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Ignacio Garćıa-Garćıa Universidad de Cádiz, Spain
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Pitting Corrosion Modelling of 316L Stainless Steel with Bayesian
Neural Networks and ROC space . . . . . . . . . . . . . . . . . . 121
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Abstract. Adjoint negations, whose definition is based on the implica-
tions of an adjoint triple, arise as a generalization of residuated negations.
Recently, interesting properties of these negation operators have been in-
troduced [5]. In this paper, a comparative survey with weak negations
studied by Trillas, Esteva and Domingo [10, 13] is presented. Moreover,
the relationship between weak and strong negations, introduced by these
authors, is extended to adjoint negations. These technical developments
lead us to increase the number of applications of adjoint negations.

Key words: residuated negations; weak and strong negations; adjoint
triples.

1 Introduction

Negation operators play an important role in several frameworks and they have
widely been studied in [8, 10, 20]. From residuated implications of a t-norm [4, 12,
19], it is defined the residuated negation defined from the residuated implication
as ¬x = x→ 0. In addition, weak negations are one of the most general negation
operators, which have heavily been studied by Trillas, Esteva and Domingo [10,
11, 13, 20]. In this paper, we will work with adjoint triples in order to consider
more general negation operators.

Adjoint triples were firstly considered in [15, 18] taking into account the ad-
joint conjunctor and only one implication. They have been used as basic oper-
ators in Logic Programming [17], general substructural logics [3], Fuzzy Formal
Concept Analysis [16], Fuzzy Relation Equations [9] and Rough Set Theory [7],
providing more flexibility and increasing the range of applications.

From the implications of an adjoint triple, we define the generalization of the
residuated negation which are called adjoint negations. Since they are associated
with an adjoint triple with respect to three different posets, these negation op-
erators are defined on two different posets. Dealing with this general structure
is helpful in the applications as it has been highlighted in [1, 2, 9].
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In this paper, we will compare adjoint negations with weak negations and we
will show that adjoint negations are more general. Besides, a bijection between
adjoint negations and strong adjoint negations will be presented, following the
idea introduced by Trillas, Esteva and Domingo in [10, 13], in order to establish
the relationship between adjoint negations and strong adjoint negations.

2 Adjoint negations and weak negations

Adjoint triples, which generalize triangular norms and their residuated implica-
tions [14], are considered to decrease the mathematical requirements of the basic
operators used in several frameworks. In this paper, adjoint triples will be used
in order to define adjoint negations. For that reason, we will start introducing
the notion of adjoint triple.

Definition 1. Let (P1,≤1), (P2,≤2), (P3,≤3) be posets and &: P1 × P2 → P3,
↙ : P3×P2 → P1, ↖ : P3×P1 → P2 be mappings, then (&,↙,↖) is an adjoint
triple with respect to P1, P2, P3 if:

x ≤1 z ↙ y iff x& y ≤3 z iff y ≤2 z ↖ x (1)

where x ∈ P1, y ∈ P2 and z ∈ P3. The condition (1) is called adjoint property.

If adjoint triples are used in environments that require finiteness such as Fuzzy
Formal Concept Analysis to obtain a finite concept lattice [6, 16] and Fuzzy
Relation Equations to guarantee the existence of minimal solutions [9], then it
is important that adjoint triples are defined on regular partitions of the unit
interval [0, 1].

Example 1. Given m ∈ N, the set [0, 1]m is a regular partition of [0, 1] in m
pieces, for example [0, 1]2 = {0, 0.5, 1} divides the unit interval into two pieces.

A discretization of the  Lukasiewicz t-norm is the operator &∗L : [0, 1]20 ×
[0, 1]8 → [0, 1]100 defined, for each x ∈ [0, 1]20 and y ∈ [0, 1]8 as:

x&
∗
L y =

d100 ·max(0, x+ y − 1)e
100

whose residuated implications ↙∗L : [0, 1]100 × [0, 1]8 → [0, 1]20, ↖∗L : [0, 1]100 ×
[0, 1]20 → [0, 1]8 are defined as:

z ↙∗L y =
b20 ·min{1, 1− y + z}c

20
z ↖∗L x =

b8 ·min{1, 1− x+ z}c
8

where d e and b c are the ceiling and the floor functions, respectively. Hence,
the triple (&∗L,↙∗L,↖∗L) is an adjoint triple. ut

Now, we recall the definition of adjoint negations which is given from the
implications of an adjoint triple and generalize the notion of residuated nega-
tion [4, 12, 19]. Adjoint negations are defined on two different posets since they
are associated with an adjoint triple with respect to three different posets.
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Definition 2. Let (P1,≤1) and (P2,≤2) be two posets, (P3,≤3,⊥3) be a lower
bounded poset and (&,↙,↖) an adjoint triple with respect to P1, P2 and P3.
The mappings nn : P1 → P2 and ns : P2 → P1 defined, for all x ∈ P1, y ∈ P2 as

nn(x) = ⊥3 ↖ x ns(y) = ⊥3 ↙ y

are called adjoint negations with respect to P1 and P2.
The operators ns and nn satisfying that x = ns(nn(x)) and y = nn(ns(y)),

for all x ∈ P1 and y ∈ P2, are called strong adjoint negations.

Considering the adjoint triple (&∗L,↙∗L,↖∗L) presented in Example 1, we
introduce the next example of adjoint negations.

Example 2. The adjoint negations ns : [0, 1]8 → [0, 1]20 and nn : [0, 1]20 → [0, 1]8
obtained from the adjoint triple (&∗L,↙∗L,↖∗L) are defined as:

ns(y) =
b20 · (1− y)c

20
nn(x) =

b8 · (1− x)c
8

Observe that the choice of the posets is fundamental. If the adjoint conjunctor
is defined as &∗L : [0, 1]k × [0, 1]t → [0, 1]p, the corresponding adjoint negations
will be ns : [0, 1]t → [0, 1]k and nn : [0, 1]k → [0, 1]t. Therefore,

(i) If t = k, then it is easy to verify that ns and nn are strong adjoint negations.
(ii) If t 6= k, the obtained adjoint negations are not strong adjoint negations, in

general. ut
One of the most general negation operators are weak negations, which have

widely been studied by Trillas and Esteva et al [10, 11, 13, 20]. In order to com-
pare adjoint negations with weak negations, we will remind the next definition.

Definition 3 ([20]). Given a mapping n : [0, 1] → [0, 1] is said to be a weak
negation if the following conditions hold, for all x, y ∈ [0, 1].

1. n(1) = 0;
2. if x ≤ y then n(y) ≤ n(x);
3. x ≤ n(n(x)).

We will say that n is a strong negation if the equality x = n(n(x)) holds, for all
x ∈ [0, 1].

The next theorem shows that adjoint negations are a generalization of weak
negations.

Theorem 1. If the mapping n : [0, 1] → [0, 1] is a weak negation, then there
exists an adjoint triple (&,↙,↖) with respect to the poset ([0, 1],≤) satisfying
n = ns = nn.

Once we have presented this result, we will study if the relation between
weak and strong negations defined on a complete lattice studied in [10] can be
extended to adjoint negations. This relationship ensures that weak negations can
be defined uniquely from strong negations.
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3 Relation between adjoint negations and strong adjoint
negations

In this section, we will introduce the main result of this paper which proves
that there exists an one to one correspondence between adjoint negations de-
fined on two posets and strong adjoint negations defined on two complete meet-
semilattices.

For that purpose, we will consider two posets (P,≤P ), (Q,≤Q) and two
complete meet-semilattices (P ′,�P ′), (Q′,�Q′) with maximum elements >P ′

and >Q′ , respectively, such that P ′ ⊆ P and Q′ ⊆ Q. From now on, the set
of pair of adjoint negations (ns, nn) with respect to P and Q satisfying that
ns(P ) = Q′ and nn(Q) = P ′, will be denoted as N(P ′,Q′)(P,Q) and the set
of pairs of strong adjoint negations (n′s, n

′
n) with respect to P ′ and Q′ will be

denoted as SN(P ′, Q′).
A bijection between N(P ′,Q′)(P,Q) and SN(P ′, Q′) is obtained, as the fol-

lowing theorem shows.

Theorem 2. There exists an one to one correspondence between N(P ′,Q′)(P,Q)
and SN(P ′, Q′).

As a consequence, the next corollary is straighforwardly obtained.

Corollary 1. Given a pair of strong adjoint negations (n′s, n
′
n) with respect to

P ′ and Q′, there exists a pair of adjoint negations (ns, nn) with respect to P and
Q defined as:

ns(p) = n′s(zp) with zp =
∧

P ′{y ∈ P ′ | p ≤ y}
nn(q) = n′n(zq) with zq =

∧
Q′{x ∈ Q′ | q ≤ x}

such that ns|P ′ = n′s, nn|Q′ = n′n, and ns(P ) = Q′, nn(Q) = P ′.

There exist cases in which we can define only one pair of strong adjoint
negations with respect to P ′ and Q′. Then, applying the previous theorem and
corollary, only one pair of adjoint negations can be defined with respect to P
and Q, as the following examples shows:

Example 3. Given P ′ = {p′,>P ′} and Q′ = {q′,>Q′}. The unique pair of strong
adjoint negations (n′s, n

′
n) with respect to (P ′,�P ′) and (Q′,�Q′), is defined

as n′s(p
′) = >Q′ , n′s(>P ′) = q′ and n′n(q′) = >P ′ , n′n(>Q′) = p′. Then, there

exists only one pair of adjoint negations (ns, nn) with respect to P and Q, being
(P,≤P ) and (Q,≤Q) two posets with maximum elements >P ∈ P and >Q ∈ Q,
such that ns(P ) = Q′ and nn(Q) = P ′. By Corollary 1, ns and nn are defined
as follows:

ns(p) =

{
>Q′ if p ≤P p′

q′ otherwise
nn(q) =

{
>P ′ if q ≤Q q′

p′ otherwise

for all p ∈ P and q ∈ Q.
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Example 4. Let (P ′ = {a, b, c},�P ′) and (Q′ = {x, y, z},�Q′) two complete
meet-semilattices such that a �P ′ b �P ′ c and x �Q′ y �Q′ z. The pair (n′s, n

′
n),

defined as n′s(a) = z, n′s(b) = y, n′s(c) = x and n′n(x) = c, n′n(y) = b, n′n(z) = a,
is the unique pair of strong adjoint negations (n′s, n

′
n) with respect to P ′ and Q′.

Therefore, applying Theorem 2, there exists only one pair of adjoint negations
(ns, nn) with respect to P and Q, the posets given in Figure 1, such that ns(P ) =
Q′ and nn(Q) = P ′. By Corollary 1, ns and nn are defined as follows:

ns(p) =





z if p = a

y if p ∈ {b, d}
x if p = c

nn(q) =





c if q = x

b if q = y

a if q = z

•a • d�
�
�

@
@
@
• b

•c

•x

•y

•z

Fig. 1. The posets (P,≤P ) (left side) and (Q,≤Q) (right side) of Example 4

4 Conclusions and further work

We have shown that adjoint negations are more general than weak negations
studied by Trillas, Esteva and Domingo [10, 11, 13, 20]. Specifically, we have
proven that every weak negation can be obtained from the implications of an
adjoint triple. Moreover, an interesting generalization of the relation between
weak and strong negations defined on a complete lattice studied in [10] has been
presented. In this paper, a bijection between adjoint negations defined on two
posets and strong adjoint negations defined on two complete meet-semilattices
is shown.

As a further work, we will continue studying more properties of adjoint nega-
tions and possible applications of these operators. In addition, we will study the
existence of an algorithm capable of computing the number of strong adjoint
negations which can be defined on two complete meet-semilattices.
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2. P. Butka, J. Pócs, and J. Pósová. On equivalence of conceptual scaling and gener-
alized one-sided concept lattices. Information Sciences, 259(0):57–70, 2014.

3. P. Cintula, R. Horck, and C. Noguera. Non-associative substructural logics and
their semilinear extensions: axiomatization and completeness properties. Review
of Symbolic Logic, 6(3):394–423, 2013.

4. P. Cintula, E. P. Klement, R. Mesiar, and M. Navara. Residuated logics based on
strict triangular norms with an involutive negation. Mathematical Logic Quarterly,
52(3):269–282, 2006.

5. M. E. Cornejo, J. Medina, and E. Ramı́rez-Poussa. General negations for residuated
fuzzy logics. Lecture Notes in Computer Science, 8536:13–22, 2014.

6. M. E. Cornejo, J. Medina, and E. Ramı́rez-Poussa. Attribute reduction in multi-
adjoint concept lattices. Information Sciences, 294(0):41 – 56, 2015.

7. C. Cornelis, J. Medina, and N. Verbiest. Multi-adjoint fuzzy rough sets: Defi-
nition, properties and attribute selection. International Journal of Approximate
Reasoning, 55:412–426, 2014.

8. M. E. Della Stella and C. Guido. Associativity, commutativity and symmetry in
residuated structures. Order, 30(2):363–401, 2013.

9. J. C. Dı́az and J. Medina. Multi-adjoint relation equations: Definition, properties
and solutions using concept lattices. Information Sciences, 253:100–109, 2013.

10. F. Esteva. Negaciones en retculos completos. Stochastica, I:49–66, 1975.
11. F. Esteva and X. Domingo. Sobre funciones de negacin en [0,1]. Stochastica,

IV:141–166, 1980.
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14. P. Hájek. Metamathematics of Fuzzy Logic. Trends in Logic. Kluwer Academic,
1998.

15. P. Julian, G. Moreno, and J. Penabad. On fuzzy unfolding: A multi-adjoint ap-
proach. Fuzzy Sets and Systems, 154(1):16–33, 2005.

16. J. Medina, M. Ojeda-Aciego, and J. Ruiz-Calviño. Formal concept analysis via
multi-adjoint concept lattices. Fuzzy Sets and Systems, 160(2):130–144, 2009.

17. J. Medina, M. Ojeda-Aciego, A. Valverde, and P. Vojtáš. Towards biresiduated
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