deduction terms in the sense just defined, then bDT∗ is a set of basic
deduction terms in the original sense, so the logic remains almost (MP)-based. This
new definition of bDT will however allow us to obtain stronger results in Subsection 4.1.
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Table 3. New axiomatic system for SL

(Adj&) ϕ→ (ψ → ψ & ϕ) (Bot) ⊥ → ϕ

(Adj& ) ϕ→ (ψ  ϕ& ψ) (&∧) (ϕ ∧ 1) & (ψ ∧ 1) → ϕ ∧ ψ
(∧1) ϕ ∧ ψ → ϕ (∨1) ϕ→ ϕ ∨ ψ
(∧2) ϕ ∧ ψ → ψ (∨2) ψ → ϕ ∨ ψ
(∧3) (χ→ ϕ) ∧ (χ→ ψ) → (χ→ ϕ ∧ ψ) (∨3) (ϕ→ χ) ∧ (ψ → χ) → (ϕ ∨ ψ → χ)

(Res′) ψ & (ϕ& (ϕ→ (ψ → χ))) → χ (Push) ϕ→ (1 → ϕ)

(Res′ ) (ϕ& (ϕ→ (ψ  χ))) & ψ → χ (Pop) (1 → ϕ) → ϕ

(T′) (ϕ→ (ϕ& (ϕ→ ψ)) & (ψ → χ)) → (ϕ→ χ)

(T′ ) (ϕ ((ϕ ψ) & ϕ) & (ψ → χ)) → (ϕ χ)

(MP) ϕ,ϕ→ ψ ` ψ (Adju) ϕ ` ϕ ∧ 1

(α) ϕ ` δ & ε→ δ & (ε& ϕ) (β) ϕ ` δ → (ε→ (ε& δ) & ϕ)

(α′) ϕ ` δ & ε→ (δ & ϕ) & ε (β′) ϕ ` δ → (ε (δ & ε) & ϕ)

Let us introduce a convenient notation for the terms appearing on the right-hand
side of the rules (α), (α′), (β), and (β′). Given arbitrary formulae δ, ε, we define
the following ?-formulae:

αδ,ε = δ & ε→ δ & (ε& ?) βδ,ε = δ → (ε→ (ε& δ) & ?)

α′δ,ε = δ & ε→ (δ & ?) & ε β′δ,ε = δ → (ε (δ & ε) & ?)

Note that these terms (those in the second line) generalize the terms appear-
ing in the well-known left and right product normality rules used in associative
logics (Galatos et al., 2007, page 124):8

λε = ε→ ?& ε ρε = ε ε& ?

The next, not difficult to prove, proposition shows how these terms, and hence the
axiomatic systems in which they appear, can be simplified in stronger substructural
logics (e.g. in presence of exchange we can omit the prime version of the rules and
associativity allows us to replace α, α′, β, β′ by the rules ϕ ` ρε(ϕ) and ϕ ` λε(ϕ)).

Proposition 3.10. We have

1. `SL γ1,1(ϕ)↔ ϕ for each γ ∈ {α, α′, β, β′}
2. `SLe αδ,ε(ϕ)↔ α′ε,δ(ϕ) and `SLe βδ,ε(ϕ)↔ β′δ,ε(ϕ)

3. `SLa ϕ→ γδ,ε(ϕ) for each γ ∈ {α, β}
4. `SLa λε(ϕ)→ α′δ,ε(ϕ) and `SLa ρε(ϕ)→ β′δ,ε(ϕ)

5. `SLa λε(ϕ)↔ α′
1,ε

(ϕ) and `SLa ρε(ϕ)↔ β′
1,ε

(ϕ)

6. `SLae
ϕ→ λε(ϕ) and `SLae

ϕ→ ρε(ϕ)

8 In the literature on substructural logics, the names λε and ρε denote slightly more
complicated terms, namely λε = (ε→ ?& ε)∧1 and ρε = (ε ε&?)∧1. In the theory
of residuated lattices these terms are called respectively left and right conjugate and
are useful for obtaining a bijective correspondence between the lattices of congruences
and convex normal subalgebras; see e.g. (Galatos et al., 2007, Theorem 3.47).
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In order to prove the main result of this section, almost (MP)-basedness of SL,
we need the following syntactical lemmata.

Lemma 3.11. The following are provable in SL:

(Aux1) ` αχ,ϕ(ϕ→ ψ)→ (χ& ϕ→ χ& ψ)

(Aux2) ` α′ϕ,χ(ϕ→ ψ)→ (ϕ& χ→ ψ & χ)

(Aux3) ` βχ→ϕ,χ(ϕ→ ψ)→ ((χ→ ϕ)→ (χ→ ψ))

(Aux4) ` β′χ ϕ,χ(ϕ→ ψ)→ ((χ ϕ)→ (χ ψ))

Proof. SL proves (Aux1):

(a) ` ϕ& (ϕ→ ψ)→ ψ (PSL2)

(b) ` χ& (ϕ& (ϕ→ ψ))→ χ& ψ (a) and (PSL8)

(c) ` (χ& ϕ→ χ& (ϕ& (ϕ→ ψ)))→ (χ& ϕ→ χ& ψ) (b) and (Pf)

SL proves (Aux2):

(a) ` ϕ& (ϕ→ ψ)→ ψ (PSL2)

(b) ` (ϕ& (ϕ→ ψ)) & χ→ ψ & χ (a) and (PSL9)

(c) ` (ϕ& χ→ (ϕ& (ϕ→ ψ)) & χ)→ (ϕ& χ→ ψ & χ) (b) and (Pf)

SL proves (Aux3):

(a) ` χ& (χ→ ϕ)→ ϕ (PSL2)

(b) ` (χ& (χ→ ϕ)) & (ϕ→ ψ)→ ϕ& (ϕ→ ψ) (a) and (PSL9)

(c) ` ϕ& (ϕ→ ψ)→ ψ (PSL2)

(d) ` (χ& (χ→ ϕ)) & (ϕ→ ψ)→ ψ (b), (c), and (T)

(e) ` (χ→ (χ& (χ→ ϕ)) & (ϕ→ ψ))→ (χ→ ψ) (d) and (Pf)

(f) ` [(χ→ ϕ)→ (χ→ (χ& (χ→ ϕ)) & (ϕ→ ψ))]→ [(χ→ ϕ)→ (χ→ ψ)]
(e) and (Pf)

SL proves (Aux4):

(a) ` (χ ϕ) & χ→ ϕ (As``) and (Res1)

(b) ` ((χ ϕ) & χ) & (ϕ→ ψ)→ ϕ& (ϕ→ ψ) (a) and (PSL9)

(c) ` ϕ& (ϕ→ ψ)→ ψ (PSL2)

(d) ` ((χ ϕ) & χ) & (ϕ→ ψ)→ ψ (b), (c), and (T)

(e) ` (χ ((χ ϕ) & χ) & (ϕ→ ψ))→ (χ ψ) (d) and (Pf) 

(f) ` [(χ ϕ)→ (χ ((χ ϕ) & χ) & (ϕ→ ψ))]→ [(χ ϕ)→ (χ ψ)]
(e) and (Pf) �

Lemma 3.12. For every ?-formula γ ∈ {αδ,ε, α′δ,ε, βδ,ε, β′δ,ε | δ, ε formulae} and
every pair of formulae ϕ,ψ, we have: ϕ→ ψ `SL γ(ϕ)→ γ(ψ).

Proof. All the cases are easily proved in a similar way. Let us show the case of αδ,ε
as an example.

(a) ϕ→ ψ ` δ & (ε& ϕ)→ δ & (ε& ψ) (PSL8) twice

(b) ϕ→ ψ ` (δ & ε→ δ & (ε& ϕ))→ (δ & ε→ δ & (ε& ψ)) (a) and (Pf) �
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Theorem 3.13. SL is almost (MP)-based9 with respect to the set

bDTSL = {αδ,ε, α′δ,ε, βδ,ε, β′δ,ε, ? ∧ 1 | δ, ε formulae}.

Proof. Theorem 3.9. shows that there is a presentation of SL with (MP) as the only
binary rule and unary rules ϕ ` γ(ϕ) for each γ ∈ bDTSL. We need to prove the final
condition in the definition of almost (MP)-based axiomatic systems, in particular
we show that for each γ ∈ bDTSL and each formulae ϕ,ψ there is γ′ ∈ bDT∗SL such
that

` γ′(ϕ→ ψ)→ (γ(ϕ)→ γ(ψ)).

If γ is ?∧ 1 we can set γ′ = γ due to (PSL24). Next we prove the claim for α′δ,ε, the
other cases are proved analogously:

(a) αδ,ϕ(ϕ→ ψ)→ [δ & ϕ→ δ & ψ] (Aux1)

(b) α′δ&ϕ,ε(δ & ϕ→ δ & ψ)→ [(δ & ϕ) & ε→ (δ & ψ) & ε] (Aux2)

(c) βδ&ε→(δ&ϕ)&ε,δ&ε((δ & ϕ) & ε→ (δ & ψ) & ε)→ [α′δ,ε(ϕ)→ α′δ,ε(ψ)] (Aux3)

(d) α′δ&ϕ,ε(αδ,ϕ(ϕ→ ψ))→ α′δ&ϕ,ε(δ & ϕ→ δ & ψ) (a) and Lemma 3.12.

(e) α′δ&ϕ,ε(αδ,ϕ(ϕ→ ψ))→ [(δ & ϕ) & ε→ (δ & ψ) & ε] (b), (d), and (T)

(f) βδ&ε→(δ&ϕ)&ε,δ&ε(α
′
δ&ϕ,ε(αδ,ϕ(ϕ→ ψ)))→ [α′δ,ε(ϕ)→ α′δ,ε(ψ)]

(e), Lemma 3.12., and (c) �

At the end of this subsection we show how we can simplify the sets of basic deduc-
tive terms in prominent axiomatic extensions of SL. The results are summarized in
Table 4; in the case of SLe it follows from the second claim of Proposition 3.10., in
case of logics with weakening we use the fact that the rule (Adju) is redundant and
the term ?∧1 is not needed in the crucial step of the proof in Theorem 3.13.; for as-
sociative logics it implicitly follows from (Cintula & Noguera, 2011, Theorem 2.6.8),
or from the following result which we add for the reader’s convenience.

Corollary 3.14. SLa is almost (MP)-based with respect to the set

bDTSLa = {λε, ρε, ? ∧ 1 | ε a formula}.

Proof. The fact that SLa can be axiomatized by using the rules ϕ ` γ(ϕ) for
γ ∈ bDTSLa follows from claims 3, 4, and 5 of Proposition 3.10.

From the proof of the previous theorem and claim 5 of Proposition 3.10. we know
that for each γ ∈ bDTSLa

and each formulae ϕ,ψ there is γ′ ∈ bDT∗SL such that

`SL γ′(ϕ→ ψ)→ (γ(ϕ)→ γ(ψ)).

We complete the proof by showing that for each γ′ ∈ bDT∗SL there is γ0 ∈ bDT∗SLa

such that for each formula χ holds:

`SLa
γ0(χ)→ γ′(χ).

The base case follows from claims 1, 3, and 4 of Proposition 3.10. The induction
step then easily follows using Lemma 3.12. and claim 3 and 4 again. �

9 During the review process we have learned (Nick Galatos, personal communication),
that the three rules mentioned in Section 2.2.4 of Galatos & Ono (2010) could be used
to obtain an alternative almost (MP)-based presentation of SL (for justification of our
choice recall Footnote 1).
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Table 4. bDTs of prominent substructural logics

Logic L bDTL

SL {αδ,ε, α′δ,ε, βδ,ε, β′δ,ε, ? ∧ 1 | δ, ε formulae}
SLw {αδ,ε, α′δ,ε, βδ,ε, β′δ,ε | δ, ε formulae}
SLe {αδ,ε, βδ,ε, ? ∧ 1 | δ, ε formulae}
SLew {αδ,ε, βδ,ε | δ, ε formulae}
SLa {λε, ρε, ? ∧ 1 | ε a formula}
SLae {? ∧ 1}
SLaew {?}

3.2. Deduction theorem and filter generation In this section we prove a
general form of (parameterized) local deduction theorem for almost (MP)-based
substructural logics and use it to obtain a description of generated filters. To this
end, we need first a few additional syntactical properties of sets of (iterated) basic
deduction terms and their closures under conjunction.

Definition 3.15. Given a set Γ of ?-formulae, an SL-algebra A, and X ⊆ A,
we define

• Π(Γ) as the smallest set of ?-formulae containing Γ∪{1} and closed under &.

• ΓA as the set of unary polynomials built using terms from Γ with coefficients
from A and variable ?, i.e.,

ΓA = {δ(?, a1, . . . , an) | δ(?, p1, . . . , pn) ∈ Γ and a1, . . . , an ∈ A}.

• ΓA(X) as the set {δA(x) | δ(?) ∈ ΓA and x ∈ X}.
We omit the symbol A when known from the context.

Lemma 3.16. Let L be a substructural logic and assume that it is almost (MP)-
based with a set of basic deduction terms bDT. Then

1. for each γ ∈ bDT∗ and formulae ϕ,ψ there exists γ′ ∈ bDT∗ such that

ϕ→ ψ `L γ′(ϕ)→ γ(ψ),

2. for each γ ∈ bDT∗ and formulae ϕ,ψ there exist γ1, γ2 ∈ bDT∗ such that

`L γ1(ϕ→ ψ)→ (γ2(ϕ)→ γ(ψ)),

3. for each γ ∈ bDT∗ and formulae ϕ,ψ there exist γ1, γ2 ∈ bDT∗ such that

`L γ1(ϕ) & γ2(ψ)→ γ(ϕ& ψ),

4. for each γ ∈ bDT∗, δ ∈ Π(bDT∗), and a formula ϕ there exists δ̂ ∈ Π(bDT∗)
such that

`L δ̂(ϕ)→ γ(δ(ϕ)).

Proof. We prove the first two claims at once by induction. The base case γ = ?
is trivial in both claims. Assume that γ = β(δ) for some β ∈ bDT and δ ∈ bDT∗.
The induction assumption of the first claim gives us δ′ ∈ bDT∗ such that

ϕ→ ψ `L δ′(ϕ)→ δ(ψ).
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Now we use the definition of bDT for δ′(ϕ) and δ(ψ) and obtain β1, β2 ∈ bDT∗

such that:

`L β1(δ′(ϕ)→ δ(ψ))→ (β2(δ′(ϕ))→ β(δ(ψ))).

Thus if we set γ′ = β2(δ′) the proof of the first claim is done (just observe that
ϕ→ ψ `L β1(δ′(ϕ)→ δ(ψ))).

In the second claim, assuming again that γ = β(δ) for some β ∈ bDT and
δ ∈ bDT∗, the induction assumption gives us δ1, δ2 ∈ bDT∗ such that

`L δ1(ϕ→ ψ)→ (δ2(ϕ)→ δ(ψ)),

Now we use the definition of bDT for δ2(ϕ) and δ(ψ) and obtain β1, β2 ∈ bDT∗

such that:

`L β1(δ2(ϕ)→ δ(ψ))→ (β2(δ2(ϕ))→ β(δ(ψ))).

Now we apply the first claim for γ = β1, ϕ = δ1(ϕ → ψ), ψ = δ2(ϕ) → δ(ψ) and
obtain β′1 ∈ bDT∗ such that

`L β′1(δ1(ϕ→ ψ))→ β1(δ2(ϕ)→ δ(ψ)).

Transitivity and setting γ1 = β′1(δ1) and γ2 = β2(δ2) completes the proof of the
second claim.

To prove the third claim we use the second one for ψ = ϕ & ψ and obtain
γ1, γ2 ∈ bDT∗

`L γ1(ϕ→ ϕ& ψ)→ (γ2(ϕ)→ γ(ϕ& ψ)).

Since `L ψ → (ϕ→ ϕ& ψ) (Adj&) we can use the first claim for γ = γ1 to obtain
γ′1 ∈ bDT∗ such that

`L γ′1(ψ)→ γ1(ϕ→ ϕ& ψ).

Claim 3 then simply follows by (T) and (Res1).
To prove the last claim we proceed by induction via the depth of the tree

representing δ. If δ ∈ bDT∗ or δ = 1, the proof is done by setting δ̂ = γ(δ) or

δ̂ = 1 respectively. Next assume that δ = η1 & η2 for some η1, η2 ∈ Π(bDT∗). By
the third claim we obtain γ1, γ2 ∈ bDT∗ such that `L γ1(η1(ϕ)) & γ2(η2(ϕ)) →
γ(η1(ϕ) & η2(ϕ)). Then, by the induction assumption, we obtain δ̂1, δ̂2 ∈ Π(bDT∗)

such that `L δ̂1(ϕ) → γ1(η1(ϕ)) and `L δ̂2(ϕ) → γ2(η2(ϕ)). Setting δ̂ = δ̂1 & δ̂2
completes the proof using (PSL10). �

We are ready now to prove a semantical (or transferred) version of (parameter-
ized) local deduction theorem, cf. (Cintula & Noguera, 2011, Theorem 2.6.3).

Theorem 3.17. Let L be an almost (MP)-based substructural logic with a set of
basic deduction terms bDT. Let A be an LSL-algebra and X ∪ {x} ⊆ A. Then
y ∈ FiAL (X,x) iff γA(x)\y ∈ FiAL (X) for some γ ∈ (Π(bDT∗))A.

Proof. Right-to-left direction: clearly γ(x) ∈ Fi(X,x) (because ϕ ` γ0(ϕ) for each
γ0 ∈ bDT∗, ϕ,ψ ` ϕ&ψ and Fi(X,x) is closed under the rules of L). Since Fi(X,x)
is closed under modus ponens we obtain that y ∈ Fi(X,x).

To prove the other direction let us take y ∈ Fi(X,x), we show that for each
a in a proof of y from the assumptions X ∪ {x} (recall Proposition 2.5.) there is
γa ∈ Π(bDT∗) such that γa(x)\a ∈ Fi(X). If a = x we set γa = ?; if a is in X or is
the value of some axiom we set γa = 1.
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Assume that a is obtained by modus ponens from b ∈ Fi(X,x) and b\a ∈ Fi(X,x).
By induction hypothesis, we obtain γb, γb\a ∈ Π(bDT∗) such that γb\a(x)\(b\a),
γb(x)\b ∈ Fi(X). Therefore (using (Sf)) we have (b\a)\(γb(x)\a) ∈ Fi(X) and by
transitivity γb\a(x)\(γb(x)\a) ∈ Fi(X). The proof is done by setting γa = γb · γb\a
and using residuation.

Assume that a = β(b) from some β ∈ bDT and is obtained from b ∈ Fi(X,x)
by the rule ϕ ` β(ϕ). By the induction hypothesis, we have γb ∈ Π(bDT∗) such
that γb(x)\b ∈ Fi(X). Using the first claim of Lemma 3.16. we obtain γ ∈ bDT∗

such that γ(γb(x))\β(b) ∈ Fi(X). Using the fourth claim of Lemma 3.16. we obtain
γ̂b ∈ Π(bDT∗) such that γ̂b(x)\γ(γb(x)) ∈ Fi(X) and so transitivity completes the
proof. �

This theorem has two important consequences; the first one is a straightforward
corollary in the particular case when A is the algebra of formulae and recalling that
in this case ϕ ∈ Fi(Γ) iff Γ `L ϕ.

Corollary 3.18. (Local Deduction theorem) Let L be an almost (MP)-based
substructural logic with a set of basic deduction terms bDT. Then for each set
Γ ∪ {ϕ,ψ} of formulae the following holds:

Γ, ϕ `L ψ iff Γ `L γ(ϕ)→ ψ for some γ ∈ Π(bDT∗).

Therefore, we obtain a (parameterized or non-parameterized, depending on the
presence of parameters in the set bDT) local deduction theorem for SL and its
axiomatic extensions (sometimes with a simplified set bDT; see Table 4). On the
other hand, Theorem 3.17. can be used to obtain the following algebraic description
of the filter generated by a set.

Corollary 3.19. (Filter generation) Let L be an almost (MP)-based substruc-
tural logic with a set of basic deduction terms bDT. Let A be an L-algebra and
X ⊆ A. Then FiAL (X) = {a ∈ A | a ≥ x for some x ∈ (Π(bDT∗))A(X)}.
Proof. Clearly bDT∗(X) ⊆ Fi(X) (because ϕ ` γ(ϕ) for each γ ∈ bDT∗ and Fi(X)
is closed under the rules of L). Furthermore we obtain (Π(bDT∗))A(X) ⊆ Fi(X)
from ϕ,ψ ` ϕ& ψ. Finally take x ∈ (Π(bDT∗))A(X). We know that a ≥ x implies
that x\a ≥ 1 and so x\a ∈ Fi(X). Thus the closedness of Fi(X) under modus
ponens completes the proof of one direction.

To prove the other inclusion assume that a ∈ Fi(X). There has to be a finite set
{x1, . . . xn} = X ′ ⊆ X such that a ∈ Fi(X ′) (due to Proposition 2.5.). Repeated
use of the previous theorem gives us γ1, . . . , γn ∈ (Π(bDT∗))A such that

γn(xn) · (. . . · γ1(x1)) . . . )\a = γ1(x1)\(γ2(x2)\ . . . (γn(xn)\a) . . . ) ∈ Fi(∅) =

= {x | x ≥ 1}.

Therefore a ≥ x for x = γn(xn) · (. . . · γ1(x1)) . . . ) ∈ (Π(bDT∗))A(X). �

3.3. Proof by Cases Property and its applications In Abstract Algebraic
Logic, the classical Proof by Cases Property:

Γ, ϕ ` χ Γ, ψ ` χ
Γ, ϕ ∨ ψ ` χ

has inspired a systematical study of disjunction connectives, by means of a gen-
eralized form of the meta-rule which leads to a generalized notion of disjunction.



ZU064-05-FPR semilinear-SL 22 February 2013 10:25

16 Petr Cintula, Rostislav Horč́ık, & Carles Noguera

Following the notation and terminology from Cintula & Noguera (2013), given an
LSL-algebra A, sets X,Y ⊆ A, and a set of formulae ∇(p, q, ~r) in two variables p, q
and possibly parameters ~r we define

X∇A Y = {δA(x, y, a1, . . . , an) | δ(p, q, p1, . . . , pn) ∈ ∇, x ∈ X, y ∈ Y, and ai ∈ A}.

Again, we omit the symbol A when known from the context. Finally, we set one
more convention: we write Γ ` ∆ instead of Γ ` ψ for each ψ ∈ ∆.

Definition 3.20. Given a logic L, a set of formulae ∇(p, q, ~r) is called a p-
disjunction (in L) whenever it satisfies the p-protodisjunction condition

(PD) ϕ `L ϕ∇ ψ and ψ `L ϕ∇ ψ.

and the Proof by Cases Property, PCP for short:

Γ, ϕ `L χ Γ, ψ `L χ
Γ, ϕ∇ ψ `L χ

.

If ∇ has no parameters we drop the prefix ‘p-’. A logic L is called (p-)disjunctional
if there is a (p-)disjunction in L.

We know from (Czelakowski, 2001, Theorem 2.5.17) that every finitary protoal-
gebraic distributive logic is p-disjunctional. Therefore, from this result we could
already obtain that SL and its axiomatic extensions are p-disjunctional. Indeed
algebraizable logics form a subclass of protoalgebraic logics and, as we mentioned
in the preliminaries, SL and its axiomatic extensions are distributive. However,
here we can do better by providing an explicit, reasonably simple, description of
the p-disjunction, which then can be used to obtain many consequences by applying
general AAL theorems. Another advantage of our approach is that it is applicable
to all substructural logics, not just to axiomatic extensions of SL.

Our approach is based on (Cintula & Noguera, 2011, Theorem 2.6.9) which
shows that, under certain conditions, an almost (MP)-based presentation of a
substructural logic can be used to obtain a p-disjunction. Here we prove a stronger
version of that theorem by removing those conditions at the price of a (seemingly)
slightly more complicated form of the resulting p-disjunction. By ‘seemingly’ we
mean that in the majority of substructural logics we study in this paper this
complication is actually nonexistent.

Theorem 3.21. Let L be an almost (MP)-based substructural logic with a set of
basic deduction terms bDT. Then the following set is a p-disjunction in L:

∇L = {γ1(p) ∨ γ2(q) | γ1, γ2 ∈ (bDT ∪ {? ∧ 1})∗}

Proof. Clearly the set bDT ∪ {? ∧ 1} is a set of basic deduction terms (because
already the logic SL proves (Adju) and (PSL24)). Therefore ∇L obviously satisfy
the condition (PD); we prove that it satisfies PCP as well.

Assume that Γ, ϕ `L χ and Γ, ψ `L χ. From Corollary 3.18. we obtain δϕ, δψ ∈
Π((bDT ∪ {? ∧ 1})∗) such that Γ `L δϕ(ϕ) → χ and Γ `L δψ(ψ) → χ. Thus also
Γ `L δϕ(ϕ)∧ 1→ χ and Γ `L δψ(ψ)∧ 1→ χ (due to (∧1) and (T)) and so, without
a loss of generality, we might assume that the outmost term in δϕ and δψ is ?∧1 and
so we have `L δ(ϕ) & ψ → ψ and `L ψ & δ(ϕ) → ψ (due to (PSL22) and (PSL23))
for both δ = δϕ and δ = δψ.
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Table 5. (p-)disjunctions in prominent substructural logics

Logic L bDTL (p-)disjunction ∇L in L

SL {αδ,ε, α′δ,ε, βδ,ε, β′δ,ε, ? ∧ 1} | δ, ε formulae} {γ1(p) ∨ γ2(q) | γ1, γ2 ∈ bDTSL}
SLa {λε, ρε, ? ∧ 1 | ε a formula} {γ1(p) ∨ γ2(q) | γ1, γ2 ∈ bDTSLa}
SLae {? ∧ 1} {(ϕ ∧ 1) ∨ (ψ ∧ 1)}
SLaew {?} {ϕ ∨ ψ}

We also know that Γ `L δϕ(ϕ)∨δψ(ψ)→ χ by (∨3). The proof is done by showing
by induction over the sum of the depths of the trees representing δϕ, δψ that:

ϕ∇L ψ `L δϕ(ϕ) ∨ δψ(ψ).

The base of induction (when δϕ, δψ ∈ bDT ∪ {? ∧ 1}) is trivial. For the induction
step assume that δψ = δ1 & δ2. Using (PSL20), (PSL21), (∨1), (∨2), and (∨3) we
obtain the following chain of implications:

(δϕ(ϕ) ∨ δ1(ψ)) & (δϕ(ϕ) ∨ δ2(ψ))→

→ [δϕ(ϕ) & δϕ(ϕ)] ∨ [δϕ(ϕ) & δ2(ψ)] ∨ [δ1(ψ) & δϕ(ϕ)] ∨ [δ1(ψ) & δ2(ψ)]→

→ δϕ(ϕ) ∨ δϕ(ϕ) ∨ δϕ(ϕ) ∨ [δ1(ψ) & δ2(ψ)]→ δϕ(ϕ) ∨ δψ(ψ).

The induction assumption used for δϕ(ϕ) ∨ δ1(ψ) and δϕ(ϕ) ∨ δ2(ψ) together with
(Adj&) completes the proof. �

If bDT∗ contains a formula δ such that `L δ ↔ ? ∧ 1 (which is the case in all
axiomatic extensions of SL) we can omit the extra formula ?∧1 from the formulation
of the above theorem. Therefore we can simplify the description of p-disjunctions
in these logics; see Table 5 (also note that for each γ ∈ bDTSLae

we have, using
(PSL28), `SLae

γ ↔ ? ∧ 1).
Let us now present the promised applications of having a p-disjunction in a logic.

We start with the description of intersections of filters.

Theorem 3.22. ((Cintula & Noguera, 2013, Theorem 4.7)) For each SL-algebra
A and each X,Y ⊆ A we have Fi(X) ∩ Fi(Y ) = Fi(X∇A

SLY ).

Of course, if A is in a subquasivariety of some substructural logic with a simpler
p-disjunction ∇, this result can be accordingly simplified.

The second application concerns the axiomatization of substructural logics given
by special classes of SL-algebras. Recall that in first-order logic a positive clause C
is a disjunction of finitely-many atomic formulae. We define a positive equational
clause as a disjunction of finitely-many equations C =

∨
i∈IC δi ≈ εi. A set of

positive equational clauses C is said to be valid in an SL-algebra A, written as
A |= C, if for each C ∈ C and each A-evaluation e there is i ∈ IC such that e(δi) =
e(εi); a set of algebras satisfying certain set of positive equational clauses is called
a positive universal class. Theorem 3.23. shows how to axiomatize substructural
logics given by positive equational classes of SL-algebras.
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Theorem 3.23. Let L be a substructural logic with a p-disjunction ∇ and C a
set of positive equational clauses. Then:

|={A∈L |A|=C} = L +
⋃
{∇i∈IC (δi ↔ εi) | C ∈ C}.

Proof. Direct application of (Cintula & Noguera, 2013, Theorem 5.7). �

Note that if the set of positive equational clauses is recursive, so it is the axiom-
atization of its corresponding logic. As a corollary we obtain a way to axiomatize
intersections of axiomatic extensions of a given logic (again, see Cintula & Noguera
(2013) for the detailed general formulation).

Corollary 3.24. Let L be a substructural logic with a p-disjunction ∇, and let
L1, L2 be axiomatic extensions of L by sets of axioms AX 1 and AX 2, respectively.
Without loss of generality we can assume that AX 1 and AX 2 are written in disjoint
sets of variables. Then:

L1 ∩ L2 = L +
⋃
{ϕ∇ψ | ϕ ∈ AX 1 and ψ ∈ AX 2}.

Equivalently, the theorem and its corollary can be dualized as a description
of the variety of SL-algebras generated by a positive universal class and as an
effective method to compute equational bases for joins of relative subvarieties of
a given quasivariety of SL-algebras. The following corollaries generalize the results
by Galatos (2004) for classes of residuated lattices.

Corollary 3.25. Let C be a set of positive equational clauses. Then an equa-
tional base for the variety of SL-algebras generated by those satisfying C can be
obtained by adding the following:

1 ≈ 1 ∧ [∇i∈IC (δi ↔ εi)] for each C ∈ C.

Corollary 3.26. Let L be a quasivariety of SL-algebras, ∇ a p-disjunction for
the corresponding logic, and let L1, L2 be relative subvarieties of L given by sets
of equations E1 and E2, respectively. Without loss of generality we can assume that
E1 and E2 are written in disjoint sets of variables. Then:

L1 ∨ L2 = L +
⋃
{((δ1 ↔ ε1)∇(δ2 ↔ ε2)) ∧ 1 ≈ 1 | δ1 ≈ ε1 ∈ E1 and δ2 ≈ ε2 ∈ E2}.

Observe that this result can be generalized to joins of finitely-many relative subva-
rieties (as well as the previous one extends to intersection of finitely-many axiomatic
extensions). In particular, we obtain that the join of finitely-many recursively based
relative subvarieties is recursively based.

§4. Semilinear substructural logics This section is devoted to semilinear
extensions of substructural logics. The notion of semilinear logic has been intro-
duced in the very general setting of weakly p-implicational logics by Cintula &
Noguera (2010) and systematically used as a general framework for the study of
mathematical fuzzy logic by Cintula & Noguera (2011). Let us first recall four
equivalent (in the present context) definitions of semilinear logic: the first one is
the original definition (Cintula & Noguera, 2011, Definition 3.1.2), the second one
is purely semantical and stands behind the name ‘semilinear’ as explained in the
introduction, the third one is a purely syntactical characterization called Semilinear
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Property SLP, and the last one is also syntactical and it is based on the well-known
prelinearity axiom and the behavior of lattice disjunction as a proper disjunction
(the equivalence of the first three follows from (Ibid., Theorem 3.1.8) while the
equivalence with the last condition follows from (Ibid., Proposition 3.2.9)).

Definition 4.27. Let L be a substructural logic and K the class of all L-chains.
We say that L is semilinear if one of the following equivalent conditions is met:

1. For every set of formulae Γ and every formula ϕ we have:

Γ `L ϕ if, and only if, Γ |=K ϕ.

2. K is the class of all relatively finitely subdirectly irreducible L-algebras.

3. For every set of formulae Γ and every formulae ϕ,ψ, χ we have:

Γ, ϕ→ ψ `L Γ, ψ → ϕ `L χ
Γ `L χ

4. ∨ satisfies prelinearity and the Proof by Cases Property in L, i.e. L proves
(ϕ→ ψ) ∨ (ψ → ϕ) and for every set of formulae Γ and every formulae
ϕ,ψ, χ we have

Γ, ϕ `L χ Γ, ψ `L χ
Γ, ϕ ∨ ψ `L χ

In the first subsection we show several equivalent ways to axiomatize the min-
imum semilinear logic extending a given almost (MP)-based substructural logic.
Generalizing the work done by Cintula & Noguera (2011) we make a heavy use of
the p-disjunction to produce the axiomatization, namely we write it in terms of the
corresponding set bDT. In the second subsection we prove that these semilinear
extensions are also complete with respect to distinguished classes of chains, namely
those over the real and the rational unit interval.

4.1. Axiomatization of semilinear extensions Although the logic L` is
primarily defined by Cintula & Noguera (2010) as the weakest semilinear logic
extending L, the next definition formalizes this notion in the form suitable for this
paper by using an ‘implicit’ Hilbert-style axiomatic system.

Definition 4.28. Let L be a substructural logic and K the class of L-chains. We
define the logic L` as the extension of L by

• axioms {ϕ | ∅ |=K ϕ}
• rules {〈Γ, ϕ〉 | Γ |=K ϕ}.

The general theory explained by Cintula & Noguera (2011) gives us two imme-
diate ways how to axiomatize L` in some better/simpler way (assuming that L
is almost (MP)-based). They appear in the next theorem as alternatives A and B.
Both these alternatives have some advantages but are unnecessary complicated: the
first one adds only axioms but needs to use all iterated deductive terms, whereas
the other one uses only basic terms but adds new rules. We show that in the case of
substructural logics we can obtain a third and a fourth alternative combining the
advantages of the first two (we present these two variants because they generalize
two different usual formulations appearing in the literature).
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Theorem 4.29. Let L be an almost (MP)-based substructural logic with a set
bDT of basic deductive terms. Then L` is axiomatized, relatively to L, by any of
the following four sets of axioms/rules:

A γ1(ϕ→ ψ) ∨ γ2(ψ → ϕ), for every γ1, γ2 ∈ (bDT ∪ {? ∧ 1})∗

B (ϕ→ ψ) ∨ (ψ → ϕ)

(ϕ→ ψ) ∨ χ, ϕ ∨ χ ` ψ ∨ χ
ϕ ∨ ψ ` γ(ϕ) ∨ ψ, for every γ ∈ bDT

C ((ϕ→ ψ) ∧ 1) ∨ γ((ψ → ϕ) ∧ 1), for every γ ∈ bDT ∪ {?}

D (ϕ ∨ ψ → ψ) ∨ γ(ϕ ∨ ψ → ϕ), for every γ ∈ bDT ∪ {? ∧ 1}.

Proof. Let LX (for X ∈ {A,B,C,D}) denote the corresponding extension of L.
Using Theorem 3.21. we know that {γ1(p) ∨ γ2(q) | γ1, γ2 ∈ (bDT ∪ {? ∧ 1})∗}
is a p-disjunction in L. Therefore LA = L` due to (Cintula & Noguera, 2011,
Theorem 3.2.1). To show that LB = L` just use (Cintula & Noguera, 2011, Propo-
sition 3.2.9) and (Cintula & Noguera, 2011, Theorem 2.7.27).

To complete the proof we will show the following chain of inclusions: L` ⊇ LC ⊇
LD ⊇ LB . For the first one take γ ∈ bDT ∪ {?}; then we have:

(a) ϕ→ ψ `L` ((ϕ→ ψ) ∧ 1) ∨ γ((ψ → ϕ) ∧ 1) (Adju), (∨1), and (MP)

(b) ψ → ϕ `L` γ((ψ → ϕ) ∧ 1) (Adju) and ϕ ` γ(ϕ)

(c) ψ → ϕ `L` ((ϕ→ ψ) ∧ 1) ∨ γ((ψ → ϕ) ∧ 1) (b), (∨2), and (MP)

(d) `L` ((ϕ→ ψ) ∧ 1) ∨ γ((ψ → ϕ) ∧ 1) (a), (c), and SLP10

Next we prove the second inclusion, let us first assume that γ ∈ bDT:

(a) `LC
(ϕ→ ψ) ∧ 1→ (ϕ ∨ ψ → ψ) ∨ γ(ϕ ∨ ψ → ϕ) (PSL26), (∨1), and (T)

(b) `LC
γ′((ψ → ϕ) ∧ 1)→ γ(ϕ ∨ ψ → ϕ) (PSL27) and Lemma 3.16.

(c) `LC
γ′((ψ → ϕ) ∧ 1)→ (ϕ ∨ ψ → ψ) ∨ γ(ϕ ∨ ψ → ϕ) (b), (∨2), and (T)

(d) `LC
((ϕ→ ψ) ∧ 1) ∨ γ′((ψ → ϕ) ∧ 1)→ (ϕ ∨ ψ → ψ) ∨ γ(ϕ ∨ ψ → ϕ) (a), (c),

and (∨3)

(e) `LC
(ϕ ∨ ψ → ψ) ∨ γ(ϕ ∨ ψ → ϕ) (d) and (MP)

The proof for γ = ? ∧ 1 is analogous: in step (b) we would set γ′ = ? and prove it
using (PSL27), (Adju), (PSL24), (MP), (PSL28), and (T). To prove the last inclusion
we first show that LD proves prelinearity:

(a) `LD
(ϕ ∨ ψ → ψ)→ (ϕ→ ψ) (∨1) and (Sf)

(b) `LD
(ϕ ∨ ψ → ψ)→ (ϕ→ ψ) ∨ (ψ → ϕ) (a), (∨1), and (T)

(c) `LD
(ϕ ∨ ψ → ϕ)→ (ϕ→ ψ) ∨ (ψ → ϕ) analogously

(d) `LD
(ϕ ∨ ψ → ϕ) ∧ 1→ (ϕ→ ψ) ∨ (ψ → ϕ) (c), (∧1), and (T)

(e) `LD
(ϕ∨ψ → ψ)∨ ((ϕ∨ψ → ϕ)∧1)→ (ϕ→ ψ)∨ (ψ → ϕ) (b), (d), and (∨3)

(f) `LD
(ϕ→ ψ) ∨ (ψ → ϕ) (e) and (MP)

10 Clearly, as L` is a semilinear logic we know it satisfies the Semilinear Property, see
Definition 4.27.
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Next we show ϕ ∨ ψ `LD
γ(ϕ) ∨ ψ for each γ ∈ bDT:

(a) ϕ ∨ ψ `LD
(ϕ ∨ ψ → ψ)→ ψ (As)

(b) ϕ ∨ ψ `LD
(ϕ ∨ ψ → ψ)→ γ(ϕ) ∨ ψ (a), (∨2), and (T)

(c) ϕ ∨ ψ `LD
(ϕ ∨ ψ → ϕ)→ ϕ (As)

(d) ϕ ∨ ψ `LD
γ′(ϕ ∨ ψ → ϕ)→ γ(ϕ) (c) and Lemma 3.16.

(e) ϕ ∨ ψ `LD
γ′(ϕ ∨ ψ → ϕ)→ γ(ϕ) ∨ ψ (d), (∨1), and (T)

(f) ϕ ∨ ψ `LD
(ϕ ∨ ψ → ψ) ∨ γ′(ϕ ∨ ψ → ϕ)→ γ(ϕ) ∨ ψ (b), (e), and (∨3)

(g) ϕ ∨ ψ `LD
γ(ϕ) ∨ ψ (f) and (MP)

Note that the same proof would work for γ = ? ∧ 1; only in step (d) we would set
γ′ = ? ∧ 1 and prove it from (c) using (Adju), (PSL24), and (MP). Thus we know
that ϕ ∨ ψ `LD

(ϕ ∧ 1) ∨ ψ which we use to prove now (ϕ→ ψ) ∨ χ, ϕ ∨ χ ` ψ ∨ χ:

(a) ϕ ∨ χ ` χ→ ψ ∨ χ (∨2)

(b) `LD
(ϕ→ ψ) ∧ 1→ (ϕ ∨ χ→ ψ ∨ χ) (PSL25)

(c) `LD
ϕ ∨ χ→ ((ϕ→ ψ) ∧ 1 ψ ∨ χ) (E 1)

(d) ϕ ∨ χ `LD
(ϕ→ ψ) ∧ 1→ ψ ∨ χ (c), (MP), and (Symm1)

(e) ϕ ∨ χ `LD
((ϕ→ ψ) ∧ 1) ∨ χ→ ψ ∨ χ (a), (d), and (∨3)

(f) (ϕ→ ψ) ∨ χ `LD
((ϕ→ ψ) ∧ 1) ∨ χ see the previous paragraph

(g) (ϕ→ ψ) ∨ χ, ϕ ∨ χ `LD
ψ ∨ χ (e), (f), and (MP) �

Table 6 collects axiomatizations of important semilinear substructural logics
obtained as axiomatization C from Theorem 4.29. We present them in the form
of axiom schemata, sometimes altered a little for simplicity or to obtain some form
known from the literature. These simplifications follow from the following few simple
observations:

• In logics with weakening we use the fact that `SLw
ϕ ↔ ϕ ∧ 1 to work with

the axiomatization C ′ (ϕ→ ψ) ∨ γ(ψ → ϕ), for every γ ∈ bDT ∪ {?}.
• The axiom for γ = ? ∧ 1 can be omitted from all axiomatizations because it

follows from the one for γ = ? using (PSL28).

• The axiom for γ = ? can be omitted from all but the last two axiomatizations
because it follows from the one for α1,1 (or λ1) using the first (or also the
fifth) claim of Proposition 3.10.

• In the case of SLe, we first note that the proposed single formula to axiomatize
SL`e is an instance of formulae from axiomatization A. On the other hand,
setting δ = ε = 1 or respectively δ′ = ε′ = 1 and using the first claim of
Proposition 3.10., we obtain the remaining two axioms from axiomatization C.

• In SLa we proceed analogously to the previous case.

4.2. Completeness properties Next we prove that the non-associative semi-
linear logics axiomatized above are not only complete with respect to the semantics
of all their chains, but also with respect to some distinguished classes of chains,
namely those defined over the rational and real unit interval (standard complete-
ness). In fact, we will prove completeness in the following strong sense.
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Table 6. Axiomatization of L` for prominent substructural logics

Logic L additional axioms needed to axiomatize L`

SL ((ϕ→ ψ) ∧ 1) ∨ γ((ψ → ϕ) ∧ 1), for every γ ∈ {αδ,ε, α′δ,ε, βδ,ε, β′δ,ε}
SLw (ϕ→ ψ) ∨ γ(ψ → ϕ), for every γ ∈ {αδ,ε, α′δ,ε, βδ,ε, β′δ,ε}
SLe αδ,ε((ϕ→ ψ) ∧ 1) ∨ βδ′,ε′((ψ → ϕ) ∧ 1)

SLew αδ,ε(ϕ→ ψ) ∨ βδ′,ε′(ψ → ϕ)

SLa (λε(ϕ→ ψ) ∧ 1) ∨ (ρε′(ψ → ϕ) ∧ 1)

SLae ((ϕ→ ψ) ∧ 1) ∨ ((ψ → ϕ) ∧ 1)

SLaew (ϕ→ ψ) ∨ (ψ → ϕ)

Definition 4.30. Let L be a substructural semilinear logic and let K be a class
of L-chains. We say that L has the property of strong K-completeness, SKC for
short, when for every set of formulae Γ ∪ {ϕ}, Γ `L ϕ if, and only if, Γ |=K ϕ.

We will need the following characterization of SKC (given in general by (Cintula
& Noguera, 2011, Theorem 3.4.6)).

Theorem 4.31. Let L be a substructural semilinear logic and let K be a class of
L-chains. Then L has the SKC if, and only if, every countable nontrivial L-chain
is embeddable into a member of K.

Let S ⊆ {e, c, i, o}. In the light of Definition 4.30. we define the class Q (resp. R)
of all SLS-chains whose universe is the rational unit interval Q∩ [0, 1] (resp. the real

unit interval [0, 1]). Note that if A is in Q or R then 0
A
, 1

A
need not coincide with

the real numbers 0, 1 which play the role of ⊥ and >. They coincide iff {i, o} ⊆ S.
The remaining part of the paper is devoted to the proof of the following theorem.

Theorem 4.32. Let S ⊆ {e, c, i, o}. Then the logic SL`S has the SQC and SRC.

Before we prove Theorem 4.32., we introduce several auxiliary constructions
which we will need in its proof. Let 〈A,≤〉 be a chain and a, b ∈ A. We denote
the fact that a is a subcover of b as a ≺ b, i.e., a ≺ b holds iff a < b and there is
no c ∈ A such that a < c < b. A chain 〈A,≤〉 is said to be dense if a ≺ b does not
hold for any a, b ∈ A.

Let T ⊆ {i, o}. Suppose that we have a dpbT-chain A = 〈A,∧A,∨A, 0A, 1A,⊥,>〉
which is countable and nontrivial (i.e., it has at least two elements). We show that
it is possible to extend A to a dense dpbT-chain D. If A is not dense then there is
at least one element a which has a subcover a′. As we want to extend A so that it
becomes dense, we have to fill for each such element a the gap between a and a′ by
a countable dense chain. This can be done by pasting a copy of rational numbers
(namely Q ∩ (0, 1)) into the gap between a and a′ (see Figure 1). Formally we can
define the set D as the following subset of A× (Q ∩ (0, 1]):

D = {〈a, 1〉 | a ∈ A} ∪ {〈a, q〉 | q ∈ Q ∩ (0, 1) and (∃a′ ∈ A) such that a′ ≺ a} .

Then the lexicographic order ≤lex on D is a dense linear order, 〈>, 1〉 is a top
element, and 〈⊥, 1〉 is a bottom element. Thus the algebra

D = 〈D,∧D,∨D, 〈0A, 1〉, 〈1A, 1〉, 〈⊥, 1〉, 〈>, 1〉〉 ,
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a′

a

=⇒

σ(x)

γ(x)

x Q ∩ (0, 1)

A D

Fig. 1. The behaviour of closure and interior operators γ and σ on newly added elements.

where ∧D and ∨D are defined by ≤lex, is a dpb-chain. Moreover, if 1
A

= > then

〈1A, 1〉 = 〈>, 1〉. Similarly, 〈0A, 1〉 = 〈⊥, 1〉 if 0
A

= ⊥. Hence D is even a dpbT-
chain. Finally, it is clear that the subset A×{1} ⊆ D forms a dpbT-chain isomorphic
to A.

Observe that we can define two operators on the chain D whose image is A×{1},
namely a closure operator γ and an interior operator σ defined as follows:

γ(a, q) = 〈a, 1〉 ,

σ(a, q) =

{
〈a, 1〉 if q = 1,

〈a′, 1〉 if q < 1 and a′ ≺ a.

Note that A × {1} is the set of γ-closed and σ-open elements. Summing up, if we
identify A with A× {1}, we obtain the following general lemma.

Lemma 4.33. Let T ⊆ {i, o} and let A be a countable nontrivial dpbT-chain.
Then A can be extended to a countably infinite dense dpbT-chain D. Moreover,
there are a closure operator γ and an interior operator σ on D such that A =
γ[D] = σ[D].

Further we introduce a sort of extension construction. Let S ⊆ {e, c, i, o} and
T = S \ {e, c}. Suppose we have a dpbT-chain 〈B,∧,∨, 0, 1,⊥,>〉, a subset A ⊆ B
such that {0, 1,⊥,>} ⊆ A, and an rtS-groupoid

A = 〈A,∧,∨, ◦A, \A, /A, 0, 1,⊥,>〉 .

Further, assume that there are a closure operator γ and an interior operator σ on
〈B,∧,∨〉 such that γ[B] = σ[B] = A. This means that for every b ∈ B we can find
the least a ∈ A such that b ≤ a (namely γ(b)) and the greatest a′ ∈ A such that
a′ ≤ b (namely σ(b)). We define an algebra B = 〈B,∧,∨, ◦B, \B, /B, 0, 1,⊥,>〉 as
follows:

x ◦B y = γ(x) ◦A γ(y) , x/By = σ(x)/Aγ(y) , x\By = γ(x)\Aσ(y) .

Lemma 4.34. The algebra B is an rtS-groupoid.

Proof. First, we prove that B is residuated. Suppose that x◦By = γ(x)◦Aγ(y) ≤ z.
Since γ(x) ◦A γ(y) is σ-open, we have γ(x) ◦A γ(y) = σ(γ(x) ◦A γ(y)) ≤ σ(z). Con-
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sequently, x ≤ γ(x) ≤ σ(z)/Aγ(y) = z/By. Conversely, suppose that x ≤ z/By =
σ(z)/Aγ(y). Since σ(z)/Aγ(y) is γ-closed, we obtain γ(x) ≤ γ(σ(z)/Aγ(y)) =
σ(z)/Aγ(y). Consequently, x ◦B y = γ(x) ◦A γ(y) ≤ σ(z) ≤ z. Analogously for
the left division. Finally, note that

1 ◦B x = γ(1) ◦A γ(x) = 1 ◦A γ(x) ≥ γ(x) ≥ x .

Similarly, x ◦B 1 ≥ x. Thus B is an rt-groupoid.
Next we have to show that B is in fact an rtS-groupoid. To see this, note that B

is commutative if A is. If A is contractive then we have x ◦B x = γ(x) ◦A γ(x) ≥
γ(x) ≥ x for any x ∈ B. �

Note that this extension construction does not preserve unitality of 1. Namely,
if A is unital, the algebra B is in general only semiunital. In order to fix this, we
introduce the following construction allowing us to combine two rtS-groupoids on
a same chain together. Let S ⊆ {e, c, i, o} and T = S \ {e, c}. Assume that we have
two different r`S-groupoid structures on a dpbT-chain 〈A,∧,∨, 0, 1,⊥,>〉, i.e., we
have two rtS-groupoids

A1 = 〈A,∧,∨, ◦A1 , \A1 , /A1 , 0, 1,⊥,>〉 A2 = 〈A,∧,∨, ◦A2 , \A2 , /A2 , 0, 1,⊥,>〉.

Then we define an algebra A1 ∧A2 = 〈A,∧,∨, ◦, \, /, 0, 1,⊥,>〉 on the same dpbT-
chain as follows:

a ◦ b = (a ◦A1 b)∧ (a ◦A2 b) , a\b = (a\A1b)∨ (a\A2b) , a/b = (a/A1b)∨ (a/A2b) .

Lemma 4.35. The algebra A1 ∧A2 is an rtS-groupoid. In addition, if one of A1,
A2 is an SLS-chain then A1 ∧A2 is an SLS-chain as well.

Proof. First, 1 ◦ a = (1 ◦A1 a)∧ (1 ◦A2 a) ≥ a∧ a = a. Similarly, a ≤ a ◦ 1. Further
we have the following chain of equivalences:

a ◦ b = (a ◦A1 b) ∧ (a ◦A2 b) ≤ c iff a ◦A1 b ≤ c or a ◦A2 b ≤ c
iff b ≤ a\A1c or b ≤ a\A2c

iff b ≤ (a\A1c) ∨ (a\A2c) = a\c .

Similarly we can prove a ◦ b ≤ c iff a ≤ c/b.
It is easy to see that commutativity is preserved by the construction of A1 ∧A2.

To see that contraction is preserved, note that a◦a = (a◦A1a)∧(a◦A2a) ≥ a∧a = a.
Thus A1 ∧A2 is an r`S-groupoid.

To see the additional part, assume without any loss of generality that A2 is an
SLS-chain. Then a ◦A2 1 = a = 1 ◦A2 a. Thus we have 1 ◦a = (1 ◦A1 a)∧ (1 ◦A2 a) =
(1 ◦A1 a) ∧ a = a because 1 ◦A1 a ≥ a. Similarly, a ◦ 1 = a. �

Finally, let T ⊆ {i, o}, S = T ∪ {e, c}, and C = 〈C,∧,∨, 0, 1,>,⊥〉 a dpbT-chain.
We will show that there is a greatest groupoid operation on C making C into an
SLS-chain M(C) = 〈C,∧,∨,�,→, 0, 1,⊥,>〉. We define

x� y =


> if x, y > 1,

⊥ if x = ⊥ or y = ⊥,

x ∧ y if x, y ≤ 1,

x ∨ y otherwise.
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Lemma 4.36. The algebra M(C) = 〈C,∧,∨,�,→, 0, 1,⊥,>〉 is an SLS-chain,
where → is the uniquely determined residual of �. Moreover, � is the maximum
among all groupoid operations ◦ on C making it into an SLS-chain w.r.t. the point-
wise order, i.e., x ◦ y ≤ x� y for all x, y ∈ C.

Proof. M(C) is clearly a dpbT-chain. It is also easy to see that � is commutative
and contractive. Further, we have 1� x = 1∧ x = x if x ≤ 1 and 1� x = 1∨ x = x
if x > 1. Thus 1 is a neutral element for �. In order to show that � is residuated, it
suffices (due to commutativity of �) to show that for all a ∈ C the map fa : C → C
defined by fa(x) = a� x is residuated. Depending on a, the map fa could be of a
different shape. If a ≤ 1 then

fa(x) =

{
a if x ∈ [a, 1],

x otherwise.

If a > 1 then

fa(x) =


⊥ if x = ⊥,

a if ⊥ < x ≤ 1,

> if x > 1.

In both cases it is easy to see that fa is residuated (it is monotone and the inverse
image of any principal downset is a principal downset).

Let ◦ be a groupoid operation on C making it into an SLS-chain. Since 1 is a
neutral element for ◦, we must have x ◦ y ≤ x ∧ y = x � y for x, y ≤ 1. Further,
for ⊥ < x ≤ 1 and y > 1 we must have x ◦ y ≤ y = x ∨ y = x � y and similarly
x ◦ y ≤ x � y for x > 1 and ⊥ < y ≤ 1. Since ◦ is residuated, it has to satisfy
⊥ ◦ x = x ◦ ⊥ = ⊥ = ⊥� x = x�⊥. Finally, x ◦ y ≤ > = x� y for x, y > 1. Thus
x ◦ y ≤ x� y for all x, y ∈ C. �

Proof of Theorem 4.32. Let S ⊆ {e, c, i, o}, T = S \ {e, c}. By Theorem 4.31. in
order to show SQC for SL`S, it is sufficient to prove that each countable nontrivial
SLS-chain A can be embedded into a countably infinite dense SLS-chain D because
every countable infinite dense chain having a minimum ⊥ and a maximum > is
order-isomorphic to Q ∩ [0, 1].

Suppose that we have an SLS-chain A = 〈A,∧,∨, ◦A, \A, /A, 0, 1,⊥,>〉 which is
countable and nontrivial. Then its reduct 〈A,∧,∨, 0, 1,⊥,>〉 forming a dpbT-chain
can be extended to a countably infinite dense dpbT-chain 〈D,∧,∨, 0, 1,⊥,>〉 by
Lemma 4.33. in such a way that there are a closure operator γ and an interior
operator σ on 〈D,∧,∨, 0, 1,⊥,>〉 such that γ[D] = σ[D] = A. The next step is to
extend the multiplication on the SLS-chain A to D. This can be done by applying
Lemma 4.34. to our dense dpbT-chain 〈D,∧,∨, 0, 1,⊥,>〉. Consequently, we obtain
an rtS-groupoid D = 〈D,∧,∨, ◦D, \D, /D, 0, 1,⊥,>〉. However, D is in general
only semiunital because 1 need not be a neutral element. In particular, 1 ◦D x =
γ(x) ≥ x, i.e., the result of 1 ◦D x could be greater than we need. Thus we have to
further modify ◦D. By Lemma 4.36. the dpbT-chain 〈D,∧,∨, 0, 1,⊥,>〉 also forms
an SLT∪{e,c}-chain M(D) = 〈D,∧,∨,�,→, 0, 1,⊥,>〉 such that � is the maximum

among all residuated groupoid operations on D having 1 as a neutral element. Thus
it seems to be natural to lessen the values of ◦D by a combination with �. Namely,
D ∧M(D) = 〈D,∧,∨, ◦, \, /, 0, 1,⊥,>〉 is an SLS-chain by Lemma 4.35.
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Finally, we show that A can be embedded into D ∧M(D). We claim that the
identity map from A to D is the desired embedding. Given x, y ∈ A, γ(x) = σ(x) =
x and γ(y) = σ(y) = y. By Lemma 4.36. we have x ◦A y ≤ x� y. Thus

x ◦ y = (γ(x) ◦A γ(y)) ∧ (x� y) = (x ◦A y) ∧ (x� y) = x ◦A y .

For the right division we have

x/y = (σ(x)/Aγ(y)) ∨ (y → x) = (x/Ay) ∨ (y → x) .

Using again Lemma 4.36. together with the commutativity of �, we obtain

(y → x) ◦A y ≤ (y → x)� y = y � (y → x) ≤ x .

Thus by residuation y → x ≤ x/Ay. Consequently, we have x/y = x/Ay. Similarly,
we can prove x\y = x\Ay which finishes the proof of the SQC for SL`S.

Now it is easy to extend this result to SRC using the Dedekind–MacNeille
completion and again Theorem 4.31. Let A be an SLS-chain from Q and A′ its
lattice reduct. Then, as was shown by Galatos & Jipsen (2013), A can be embedded
into an SLS-algebra B whose lattice reduct is the Dedekind–MacNeille completion
of A′. Since the Dedekind–MacNeille completion of the chain Q ∩ [0, 1] is order-
isomorphic to [0, 1], we are done. �

A The proof of Theorem 3.9. To prove one direction we only need to know
the derivability of the new rules of AS in SL (all its axioms are either shown to
be theorems of SL in the preliminaries or can be proved easily e.g. in the Gentzen
calculus for SL). Conversely, we show that AS proves all axioms and rules of SL.

SL proves (α):

(a) ` χ→ (ψ → ψ & χ) (Adj&)

(b) χ ` ψ → ψ & χ (a) and (MP)

(c) χ ` ϕ& ψ → ϕ& (ψ & χ) (PSL8), (b), and (MP)

SL proves (α′):

(a) ` χ→ (ϕ→ ϕ& χ) (Adj&)

(b) χ ` ϕ→ ϕ& χ (a) and (MP)

(c) χ ` ϕ& ψ → (ϕ& χ) & ψ (PSL9), (b), and (MP)

SL proves (β):

(a) ` χ→ (ϕ& ψ → (ϕ& ψ) & χ) (Adj&)

(b) χ ` ϕ& ψ → (ϕ& ψ) & χ (a) and (MP)

(c) χ ` ψ → (ϕ→ (ϕ& ψ) & χ) (b) and (Res)

SL proves (β′):

(a) χ ` ϕ→ (ψ → (ψ & ϕ) & χ) (β)

(b) χ ` ψ → (ϕ (ψ & ϕ) & χ) (a) and (E 1)

AS proves χ→ ϕ,ϕ→ ψ ` χ→ ψ (T):

(a) ` (χ→ (χ& (χ→ ϕ)) & (ϕ→ ψ))→ (χ→ ψ) (T′)

(b) ϕ→ ψ ` (χ→ ϕ)→ (χ→ (χ& (χ→ ϕ)) & (ϕ→ ψ)) (β)
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(c) χ→ ϕ,ϕ→ ψ ` (χ→ (χ& (χ→ ϕ)) & (ϕ→ ψ)) (b) and (MP)

(d) χ→ ϕ,ϕ→ ψ ` χ→ ψ (a), (c), and (MP)

AS proves ϕ→ ψ ` (χ→ ϕ)→ (χ→ ψ) (Pf):

(a) ` (χ→ (χ& (χ→ ϕ)) & (ϕ→ ψ))→ (χ→ ψ) (T′)

(b) ϕ→ ψ ` (χ→ ϕ)→ (χ→ (χ& (χ→ ϕ)) & (ϕ→ ψ)) (β)

(c) ϕ→ ψ ` (χ→ ϕ)→ (χ→ ψ) (a), (b), and (T)

AS proves ϕ→ ψ ` (χ ϕ)→ (χ ψ) (Pf ):

(a) ` (χ ((χ ϕ) & χ) & (ϕ→ ψ))→ (χ ψ) (T′ )

(b) ϕ→ ψ ` (χ ϕ)→ (χ ((χ ϕ) & χ) & (ϕ→ ψ)) (β′)

(c) ϕ→ ψ ` (χ ϕ)→ (χ ψ) (a), (b), and (T)

AS proves ϕ→ (ψ → χ) ` ψ & ϕ→ χ (Res1):

(a) ` ψ & (ϕ& (ϕ→ (ψ → χ)))→ χ (Res′)

(b) ϕ→ (ψ → χ) ` ψ & ϕ→ ψ & (ϕ& (ϕ→ (ψ → χ))) (α)

(c) ϕ→ (ψ → χ) ` ψ & ϕ→ χ (a), (b), and (T)

AS proves ϕ→ (ψ  χ) ` ϕ& ψ → χ (Res 1):

(a) ` (ϕ& (ϕ→ (ψ  χ))) & ψ → χ (Res′ )

(b) ϕ→ (ψ  χ) ` ϕ& ψ → (ϕ& (ϕ→ (ψ  χ))) & ψ (α′)

(c) ϕ→ (ψ  χ) ` ϕ& ψ → χ (a), (b), and (T)

AS proves ψ & ϕ→ χ ` ϕ→ (ψ → χ) (Res2):

(a) ψ & ϕ→ χ ` (ψ → ψ & ϕ)→ (ψ → χ) (Pf)

(b) ψ & ϕ→ χ ` (ϕ→ (ψ → ψ & ϕ))→ (ϕ→ (ψ → χ)) (a), (Pf), and (MP)

(c) ` ϕ→ (ψ → ψ & ϕ) (Adj&)

(d) ψ & ϕ→ χ ` ϕ→ (ψ → χ) (b), (c), and (MP)

AS proves ψ & ϕ→ χ ` ψ → (ϕ χ) (Res 2):

(a) ψ & ϕ→ χ ` (ϕ ψ & ϕ)→ (ϕ χ) (Pf )

(b) ψ & ϕ→ χ ` (ψ → (ϕ ψ & ϕ))→ (ψ → (ϕ χ)) (a), (Pf), and (MP)

(c) ` ψ → (ϕ ψ & ϕ) (Adj& )

(d) ψ & ϕ→ χ ` ψ → (ϕ χ) (b), (c), and (MP)

AS proves ψ → (ϕ→ χ) ` ϕ→ (ψ  χ) (E 1):

(a) ψ → (ϕ→ χ) ` ϕ& ψ → χ (Res1)

(b) ψ → (ϕ→ χ) ` ϕ→ (ψ  χ) (a) and (Res 2)

AS proves ϕ→ (ψ  χ) ` ψ → (ϕ→ χ) (E 2):

(a) ϕ→ (ψ  χ) ` ϕ& ψ → χ (Res 1)

(b) ϕ→ (ψ  χ) ` ψ → (ϕ→ χ) (b) and (Res2)

AS proves ϕ→ ϕ (R): (Push), (Pop), and (T).

AS proves 1→ (ϕ→ ϕ) (R′):

(a) ϕ→ ϕ ` 1→ (ϕ→ ϕ) (Push) and (MP)

(b) ` 1→ (ϕ→ ϕ) (R) and (a)
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AS proves 1 (1):

(a) ` (1→ 1)→ 1 (Pop)

(b) ` 1 (R), (a), and (MP)

AS proves ϕ→ ((ϕ ψ)→ ψ) (As``):

(a) ` (ϕ ψ)→ (ϕ ψ) (R)

(b) ` ϕ→ ((ϕ ψ)→ ψ) (a) and (E 2)

AS proves ϕ→ ψ ` (ψ → χ)→ (ϕ→ χ) (Sf):

(a) ` (ψ → χ)→ (ψ → χ) (R)

(b) ` ψ → ((ψ → χ) χ) (a) and (E 1)

(c) ϕ→ ψ ` ϕ→ ((ψ → χ) χ) (Pf), (b), and (T)

(d) ϕ→ ψ ` (ψ → χ)→ (ϕ→ χ) (c) and (E 2)

AS proves ϕ ` (ϕ→ ψ)→ ψ (As):

(a) ϕ ` 1→ ϕ (Push) and (MP)

(b) ϕ ` (ϕ→ ψ)→ (1→ ψ) (a) and (Sf)

(c) ` (1→ ψ)→ ψ (Pop)

(d) ϕ ` (ϕ→ ψ)→ ψ (b), (c), and (T)

AS proves ϕ,ψ ` ϕ ∧ ψ (Adj):

(a) ϕ ` ϕ ∧ 1 (Adju)

(b) ψ ` ψ ∧ 1 (Adju)

(c) ` ψ ∧ 1→ (ϕ ∧ 1→ (ϕ ∧ 1) & (ψ ∧ 1)) (Adj&)

(d) ϕ,ψ ` (ϕ ∧ 1) & (ψ ∧ 1) (a), (b), (c), and (MP)

(e) ` (ϕ ∧ 1) & (ψ ∧ 1)→ ϕ ∧ ψ (&∧)

(f) ϕ,ψ ` ϕ ∧ ψ (d), (e), and (MP)

AS proves ϕ ψ ` ϕ→ ψ (Symm1):

(a) ϕ ψ ` 1→ (ϕ ψ) (Push) and (MP)

(b) ϕ ψ ` ϕ→ (1→ ψ) (a) and (E 2)

(c) ` (1→ ψ)→ ψ (Pop)

(d) ϕ ψ ` ϕ→ ψ (b), (c), and (T)

AS proves (ϕ χ) ∧ (ψ  χ)→ (ϕ ∨ ψ  χ) (∨3 ):

(a) ` (ϕ χ) ∧ (ψ  χ)→ (ϕ χ) (∧1)

(b) ` ϕ→ ((ϕ χ) ∧ (ψ  χ)→ χ) (E 2)

(c) ` ψ → ((ϕ χ) ∧ (ψ  χ)→ χ) analogously

(d) ` ϕ ∨ ψ → ((ϕ χ) ∧ (ψ  χ)→ χ) (Adj), (∨3), (MP)

(e) ` (ϕ χ) ∧ (ψ  χ)→ (ϕ ∨ ψ  χ) (E 1)
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08193 BELLATERRA, CATALONIA, SPAIN

E-mail: noguera@utia.cas.cz


