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Abstract

In this paper, we propose a coherence-driven ap-
proach to action selection in agents. The mecha-
nism is inspired by the cognitive theory of coher-
ence as proposed by Thagard . Based on a proposal
to extend BDI agents with coherence, we interpret,
how action selection can be viewed as a coherence-
maximising problem. Contrasted against the classi-
cal BDI approach to action selection where actions
are selected against a pre-determined set of beliefs
and desires, this method offers a dynamic view of
the cognitions of an agent, where a set of beliefs de-
sires and intentions are selected together to keep the
coherence of the agent. We illustrate the approach
by simulating how a coherence-driven robot selects
its next action to pursue.

1 Introduction

A BDI-based reasoning process consists of a deliberative cy-
cle in which an agent decides what state of affairs it wants
to achieve from among all those desirable states of affairs [4;
15; 14]. The output of the deliberation process is a set of in-
tentions (desires that the agent wants to pursue paired with a
‘top-level’ plan of action) [1]. Once the intentions are created
and their associated preconditions (in the form of a set of be-
liefs) are met, then it is immediate that these intentions are
realised.

As it should be apparent, there are a few major difficulties
with this kind of reasoning. Among the many alternatives, it
is not clear how a particular desire or a set of desires are cho-
sen to be pursued further. In a graded cognitive agent, this
could be done simply by selecting the desire that has the high-
est degree [3]. However, such a selection will not guarantee
that the chosen desire is the best to be satisfied. To qualify for
it, a desire should be consistent with most of the fundamental
beliefs of the agent, and it should not conflict with other de-
sires which are already in pursuit. Finally, this desire should
be realisable. The last point is taken into account in the BDI
deliberation cycle, however, not during the selection of the
desire, rather at the point where intentions are generated [4;
15]. At this point, conflicts with other intentions may be dis-
covered. In such cases, the plan is aborted and another plan
or another desire itself has to be chosen. However, this is a
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very ad-hoc procedure, and unlikely to result in an optimised
or coherent agent.

Alternatively, our intuition says that among the many al-
ternatives, a desire should be selected that is not only most
desired, but also most coherent with the agent’s set of beliefs,
other desires, and plans. The same is true to incorporate a
new perception (belief). A new perception is incorporated
only when it is coherent within the set of cognitions. The
same happens when adopting a plan. That is, the model is
essentially dynamic, where beliefs, desires and intentions are
subject to the criterion of coherence maximisation. Here we
propose to incorporate such a reasoning to artificial agents.
We do so over the basic BDI architecture, but the process
of deliberation and action selection is inspired by coherence
maximisation inspired from Thagard’s theory of coherence.

Seen in a broader context, the theory of coherence can draw
parallels with other established theories. The philosophers of
science have long argued about what “claims” in a theory can
be supported. Popper’s view on the progress of knowledge [9]
sees falsifiability as the main driving force, and knowledge as
an evolving body that follows a process in which a number of
theories ‘compete’ to account for a problem situation. When
a set of theories is set, falsification is then the process that
makes some theories fail, while allowing others to survive. In
his view survival does not mean truth but ‘fitness’ to the sit-
uation. The notion of truthlikeness is for Popper a notion of
verosimilitude (V' (a) = T'(a) — F(a)) that accounts for the
comparison between the truth content of theory a and the fal-
sity content of a, which permits to rank theories. As we will
see later in this paper this concept is similar to the notion of
“strength’ of a partition in a coherence graph. Falsification of
a theory can be associated to the introduction of a highly in-
coherent fact that will make certain statements to be removed
from the accepted set of claims. Although Popper would re-
ject a complete theory as soon as empirical evidence would
go against it, Kuhn [10] would consider that scientists toler-
ate a certain level of anomalies (in our context a certain level
of incoherence) for a long time until a revolution happens in
which a complete new theory is accepted and an old one re-
jected. This latter phenomenon may be reproduced in our
context, as we will see, by the fact that partitions in graphs
can change abruptly when two theories are similarly coherent
and a new experimental result is added leading to a swap in
the set of accepted claims. The reconciliation point made by



Lakatos [11] would be that scientific theories contain a hard
core that contains the most crucial claims of the theory plus
a protective belt of auxiliary hypothesis that in case of con-
tradiction with the facts will be modified or removed while
keeping the central core, of course until a major difficulty is
found that leads to a drastic change of the core. The use of
degrees in claims and the algorithmic introduced in the pa-
per will show that we might implement a similar mechanism
by eliminating first the auxiliary hypothesis (those with lower
degrees of belief) before removing the hard core ones (with
higher probability degrees).

In the remaining of the paper, we introduce Thagard’s the-
ory of coherence, and the coherence framework used to ex-
plain action selection in Section 2. In Section 3 we ex-
plain the architecture of a coherence-driven agent and explain
coherence-driven action selection. With the help of an exam-
ple, we illustrate the theory in Section 4 and conclusion and
future works are in Section 5.

2 Thagard’s Theory of Coherence

In this section, we discuss the intuitions behind Thagard’s
Theory of Coherence and introduce a coherence framework
based on this theory.

Paul Thagard is one of the philosophers who have at-
tempted to introduce a computational interpretation of co-
herence. Thagard postulates that the theory of coherence
is a cognitive theory with foundations in philosophy that
approaches problems in terms of the satisfaction of multi-
ple constraints within networks of highly interconnected el-
ements [16; 17]. At the interpretation level, Thagard’s the-
ory of coherence is the study of associations, that is, how
a piece of information influences another and how best dif-
ferent pieces of information can fit together. Each piece of
information imposes constraints on others, the constraints
being positive or negative. Positive constraints strengthen
pieces of information, thereby increasing coherence, while
negative constraints weaken them, thereby increasing inco-
herence. Hence, a coherence problem is to put together those
pieces of information that have a positive constraint between
them, while separating those having a negative constraint.
Coherence is maximised if we obtain such a partition of infor-
mation where a maximum number of constraints is satisfied.

Thagard’s Formalisation

Thagard formalises coherence as follows [16]: The basic no-
tions are that of a set of pieces of information which are rep-
resented as nodes in a graph V' = {v;} and weighted links
or constraints F = {{v,w}} between these nodes. Further,
some of these constraints are positive (CT) and others neg-
ative (C7) and associated with each constraint a number (
which indicate the weight of the constraint. Given these, max-
imising coherence is formulated as the problem of partition-
ing V into two sets, A (accepted) and R (rejected), in a way
that maximises compliance with the following two coherence
conditions:

1. if (v,w) € C* thenv € Aif and only if w € A.
2. if (v,w) € C, thenv € Aif and only if w € R.
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If {v,w} complies with one of the above conditions, then,
Thagard defines it as a satisfied constraint. Then the coher-
ence problem is to maximise the sum of the weights of the
satisfied constraints.

Thagard further proposes six main kinds of coherence: ex-
planatory, deductive, conceptual, analogical, perceptual, and
deliberative, each with its own array of elements and con-
straints. Once these elements and constraints are specified,
then the algorithms that solve the general coherence problem
can be used to compute coherence in ways that apply to spe-
cific domain problems.

2.1 Comparison with Other Decision Theories

Keeping Thagard’s approach to coherence as maximising
constraint satisfaction, we try to understand the main con-
cept behind this theory. We associate coherence with an ever-
changing system where coherence is the only property that is
preserved, while everything around it changes. In cognitive
terms, this would mean that, there are no beliefs nor other
cognitions that are taken for granted or fixed forever. Every-
thing can be changed and may be changed to keep coherence.
We humans tend to revise or re-evaluate adherence to social
norms, our plans, goals and even beliefs when we are faced
with incoherence. We do not suppose that taking decisions
based on coherence imply an unstable system. Our claim is
based on the fact that some beliefs are more fundamental than
others, in line with Lakatos. Revision of such fundamental
belief is less frequent compared to other beliefs. In coher-
ence terms, these beliefs are fundamental because they sup-
port and get support from most other cognitions and hence
are in positive coherence with them. Hence, such beliefs will
almost always be part of the chosen set while maximising co-
herence. The same is the case with other cognitions while
the process of coherence maximisation further helps resolve
conflicts by selecting among the best alternatives.

When applied to decision making, this means that we may
not only select the set of actions to be performed to achieve
certain fixed goals, but also look for the best set of goals to
be pursued. Further, since coherence affects everything from
beliefs to goals and actions, it may happen that beliefs contra-
dicting a decision made are discarded. There are psychologi-
cal theories such as cognitive dissonance [5] that explains this
phenomenon as an attempt to justify the action chosen. Thus,
with coherence we are looking at a more dynamic model of
cognitions where one picks and choses goals, actions and
even beliefs to fit a grand plan of maximising coherence. In
concrete terms, a highly desired state of the world (preferred
in a classical sense) may get discarded in front of a less de-
sired state of the world because it is incoherent with the rest
of the beliefs, desires or intentions.

As discussed in [16], this view of decision making is very
different from those of classical decision making theories
where the notion of preference is atomic and there is no con-
ceptual understanding of how preferences can be formed. In
contrast, coherence based decision making tries to understand
and evaluate these preferences from the available complex
network of constraints. The assumption here is more basic
because the only knowledge available to us are the various
interacting constraints between pieces of information.



2.2 Coherence framework

Since we consider coherence-driven agents, in this section
we summarise a generic coherence framework that will al-
low us to build coherence-driven agents. The framework is
introduced in the work of Joseph et al [8; 7] based on Tha-
gard’s theory. It differs from other coherence-based frame-
works in extending agent theories [2; 13] as in this frame-
work coherence is treated as a fundamental property of the
cognitions of an agent. Further, it is generic and fully com-
putational. In the following we briefly introduce the neces-
sary definitions of this framework to understand the formu-
lation of coherence-driven action selection. The intuition be-
hind these definitions and a few examples are given in [8;
71. The core notion is that of a coherence graph whose nodes
represent pieces of information and whose weighted edges
represent the degree of coherence or incoherence between
nodes.

Definition 2.1 A coherence graph is an edge-weighted undi-
rected graph g = (V, E, (), where

1. 'V is a finite set of nodes representing pieces of informa-
tion.

2. E C {{v,w}v,w € V} is a finite set of edges repre-
senting the coherence or incoherence between pieces of
information, and which we shall call constraints.

3. ¢: E — [-1,1]\ 0 is an edge-weighted function that
assigns a negative or positive value to the coherence be-
tween pieces of information, and which we shall call co-
herence function.

Every coherence graph is associated with a number called
the coherence of the graph. Based on Thagard’s formalism,
this can be calculated by partitioning the set of nodes V' of the
graph in two sets, A and V'\ A, where A contains the accepted
elements of V, and V'\ A contains the rejected ones. The aim
is to partition V' such that a maximum number of constraints
is satisfied, taking their values into account. A constraint is
satisfied only if it is positive and both the end nodes are in the
same set, or negative and the end nodes are in complementary
sets. The following definitions help clarify this idea.

Definition 2.2 Given a coherence graph g = (V, E, (), and
a partition (A, V \ A) of V, the set of satisfied constraints
Cy C E is given by

Cu = {{v,w} eEE

v € Aiffw € Awhen (({v,w}) >0
v e Aiff w ¢ Awhen (({v,w}) <0

All other constraints (in E \ C 4) are said to be unsatisfied.

Definition 2.3 Given a coherence graph g = (V, E, (), the
strength of a partition (A, V' \ A) of V is given by

> [¢{vw}) |
_ {vw}eCa

o(g,A) = E

Notice that, by Definitions 2.2 and 2.3,
o(g,A) =0(g9,V\ A )

Figure 1: A typical coherence graph with a coherence max-
imising partition

Definition 2.4 Given a coherence graph g = (V, E, () and
given the strength o (g, A), for all subsets A of V, the coher-
ence of g is given by

Kk(g) = max o(g,A)

If for some partition (A, V \ A) of V, the strength of the
partition is maximal (i.e., k(g) = o(g,.A) then the set A
is called the accepted set and V' \ A the rejected set of the
partition. A typical coherence graph is as shown in Figure 1.

Due to Equation 1, the accepted set A is never unique for
a coherence graph. Moreover, there could be other partitions
that generate the same value for x(g). Here we mention a few
criterias to select an accepted set among the alternatives. If
A1, Ag, -+, A, are sets from all those partitions that max-
imise coherence of the graph g, based on one of Thagard’s
principles (which we will formalise in the next definition) on
deductive coherencel16] that intuitively obvious propositions
have an acceptability on their own, we say an accepted set is
the one in which the intuitively obvious propositions belong.
Further, the coherence of the sub-graphs (g|4,,7 € [1,n])
gives us an indication of how strongly connected they are.
The higher the coherence,the more preferred the correspond-
ing accepted set. And lastly, an accepted set with more num-
ber of elements should be preferred to another with less.

We now need a way in which the coherence graphs just de-
fined can be constructed. That is, we need to define function
C. As the nature of relationship between two pieces of in-
formation (corresponding to the different types of coherence
as mentioned in the introduction) can vary greatly, we do not
have one unique coherence function. That is, in an explana-
tory coherence, two pieces of information are coherent when
they are related by an explanation. Thagard proposes certain
principles to characterise coherence in each of the different
types. Here we define one such coherence function which is
inspired from Thagard’s principles of deductive coherence.

Thagard’s principle mainly states that a proposition co-
heres with propositions that are deducible from it, proposi-
tions that are used together to deduce something cohere with
each other, the more hypotheses it takes to deduce something,
the less the degree of coherence, contradictory propositions
are incoherent with each other'. Since some of these princi-
ples make sense only in the context of a theory presentation,

"here we do not formalise the principle that intuitively obvious
propositions have a degree of acceptability on their own. This we
keep it as a disambiguation criteria to select among accepted sets.



we assume a theory presentation 7 in a multi-valued propo-
sitional logic while formalising these principles. We use a
multi-valued logic to model uncertainty in agents, though
Thagard’s principles, we assume, are based on a boolean
world. We formalise Thagard’s principles in terms of a sup-
port function nr which extract a coherence value between
two nodes if either one implies the other, or together they are
used to imply a third node (assuming some sort of deduction
theorem suchas 7, § implies 7 F a — ). We also
normalise the values between [—1, 1].

Definition 2.5 Let L be the set of all propositional sentences
of a multi-valued propositional logic. Let T C L be a fi-
nite theory presentation and I' C T and v € L. A support
function ng : L x L — [—1,1] with respect to T is given by

max { 2~F_>(p(|o<)‘m(ﬁ))—1|
T

ICT:T,akpB;al/B},

max
nr({a, B}) = max 2-1‘2(p(a),l*‘“ﬂ‘(p(ﬁ)yp(v)))—l|
T[+1

ACT:Ta,BFy;a, 877}

undefined otherwise

where F_, is the truth connective defined for L and p(c) gives the
truth value of a.

Thagard in his principles emphases the fact that, though a
coherence value can be derived from the underlying implica-
tion relation, coherence functions are always symmetric. Due
to this, even if there may only be a deductive relation in one
direction, there will be a deductive coherence in both direc-
tions. Hence, we define the deductive coherence between two
propositions as the value of the stronger np values.

Definition 2.6 Let L be the set of all propositional sentences

of a multi-valued propositional logic. Let T C L be a finite

theory presentation and let n : Lx L — [—1, 1] be a support

function. A deductive coherence function (7 : L x L —

[—1, 1]\ {0} with respect to T is a partial function given by:
For any pair («, 3) of formulas in L,

max(n7(a, 3), nr (6, ))
ifnr(a, B) and nr (B, ) defined, # 0

nt (e, B)
if nT (o, B) defined and # 0
and 07 (B, &) undefined or =0

nT (B, )
if nT (B, ) defined and # 0
and 01 (o, B) undefined or = 0

¢r({a, B}) =

undefined
ifnr(a, B) and n1 (3, ) are undefined
or =0

Note that both the support function and the deductive co-
herence function are partial functions. This is because we in-
terpret zero coherence as the propositions not being related.

3 Coherence-driven Agent Architecture

A coherence-driven agent is an agent which always takes an
action based on maximisation of coherence of its cognitions,

norms and other social commitments. Further, these are cog-
nitive agents based on BDI theory [14] and are modeled as
a multi-context architecture (developed by Casali et al. [3]),
which consists of a set of contexts and a set of bridge rules
between contexts. Each context has its own language, logic
and theory expressed as coherence graphs. Bridge rules turn
formulae derivable in one or more contexts into premises for
derivations for another context. We assume that each agent
has its beliefs, desires, and intentions stored in its belief con-
text C'g, desire context C'p, and intention context Cf.

3.1 Cognitive Contexts

Here we briefly describe how a belief context C'p is defined
while desire Cp and intention C} contexts are similar [8; 3].
C'p consists of a belief logic and a theory 75 of the logic
expressed as a coherence graph.

A belief logic Kp consists of a belief language, a set of
axioms and a deductive relation defined on the belief logic
(Lp,Ap,Fp). The belief language Ly is defined by ex-
tending the classical propositional language L defined upon a
countable set of propositional variables PV and connectives
(=, —). L is extended with a fuzzy unary modal operator B.
The modal language L g is built from the elementary modal
formulae By where ¢ is propositional, and truth constants
r, for each rational » € Q N [0, 1], using the connectives
of Lukasiewicz many-valued logic. If ¢ is a proposition in
L, the intended meaning of B is that “y is believable”. A
modal many-valued logic based on Lukasiewicz logic is used
to formalise XCg2.

Definition 3.1 [3] Given a propositional language L, a be-
lief language Lp is given by:
o Ifpoe Lthen By € Lp
o IfreQn0,1]thenT € Lp
o [fO U € Lgthen® —; ¥ € L and P&V € Lp
(where & and — |, correspond to the conjunction and
implication of Lukasiewicz logic)
We call Tg a theory in the language L g.
Other Lukasiewicz logic connectives for the modal formulae
can be defined from &, — and 0: - ® (defined as @ —, 0).
Formulae of the type 7 — 1 W (the probability of ¢ is at least
r) will be denoted as (¥, r).
The axioms Apg of Kp are:

1. All axioms of propositional logic.

2. Axioms of Lukasiewicz logic for modal formulas (for
instance, axioms of Hdjek’s Basic Logic (BL) [6] plus
the axiom: =—® — P.)

3. Probabilistic axioms, given ¢, € L :

* Blp =) =1 (By — BY)
* Bp=-1B(eA) =L Bl AY)
The deduction rules defining -5 of Kp are Modus ponens
and Necessitation for B (from ¢ derive By).
Note that the truth function p : Lp — [0, 1] is defined
by means of the truth-functions of Lukasiewicz logic and the
probabilistic interpretation of beliefs as follows:

2We could use other logics as well by replacing the axioms.



o o((Bp,7))’ =rforallr € QN[0,1]
e p(p &) =maz(p(p) + p(¥) — 1,0) forall g, € Lp
e p(p —rY) =min(l — p(p) + p(¥),1) forall g, € Lp

Then a coherence graph over beliefs is defined over the belief
logic Kp as follows:

Definition 3.2 Given a belief logic Kg = (Lp,Ap,FB)
where Lp is a belief language, Ap are a set of axioms and
Fp are a set of deduction rules, a belief coherence graph
98 = (VB,EB,(B) is a coherence graph defined over Fp
and a finite theory T of L such that:

o VpCTp
o Fis a set of subsets of 2 elements of Vi
o (1, is defined over \-p and Tp.

A belief coherence graph exclusively represents the graded
beliefs of an agent and the associations among them. A desire
coherence graph (¢gp), and an intention coherence graph (gr)
over logics Lp, and L are similar.

3.2 Bridge Rules
C1:9),Ca:¢p

Bridge rules are inference rules of the form b = Card

whose premises and conclusion are labelled formulas where
the labels denote the contexts they are taken from. They carry
inferences between theories of different logics. Since our the-
ories become coherence graphs, we need two functions to em-
ulate the execution of bridge rules over coherence graphs. If
G denote the set of all coherence graphs, then a graph node
extension function (¢ : G" — G") takes into account the in-
fluence of graphs (theories) on each other. An edge extension
function ( ¢ : G™ — @) joins a set of graphs by adding edges
between the nodes participating in the inference. Since we
treat bridge rules similar to any other implication relations,
we use Definition 2.6 itself to calculate the coherence values
on these edges. We now illustrate the concept of bridge rules
when the contexts are coherence graphs (the formal defini-
tions can be found in [8]).

Example 3.1 Let’s assume, for instance, that an agent
wants it to be the case that whenever it has an intention
(Ip, ) in the intention graph (a formula in the theory 1),
then the corresponding belief (By,r) is inferred in the

belief graph (added to the theory 1g). i.e., Given a bridge
Cg:(By,r),Cp:(D,s)
Cr:(I+,min(r,s))
and C have the coherence graphs gp,gp and gr associ-
ated with them respectively and given (B1,0.95) € g,

(D,0.95) € gp function € adds a node (11, 0.95) to g;.

rule b where contexts Cpg,Cp,

Let’s further assume that our agent further wants it to be
the case that, the belief and the intention nodes are related
and have a positive coherence between them. The edge ex-
tension function . joins the graphs gp, gp and g1 associated
with the contexts in the bridge rule by adding the edges
{{(14,0.95), (BY,0.95)}, {(I1),0.95), (D¥,0.95)}} with
coherence values equal to w = 0.9 from Def-
inition 2.5.

*(Be,r) =T — By
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3.3 Architecture

Figure 2 shows the architecture of a coherence-driven agent.
At any time, it can either perceive the environment (updates
beliefs) or make a decision about a future action. In the
event of a new information, an agent re-evaluates its theory,
hence recomputes both the coherence graphs and the coher-
ence maximising partition. If the new information falls in
the accepted set then it reinforces the theory and the theory
becomes more coherent. However, if it falls in the rejected
set, then it contradicts some of the elements of the accepted
theory to make the theory more coherent again in line with
Lakatos. In the process, some of the existing elements may
move from accepted to rejected or vice versa. An agent al-
ways bases its decisions on the accepted theory.

@<Th O€Thu HUut
A
F-{rehveigign = O
VA
C—0 v\4

Action
Observations
1

| External Environment

Figure 2: A coherence-driven agent architecture

3.4 Coherence-driven Action Selection

As discussed in the introduction, the philosophy behind a
coherence-driven action selection is substantially different
from other typical goal-driven approaches to action selection.
A BDI-based agent, at anytime selects a goal to pursue, and
looks for what actions would satisfy that goal. It is argued
that, this would reduce the attention problem of the agent,
giving it a stable behaviour. However, as argued in the intro-
duction, this has many difficulties such as incorporating new
perceptions, analysing conflicts between goals, and analysing
feasibility of actions to achieve goals. This is due to the philo-
sophical grounding of the theory for which the basis for an
action is the expectation of a desired outcome.

As suggested in the introduction, coherence-driven reason-
ing offers a more holistic view on action selection. The philo-
sophical theories of action suggest that an agent is influenced
by a reason, and his action is consequently performed for that
reason, when he is influenced by a representation of the action
that makes it intelligible to him. Naturally, this representation
may make the action intelligible precisely by setting it in the
context of his desires and expectations, but his reason for ac-
tion consists in this cognitively attractive representation of it
rather than in the desires and expectations to which it alludes.
A reason is a rationale, in the light of which an action makes
sense to an agent, and promoting a desired outcome is one
such rationale [18]. The coherence-driven approach we pro-
pose here attempts to capture this representation, which gives
the agent the necessary rationale for action.



At any time a coherence-driven agent selects the most pre-
ferred action from its current accepted set of a coherence
maximising partition. Any external stimuli interrupts the ac-
tion selection process and forces the representation of the
cognitions to go through a re-evaluation of coherence, result-
ing in some of the currently accepted cognitions to be rejected
and vice versa. A procedure that a typical coherence-driven
agent follows is outlined in the following.

Given the current coherence graphs gp, gp, and g; and
their composition ¢, and an external stimuli (K, ) where
K e{B,D,I}

if (Ko, r) then

v:=(Kep,r)

Vi =V U {U}

for all w € Vi do

compute ¢({v, w}) using Definition 2.6.
if (({v, w}) is defined then

EK = EK U {{’U,’LU}}
end if

end for

compute a composite coherence graph ¢, as in [8] and

Example 3.1.

for all (.A“ 14 \ .Al), Al - V do

calculate o(s,, A;) using Equation 2.3

end for

k = K(gy) using Equation 2.4
15: A := A;lmax(o(sy, A;))

16: end if
17: current_action := mgx{([go, r)|(Ie,r) € A}

PRI UN R

Line 1 checks for external stimuli. If there are any, then,
lines from 2 to 9 updates the graphs by incorporating the stim-
uli and its influences on existing elements of the observed
cognition. Line 10 builds up the reasoning across contexts
by composing the coherence graphs. Lines from 11 to 14 de-
termines the coherence maximising partition. This is done
by first computing the strength of each partition using the
function o and choosing the partition (A, V \ \A) for which
o(g, A) is maximal. This part of the algorithm only gives the
simplest solution, however, finding a maximising partition of
a weighted graph is known to be an NP-complete problem.
There are approximation algorithms exist to find the solution
to this problem such as max-cut, neural network based algo-
rithms. Line 17 determines the current action by selecting the
action from A which has the highest preference.

4 Example

We consider a simple example to show how action selection
works in our architecture. A coherence-driven robotic agent
wants to choose between a set of possible actions(intentions)
corresponding to a set of desires (goals) it has. The scenario is
modelled like a grid in which at each cell the robot can chose
between two possible actions: “plug” to restore its energy or
“move” to earn points. It is further assumed that at every cell
in the grid, it is possible to perform both actions. With every
move the robot gains a point. Finally, the robot is equipped
with an energy sensor, which measures the remaining energy
at every time point, which influences the choices of the robot.
The results are based on an implementation of a heuristic-
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based polynomial-time approximation algorithm to compute
partitions and their corresponding coherences.

Since coherence maximisation dynamically choses the
most coherent partition, the robot at any instant choses the set
of beliefs, desires and intentions (actions) that it wants to pur-
sue. There is one single persistent desire for the robot, which
is to earn points. It has certain domain knowledge which indi-
cates how to get its desire satisfied. This domain knowledge
is encoded as a belief (B(move — points), 1) says that a
move will fetch a point with a confidence degree 1. A bridge
rule by is used to reason with the beliefs and desires.

_Cp:(Bp—4q),®),Cp:(Dg,p)
Cp : (Dp, min(a, 3))

by injects a new desire p given the desire of ¢ and a belief
that p facilitates ¢ with appropriate degrees. Further, us-
ing by and the belief that having energy enables move, i.e.,
(B(energy — move), 1), a new desire to have “energy”
is generated. A third desire to “plug” is generated using
the bridge rule and the belief that plugging gives energy, i.e,
(B(plug — energy),1). The chain of desires and their co-
herence links are illustrated in Figure 3.

by

(D plug, (D energy, 9 (D move, 1 (D points,
0.95) 0.95) 0.95) 0.95)
1 1 1 1 1 1
(B plug (B energy (B move
—energy, 1) —move,1) —points,1)

~¢— Chain of reasoning =——

Figure 3: How one desire triggers another

The robot uses a second bridge rule b, that states that every
desire with a corresponding belief that the desire is achiev-
able, generates a corresponding intention (realistic agent).

_ CB . (Bp7a)7CD . (Dpaﬁ)
CvI : (Ipv min(aaﬁ))

Using this rule, it has the intention to move, intention to have
energy and intention to plug. Further, as in the case of desires,
the intention to move is connected to the intention to have
energy using another bridge rule b3 which is used to reason
across beliefs and intentions.

_Cp: (B(p — q),a),Cr : (Dq,B)
C1] : (Dpv min(a7ﬂ))

Note that bridge rules b; and b3 are very similar and moti-
vated from the well known practical syllogism, “If I want ¢
and p realises ¢, then I should intend to do p”. Using b3, we
have that the belief (B(energy — move), 1), (Ienergy, x)
and (Imove, ) are coherently related. The same is true of
(Ienergy,x) and (Iplug,z). Hence, similar to desires, a
chain of intentions and their coherence links are generated
(Figure 4).

As the only sensor for the robot (other essential sen-
sors ignored) relevant to the problem is the energy_sensor

ba

b3



(I move, min
(1-x,0.95))

(I energy,
min(x,0.95))

(D energy,
0.95)

(B energy, x) (B move, 1-x)

a= 2.min(0.95-x + min(x,0.95),1)-1
b= 2.min(1-min(1-x,0.95)+ min(x,0.95),1)-1

Figure 4: Desires and intentions trigger other intentions

(es), at every time point a few of the cognitions gets af-
fected due to the changes in sensor readings. That is, we
take that the grade on the belief that the quantity of en-
ergy needed changes inversely to the value of e, . Further,
the belief that move is possible changes proportionally with
the value of ey, using the modes ponens as (B(energy —
move), 1), (Benergy,z) — (Bmove,1 — x). Finally, as it
is assumed that the robot can perform only one action at a
time, the essential conflict between intentions to “move” and
“plug” are expressed as (Imove, ) < (I-plug, x).

4.1 Action Selection

Given our robotic agent as described, we now pose the prob-
lem of action selection. That is, the robot has to decide what
action to perform at every time point. We say an “energy-
cycle” is the time between two consecutive “plug” actions.
We take different energy levels and determine both the co-
herence of the robot and the coherence-driven choice of ac-
tion. To understand how the coherence graph would look like,
we show the graph with the partition when the x = 0 (just
plugged) in Figure 5 and when x = 1 (there is no energy
left) in Figure 6. In the case z = 0, there is a clear partition
with the only intention selected is (Imowve, 0.95). Hence it
is absolutely certain that, the robot should chose to move and
earn points. The coherence of the graph for this partition is
0.6533.

(I=-move,

(I-plug, 0.95) , P
08, -0.8!
I plug, )
(o’.)gs? (" (1energy,0) —22-( (I move, 0.95)
. 8.9 T :
(O plug, (D energy, (D points,
095 7 0.95) 0.95)
1 5 )
) (B plug 9 (B move
2energy, 1) —points, 1)
A AN
(B plug, 1)

y Qr;rgy, 0 Y (Bmove, 1)

3

© Accepted © Relected

Figure 5: x=0 (Robot has maximum energy)
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In the case z = 1 (Figure 6), there are no incoherence re-
lations in the graph. However, it is due to the fact that, we are
deriving the belief about move from the belief about energy
needs. Though every node is part of the accepted set, notice
that the node with the highest grade will be pursued. In this
case the choice to plug will be pursued. The coherence of the
graph for this partition is 0.97777. The increase in coherence
is due to the fact that, there are no incoherence experienced
by the robot and hence all nodes are accepted. Most of the in-
dividual coherence values are equal to the maximum possible

(=1).

(I-move,
(I=plug, 0) 1 1 0.95)
1] 14
(I plug, 1 (I energy, 1 | move, 0
0.95) 0.95) ( 0

1
(D plug, (D energy, 1 (D points,
0.95) 0.95) 0.95)

1 1 y 1
1 (Bplug ™R8 (B move
—energy, 1) 0.8 —points, 1)
1 .
(B move, 0)

(B plug, 1) (B energy, 1)

a= 2.min(0.95-x + min(x,0.95),1)-1
b= 2.min(1-min(1-x,0.95)+ min(x,0.95),1)-1
c= 2.min(1.05-min(1-x,0.95),1)-1

O Accepted

Figure 6: x=1 (Robot has no energy)

These are the two extreme cases, and now we plot the be-
haviour of the robot in terms of the choice of action, and the
variation in coherence values at different energy levels in two
energy-cycles. As seen in the coherence graphs in Figures 5
and 6, when the energy requirement is O or close to 0, the
robot has some incoherences and selects only few of the cog-
nitions as accepted. However, as the energy requirement in-
crease, these incoherences disappear (due to the decreasing
intention for action “move”) and hence the robot becomes in-
creasingly coherent with the action to plug.

Another graph which is interesting is the energy levels ver-
sus the choice of action as in Figure 8. This shows the ex-
pected actions of the robot at different energy levels. When
the energy need is in the range [0, 0.5] the robot choses to
move. However, if the energy need is in the range [0.6, 1],
then the robot choses to plug and restore the energy. Then,
its clear that as soon as the energy need raises to 0.6, the
robot take the action to plug. Thus, the energy need never
raises to a point beyond 0.6 (conservative behavior). Hence,
the actual behavior of the robot will be a repeating sequence
of {Move, Move, Move, --- , Plug, Move, Move, -- -}, as the
intuition would make us expect.

5 Discussion and Futurework

In this paper, we have introduced an alternative approach to
action selection based on coherence maximisation. The in-
teresting aspects of this approach over more traditional BDI
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Figure 8: Action selection with different energy levels

approaches are that it takes a dynamic view of agent cogni-
tions, can detect and resolve conflicts among cognitions, can
perform uncertainty reasoning and can reason at a global level
while also fully integrated into the BDI representation. Since
we have discussed related work in the course of presenting
the paper, we here make a brief comment on one related
work, which is the only work known to us that uses coherence
for agent reasoning. While the work of Pasquier et. al [13;
12], introduced coherence based reasoning in agents, there
are significant differences with our proposal. In their work,
coherence is like a utility maximising function, which is used
to prioritise the intentions (dialogue moves), whereas reason-
ing about beliefs and desires are using the traditional BDI
approach. This we imagine will retain all the difficulties we
mentioned in the introduction. Another important difference
is that, while we show how coherence can be computed us-
ing Thagard’s principles, such mechanisms are missing from
their approach.

In the future work, we plan to incorporate the represen-
tation of plans and study how plans can be included in the
coherence maximising process. Further, we plan to explore
the possibilities of evaluating our framework using empirical
and mathematical proof.
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