
Exploring Paraconsistency in Degree-Preserving
Fuzzy Logics

Rodolfo Ertola1 Francesc Esteva2 Tommaso Flaminio3 Lluís Godo2 Carles Noguera4,5

1State University of Campinas, Rua Sérgio Buarque de Holanda 251, 13083-859 Campinas, Sao Paulo, Brazil
2Artificial Intelligence Research Institute - CSIC, Campus de la UAB s/n, 08193 Bellaterra, Catalonia, Spain

3Dipartimento di Scienze Teoriche e Applicate, Università dell’Insubria, Via Mazzini 5, 21100 Varese, Italy
4Institute of Information Theory and Automation - AVČR, Pod vodárenskou věží 4, 18208 Prague, Czech Republic

5Institute of Computer Science - AVČR, Pod vodárenskou věží 2, 18207 Prague, Czech Republic

Abstract

Paraconsistent logics are specially tailored to deal
with inconsistency, while fuzzy logics primarily deal
with graded truth and vagueness. In the last
decade, mathematical fuzzy logic has been devel-
oped as a discipline studying formal many-valued
systems arising from fuzzy set theory. In this paper
we study to what extent different systems of fuzzy
logic are paraconsistent, identifying which families
of fuzzy logics satisfy interesting paraconsistency
properties.

Keywords: Mathematical fuzzy logic, degree-
preserving fuzzy logics, paraconsistent logics, logics
of formal inconsistency.

1. Introduction

Non-classical logics aim to formalize reasoning in a
wide variety of different contexts in which the classi-
cal approach might be inadequate or not sufficiently
flexible. This is typically the case when the infor-
mation we want to reason about is not perfect, e.g.
because it is incomplete, imprecise or contradictory.

On the one hand, fuzzy logics have been proposed
as a powerful tool for reasoning with imprecise in-
formation, in particular for reasoning with proposi-
tions containing vague predicates. Their main fea-
ture is that they allow to interpret truth in a linearly
ordered scale of truth values which makes them spe-
cially suited for representing the gradual aspects of
vagueness. Originating from fuzzy set theory [1]
they have given rise to the deeply developed area
of mathematical fuzzy logic [2] (MFL). Particu-
lar deductive systems in MFL have been usually
studied under the paradigm of truth-preservation
which, generalizing the classical notion of conse-
quence, postulate that a formula follows from a set
of premises if every algebraic evaluation that inter-
prets the premises as true also interprets the con-
clusion as true. Since the notion of truth is inter-
preted by a designated set of values in the alge-
bras (often just one designated value), it appears
that only these truth-values are relevant as regards
to consequence. An alternative approach that has
recently received some attention is based on the

degree-preservation paradigm (see [3, 4]), in which
a conclusion follows from a set of premises if for all
evaluations its truth degree is not lower than that of
the premises. It has been argued that this approach
is more coherent with the commitment of many-
valued logics to truth-degree semantics because all
values play an equally important rôle in the corre-
sponding notion of consequence (see e.g. [5]).

On the other hand, paraconsistent logics have
been introduced, among other approaches (see e.g.
[6]), as deductive systems able to cope with con-
tradictions. As much as vagueness, inconsistency is
ubiquitious in many contexts in which, regardless of
the contradictory information, one is still expected
to extract inferences “in a sensible way”. Classical
logic, and in general any logic validating the ex con-
tradictione quodlibet principle (ECQ), does not al-
low to reason in any interesting way in the presence
of contradictions, since they trivialize deduction and
allow to extract any conclusion from an inconsistent
theory. They are explosive, in this sense. In con-
trast, paraconsistent logics are deductive systems
where ECQ does not hold, so they allow to tackle
with contradictions without trivializing the logic.
This kind of systems can be found, for example, in
the realm of relevant logics, where their paraconsis-
tency is not their central feature but a by-product
of the general principle that one should not infer
conclusions which do not bear a “relevant connec-
tion” with their premises. Besides those, there have
been many studies purposefully focused on paracon-
sistency giving rise to a variety of logical systems
(see e.g. [7]). One such approach are the logics of
formal inconsistency (LFIs) studied by the Brazil-
ian school [8]. The main merit of LFIs is that they
are paraconsistent logics that manage to internalize
the notions of consistency and inconsistency at the
object-language level.1

Obviously, those phenomena of imperfect infor-
mation are not mutually independent, but very of-
ten found together in many particular examples.
Therefore, one might wish for logical systems able

1It has to be noticed here that in the frame of LFIs the
term consistent refers to formulas that basically exhibit a
classical logic behaviour, so in particular an explosive be-
haviour.
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to cope with several of them at once. In particu-
lar, it would be desirable to have logics for vague
and inconsistent information. In this paper we take
the first steps towards an approach to this problem
which, to the best of our knowledge, has not been
considered yet. We want to study, in the context
of MFL, paraconsistent fuzzy logics, hoping to have
the best of both worlds, i.e. a good tool for reason-
ing with gradual predicates in possibly contradic-
tory theories. We will argue that the appropriate
paradigm for that is not the usual truth-preserving
approach, but the degree-preserving one, setting the
stage for future development.
After this introduction, Section 2 briefly intro-

duces the necessary basic notions on both paracon-
sistent and fuzzy logics. Then Section 3 shows that
truth-preserving fuzzy logics are explosive, while
under some conditions degree-preserving logics are
not, and hence they can be seen as paraconsis-
tent systems; we explore their paraconsistent fea-
tures, give particular examples to illustrate them
and characterize a family of LFIs inside fuzzy logics.
Finally, since paraconsistency is always defined with
respect to a particular negation connective (respon-
sible for the contradictions in inconsistent theories),
Section 4 explores alternative negations in fuzzy log-
ics and their interplay with paraconsistency.

2. Preliminaries

In this section we introduce the necessary notation
and results that will support our investigation. In
particular, we briefly present paraconsistent logics
and fuzzy logics preserving degrees of truth. We in-
vite the reader to consult [8] and [4] respectively, for
more exhaustive treatments of both kinds of logics.

2.1. About paraconsistency

As already mentioned above, paraconsistent logics
are systems that allow to deal with contradictions
without trivializing the logic. In what follows we
shall always assume each logic to be finitary, mono-
tonic and to have at least a negation connective that
we shall denote, as usual, by ¬.

Definition 1. A logic L is explosive (with respect
to ¬) if α,¬α `L β, for every formula α and β.
L is paraconsistent (with respect to ¬) if it is not
explosive (with respect to ¬).

Whenever clear from the context, we shall omit
to write with respect to which negation a given logic
is explosive or paraconsistent. Following [8], para-
consistent logics can be further classified according
to several features they exhibit. We provide here
the main definitions.

Definition 2. Let L be a logic and let σ(p0, . . . , pn)
be a formula. L is said to be:

1. partially explosive with respect to σ (or σ-
partially explosive), provided that

(a) there are formulas ψ0, . . . , ψn such that
6`L σ(ψ0, . . . , ψn), and

(b) for all formulas ψ0, . . . , ψn, ϕ, it holds
ϕ,¬ϕ `L σ(ψ0, . . . , ψn).

2. boldly paraconsistent if there is no σ such that
L is σ-partially explosive,

3. controllably explosive in contact with
σ(p0, . . . , pn), if
(a) there are formulas α, α0, . . . , αn such that

σ(α0, . . . , αn) 6`L α,
(b) there are formulas β, β0, . . . , βn such that
¬σ(β0, . . . , βn) 6`L β, and

(c) for all formulas ψ0, . . . , ψn, ϕ, it holds
σ(ψ0, . . . , ψn),¬σ(ψ0, . . . , ψn) `L ϕ.

Johansson’s minimal logic [9], where from a con-
tradiction every negation follows, is an example of
a logic that is paraconsistent but not boldly para-
consistent.

As a notation, let us write©(p) to denote a (pos-
sibly empty) set of formulas which only depends on
the propositional variable p.

Definition 3. Let L be a logic and ©(p) a set
of formulas. L is gently explosive (with respect to
©(p)) if

(a) there are formulas ϕ1 and ψ1 such that
©(ϕ1), ϕ1 6`L ψ1,

(b) there are formulas ϕ2 and ψ2 such that
©(ϕ2),¬ϕ2 6`L ψ2, and

(c) for all formulas ϕ and ψ, it holds

©(ϕ), ϕ,¬ϕ `L ψ.

If furthermore ©(p) is finite, we say that L is
finitely gently explosive.

Observe that if L is finitary and gently explosive,
then it is also finitely gently explosive.

Following [8], given a negation ¬, we say that a
logic L is a Logic of Formal Inconsistency (with re-
spect to ¬), (¬-LFI in symbols), if there exists a set
of formulas ©(p) such that L is ¬-gently explosive.

2.2. About truth-preserving and
degree-preserving fuzzy logics

Truth-preserving fuzzy logics. Most well
known and studied system of mathematical fuzzy
logic are the so-called t-norm based fuzzy logics,
corresponding to formal many-valued calculi with
truth-values in the real unit interval [0, 1] and with
a conjunction and an implication interpreted re-
spectively by a (left-) continuous t-norm and its
residuum, and thus, including e.g. the well-known
Łukasiewicz and Gödel infinitely-valued logics, cor-
responding to the calculi defined by Łukasiewicz
and min t-norms respectively. The most basic t-
norm based fuzzy logic is the logic MTL (monoidal
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t-norm based logic) introduced in [10], whose the-
orems correspond to the common tautologies of all
many-valued calculi defined by a left-continuous t-
norm and its residuum [11].
The language of MTL consists of denumerably

many propositional variables p1, p2, . . ., binary con-
nectives ∧,&,→, and the truth constant 0. Formu-
las, which will be denoted by lower case greek let-
ters ϕ,ψ, χ, . . ., are defined by induction as usual.
Further connectives and constants are definable, in
particular: ¬ϕ stands for ϕ→ 0 and 1 stands for ¬0.
A Hilbert-style calculus for MTL was introduced in
[10] with the following set of axioms:

(A1) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))
(A2) ϕ& ψ → ϕ
(A3) ϕ& ψ → ψ & ϕ
(A4) ϕ ∧ ψ → ϕ
(A5) ϕ ∧ ψ → ψ ∧ ϕ
(A6) ϕ& (ϕ→ ψ)→ ϕ ∧ ψ

(A7a) (ϕ→ (ψ → χ))→ (ϕ& ψ → χ)
(A7b) (ϕ& ψ → χ)→ (ϕ→ (ψ → χ))
(A8) ((ϕ→ ψ)→ χ)→ (((ψ → ϕ)→ χ)→ χ)
(A9) 0→ ϕ

and whose unique rule of inference is modus ponens:
from ϕ and ϕ→ ψ derive ψ.

MTL is an algebraizable logic in the sense of Blok
and Pigozzi [12] and its equivalent algebraic seman-
tics is given by the class of MTL-algebras, that is
indeed a variety; call it MTL. MTL-algebras can be
equivalently introduced as commutative, bounded,
integral residuated lattices 〈A,∧,∨,&,→, 0, 1〉 fur-
ther satisfying the following prelinearity condition:
(x→ y) ∨ (y → x) = 1.
Given an MTL-algebra A = 〈A,∧A,∨A,&A,→A

, 0A
, 1A〉, an A-evaluation is any function mapping

each propositional variable into A, e(0) = 0A and
such that, for formulas ϕ and ψ, e(ϕ∧ψ) = e(ϕ)∧A

e(ψ); e(ϕ∨ψ) = e(ϕ)∨A e(ψ); e(ϕ&ψ) = e(ϕ) &A

e(ψ); e(ϕ → ψ) = e(ϕ) →A e(ψ). An evaluation
e is said to be a model for a set of formulas Γ, if
e(γ) = 1A for each γ ∈ Γ.

We shall henceforth adopt a lighter notation
dropping the superscript A. The distinction be-
tween a syntactic object and its interpretation in
an algebraic structure will be always clear by the
context.
The algebraizability gives the following strong

completeness theorem:

For every set Γ ∪ {ϕ} of formulae, Γ `MTL ϕ
iff for every A ∈MTL and every A-evaluation
e, if e is a model of Γ then e is a model of ϕ as
well.

For this reason, since the consequence relation
amounts to preservation of the truth-constant 1,
MTL can be called a truth-preserving logic.

Actually, the algebraizability is preserved for any
logic L that is an axiomatic expansion of MTL sat-
isfying the following congruence property

(Cng) ϕ→ ψ,ψ → ϕ `L c(χ1, . . . , χi, ϕ, . . . , χn)
→ c(χ1, . . . , χi, ψ, . . . , χn)

for any possible new n-ary connective c and each
i < n. This is due to the fact that such axiomatic
expansions (also called core fuzzy logics) are in fact a
Rasiowa-implicative logics (cf. [13]), and as proved
in [14], every Rasiowa-implicative logic L is alge-
braizable and, if it is finitary, its equivalent alge-
braic semantics, the class L of L-algebras, is a qua-
sivariety (a variety in the case of a core fuzzy logic).

As a consequence, any core fuzzy logic L enjoys
the same kind of completeness theorem with respect
to the corresponding L-algebras. But more than
that, the variety of L-algebras can also be shown
to be generated by the subclass of all its linearly
ordered members [14].2 This means that any core
fuzzy logic L is strongly complete with respect to
the class of L-chains, that is, core fuzzy logics are
semilinear.

Actually, one can also expand MTL with the
Monteiro-Baaz projection connective 4, obtaining
again a finitary Rasiowa-implicative semilinear logic
MTL4. Then, one analogously defines4-core fuzzy
logics as axiomatic expansions of MTL4 satisfying
(Cng) for any possible new connective.

Semilinearity can also be inherited by many ex-
pansions of (4-)core fuzzy logics with new (finitary)
inference rules. Indeed, in [14] it is shown that an
expansion L of a core fuzzy logic is semilinear iff for
each newly added finitary inference rule

(R) from Γ derive ϕ,

its corresponding ∨-form

(R∨) from Γ ∨ p derive ϕ ∨ p

is derivable in L as well, where p is an arbitrary
propositional variable not appearing in Γ ∪ {ϕ}.

Degree-preserving fuzzy logics. It is clear
that (4-)core fuzzy logics, like MTL, are truth-
preserving fuzzy logics. But besides the truth-
preserving paradigm that we have so far considered,
one can find an alternative approach in the litera-
ture. Given a (4-)core fuzzy logic L, and based on
the definitions in [4], we can introduce a variant of
L that we shall denote by L≤ , whose associated de-
ducibility relation has the following semantics: for
every set of formulas Γ∪ {ϕ}, Γ `L≤ ϕ iff for every
L-chain A, every a ∈ A, and every A-evaluation v,
if a ≤ v(ψ) for every ψ ∈ Γ, then a ≤ v(ϕ). For
this reason L≤ is known as a fuzzy logic preserv-
ing degrees of truth, or the degree-preserving com-
panion of L. In this paper, we often use generic

2Moreover, for a number of core fuzzy logics, including
MTL, it has been shown that their corresponding varieties
are also generated by the subclass of MTL-chains defined
on the real unit interval, called standard algebras. For in-
stance, MTL is also complete wrt standard MTL-chains, that
are of the form [0, 1]∗ = 〈[0, 1], min, max, ∗,→∗, 1, 0〉 of type
〈2, 2, 2, 2, 0, 0〉, where ∗ denotes a left-continuous t-norm and
→∗ is its residuum [11].
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statements about “every logic L≤ ” referring to “the
degree-preserving companion of any (4-)core fuzzy
logic L”.

As regards to axiomatization, if L is a core fuzzy
logic, then the logic L≤ admits a Hilbert-style ax-
iomatization having the same axioms as L and the
following deduction rules [4]:

(Adj-∧) from ϕ and ψ deduce ϕ ∧ ψ

(MP-r) if `L ϕ→ ψ (i.e. if ϕ→ ψ is a theorem of
L), then from ϕ and ϕ→ ψ derive ψ

Note that if the set of theorems of L is decidable,
then the above is in fact a recursive Hilbert-style
axiomatization of L≤ .

In general, let L be a Rasiowa-implicative expan-
sion of MTL with a set of new inference rules

(Ri) from Γi derive ϕi,

for i ∈ I. Then we have the following result.

Proposition 4. L≤ is axiomatized by adding to the
axioms of L the above two inference rules plus the
following restricted rules

(Ri-r) If `L Γi, then from Γi derive ϕi

for each i ∈ I.

In particular, if L is a4-core fuzzy logic, then the
only rule one should add is the following restricted
necessitation rule for 4:

(4-r) if `L ϕ, then from ϕ derive 4ϕ

The following proposition points out some key
analogies and differences between L and L≤ that
we shall use in the rest of this paper.

Proposition 5. The following facts hold:

(1) The two logics L and L≤ have the same theo-
rems: `L ϕ iff `L≤ ϕ.

(2) For all formulas ϕ,ψ one has:
(i) ϕ,ψ `L ϕ& ψ; ϕ,ψ `L ϕ ∧ ψ;
(ii) ϕ,ψ `L≤ ϕ ∧ ψ.

(3) ϕ1, . . . , ϕn `L≤ ψ iff `L (ϕ1 ∧ . . . ∧ ϕn)→ ψ.

Last item (3) interestingly points out that, in-
deed, deductions from a finite set of premises in L≤

exactly correspond to theorems in L.

3. Paraconsistent fuzzy logics

The first important observation is that (4-)core
fuzzy logics as studied in the truth-preservation
paradigm do not have any paraconsistent feature
regarding their residual negation ¬.

Proposition 6. (4-)Core fuzzy logics are explosive
with respect to ¬.

Proof. The proof is easy because in these logics it
holds: ϕ,¬ϕ ` ϕ& ¬ϕ, and ϕ& ¬ϕ ` 0.

Thus, (4-)core fuzzy logics are not paraconsis-
tent. In contrast, their degree-preserving compan-
ions are paraconsistent provided that they do not
satisfy the pseudo-complementation law.

Proposition 7. Let L be a (4-)core fuzzy logic.
Then L≤ is paraconsistent iff L is not pseudo-
complemented.

Proof. By definition, a logic is pseudo-
complemented iff it has (ϕ ∧ ¬ϕ) → 0 as theorem.
So we have: `L≤ (ϕ∧¬ϕ)→ 0 iff `L (ϕ∧¬ϕ)→ 0
(both logics have the same theorems) iff L is
pseudo-complemented. Now, if `L≤ (ϕ ∧ ¬ϕ)→ 0,
then L≤ is explosive because ϕ,¬ϕ `L≤ ϕ ∧ ¬ϕ
and `L≤ 0→ ψ. Conversely, if 6`L≤ (ϕ ∧ ¬ϕ)→ 0,
then there exists an L-chain A and a ∈ A such that
a ∧ ¬a > 0 and therefore we also have an example
showing that p,¬p 6`L≤ q (taking e(p) = a and
e(q) = 0), and thus the logic is paraconsistent.

Next, we study what kinds of paraconsistency
properties those logics enjoy. The first obvious ques-
tion is whether they are boldly paraconsistent or
partially explosive with respect to some formula.

Proposition 8. Every logic L≤ is partially explo-
sive with respect to σ(p) = p ∨ ¬p.

Proof. L proves Kleene’s axiom (ϕ∧¬ϕ)→ (ψ∨¬ψ)
because it is complete with respect to the chains
of the corresponding variety. Therefore, we have
ϕ,¬ϕ `L≤ ψ ∨ ¬ψ. On the other hand, if L is not
classical logic, ψ ∨ ¬ψ is not a theorem of L≤ (if
L is classical logic then so is L≤ , and hence it is
explosive).

Therefore, logics L≤ may be paraconsistent, but
they are never boldly paraconsistent. When it
comes to controllable explosion, we can character-
ize the class of such logics which are controllably
explosive in terms of the following notion of locally
Boolean logic.

Definition 9. A logic L≤ is locally Boolean if there
exists a formula σ such that 6`L≤ ¬σ, 6`L≤ ¬¬σ,
and for every L-chain A and every A-evaluation
v, v(¬σ) ∈ {0, 1}.

Proposition 10. A logic L≤ is controllably explo-
sive iff it is locally Boolean.

Proof. Assume that L≤ is controllably explo-
sive w.r.t. a formula σ(p0, . . . , pn). This
means that there are α, α0, . . . , αn such that
σ(α0, . . . , αn) 6`L≤ α, and there are β, β0, . . . , βn

such that ¬σ(β0, . . . , βn) 6`L≤ β; moreover, for ev-
ery γ0, . . . , γn, γ, it holds

σ(γ0, . . . , γn),¬σ(γ0, . . . , γn) `L≤ γ.

Therefore, by the chain-completeness theorem, the
above holds iff for every L-chain A, and every A-
evaluation v

v(σ(γ0, . . . , γn) ∧ ¬σ(γ0, . . . , γn)) = 0. (1)
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Then either v(σ(γ0, . . . , γn)) = 0, and
hence v(¬σ(γ0, . . . , γn)) = 1, or otherwise
v(¬σ(γ0, . . . , γn)) = 0. Moreover, from
the existence of α, α0, . . . , αn such that
σ(α0, . . . , αn) 6`L≤ α, we infer that there must
exist an L-chain B and a B-evaluation e such
that e(σ) 6= 0, and hence 6`L≤ ¬σ. Similarly,
from ¬σ(β0, . . . , βn) 6`L≤ β, we know that there
is an L-chain C and a C-evaluation e′ such that
e′(¬σ) 6= 0; therefore we have e′(σ) = 0 and thus
e′(¬¬σ) = 0 and 6`L≤ ¬¬σ. Therefore L≤ is locally
Boolean.
Now assume that L≤ is locally Boolean, i.e. there

is σ such that 6`L≤ ¬σ, 6`L≤ ¬¬σ, and for ev-
ery L-chain A and every A-evaluation v, v(¬σ) ∈
{0, 1}. Let p0, . . . , pn be the variables occurring in
σ. Thus, for every substitution of p0, . . . , pn by
arbitrary formulas γ0, . . . , γn, v(¬σ(γ0, . . . , γn)) ∈
{0, 1}. Thus, either v(¬σ(γ0, . . . , γn)) = 0, or
v(¬σ(γ0, . . . , γn)) = 1 and hence v(σ(γ0, . . . , γn)) =
0. Therefore, for every γ0, . . . , γn, γ,

0 = v(σ(γ0, . . . , γn) ∧ ¬σ(γ0, . . . , γn)) ≤ v(γ),

that is,

σ(γ0, . . . , γn),¬σ(γ0, . . . , γn) `L≤ γ.

On the other hand, since 6`L≤ ¬σ, there is an L-
chain B and a B-evaluation e such that e(¬σ) 6= 1
and hence e(σ) 6= 0. Similarly, since 6`L≤ ¬¬σ,
there is an L-chain C and a C-evaluation e′ such
that e(¬¬σ) 6= 1 and hence e(¬σ) 6= 0. Hence L is
controllably explosive.

We explore the property of locally Boolean logics
and show its extent in the following examples.

Example 1. Let C be an MTL-chain such that the
Monteiro-Baaz operator 4 is definable by a term
δ(p) in all chains of the variety generated by C.
Then both the degree-preserving logic of C and that
logic of any ordinal sum C ⊕ A where A is any
MTL-chain are locally Boolean with σ(p) = ¬δ(p).
The result is obvious for the logic of C. In the other
case, observe that for any evaluation v on C ⊕A,
v(σ(p)) = 1 if v(p) ∈ C and v(σ(p)) = 0 if v(p) ∈
A. Observe that all finite MV-chains fall under the
scope of this example.

Example 2. Let C be an MTL-chain. The set of
its positive and negative elements are respectively
defined as C+ = {a ∈ A | a > ¬a} and C− = {a ∈
A | a ≤ ¬a}. Assume that C+ is an MTL-filter, i.e.
non-empty, upset w.r.t. the order and closed under
&. This means that C+ coincides with the radical of
C (see e.g. [15]). In this case, the quotient algebra
C/C+ is the two-element Boolean algebra B2, if C
has no negation fixpoint, or the three-element MV-
algebra Ł3 otherwise. In both cases the logic of C is
locally Boolean with the formula σ(p) = (¬(p2))2.3

3In general, ϕn is an abbreviation for ϕ & n. . . & ϕ.

Indeed, it is easy to see that σ(x) = 1 if x ∈ C−
and σ(x) = 0 if x ∈ C+. Examples of MTL-chains
satisfying this condition are the Chang MV-algebra,
and any WNM-chain (thus including NM-chains).

Example 3. Let C be the standard MV-chain
[0, 1]Ł or any ordinal sum beginning with a copy of
[0, 1]Ł. Then the logic of C is not locally Boolean.
The first case is obvious because any function asso-
ciated to any formula has to be piecewise linear and
continuous (a McNaughton function [16] in partic-
ular) while the function associated to the required
formula σ for the logic to be locally Boolean must
be discontinuous at 0 and at 1. For the ordinal sum
case, suppose that σ(p1, p2, . . . , pk) is a formula sat-
isfying the required condition. Take the restriction
of this formula to evaluations taking values on the
first component of the ordinal sum. This evaluation
has to define a McNaughton function but at it also
has to be discontinuous in 0, which is impossible.

Finally, let us consider the notion of gently ex-
plosive logic with respect to a set of formulas©(p).
Recall Definition 11 and assume that L is a (4-)core
fuzzy logic complete with respect to a single L-chain
A. Then, thanks to the fact that L≤ is finitary and
the presence of the adjunction rule (Adj−∧), we
can assume that ©(p) is just one formula and the
definition can be reformulated in semantical terms
as follows:

(a) there are formulas ϕ1, ψ1 and an A-evaluation
e1 such that e1(©(ϕ1) ∧ ϕ1) > e1(ψ1),

(b) there are formulas ϕ2, ψ2 and an A-evaluation
e2 such that e2(©(ϕ2) ∧ ¬ϕ2) > e2(ψ2),

(c) for every formulas ϕ,ψ and each A-evaluation
e, e(©(ϕ) ∧ ϕ ∧ ¬ϕ) ≤ e(ψ).

Proposition 11. Let L≤ be the logic of a chain A.
Then the following are equivalent:

1. L≤ is gently explosive;
2. There exists a term ©(p) such that

- ©(0) > 0,
- there is x ∈ A with ¬x = 0 and ©(x) > 0,
- ©(t) = 0 for each t ∈ A such that t,¬t > 0.

Proof. Assume that L≤ is gently explosive. Then
there exists a formula ©(p) satisfying the reformu-
lation mentioned above. Thus there are x, y ∈ A,
such that x∧©(x) > 0 and ©(y)∧¬y > 0, and for
every z ∈ A z ∧ ¬z ∧©(z) = 0. It is clear that the
equality for every z ∈ A implies the last condition
from 2. From the properties of x and y it follows
that x > 0, ¬x = 0, and y = 0, and hence©(0) > 0,
so the remaining two conditions are satisfied. The
converse direction is also very easy to check.

We have, therefore, identified the conditions for
the degree-preserving fuzzy logic of an (expansion
of an) MTL-chain to be an ¬-LFI.
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Example 4. The degree-preserving logic of the
standard MV-chain [0, 1]Ł is not gently explosive.
In fact, as we recalled in Example 3, every definable
term of such logic corresponds to a McNaughton
function [16], and McNaughton functions, being
continuous functions, they cannot satisfy the con-
ditions of the previous theorem.

Example 5. If L has the Monteiro-Baaz’s 4 con-
nective (as primitive or definable), then L≤ is gently
explosive with ©(α) = 4(α∨¬α), as one can easily
check from the conditions of the previous proposi-
tion. This is the case of the logic of a finite MV-
chain Łn (4(ϕ) = ϕn) or, more in general, the logic
of an SnMTL-chain (4(ϕ) = ¬ϕn ∨ ϕ) [17].

4. Expansion of fuzzy logics by further
negations

Let L be an axiomatic extension of MTL. Next
subsections are devoted to the study of expansions
of L and L≤ obtained by adding either the dual
intuitionistic negation D, or an involutive negation
∼. In what follows we will denote by LD and L≤

D ,
and by L∼ and L≤

∼ , the expansions of L and L≤

with D and ∼ respectively.

4.1. Adding dual intuitionistic negation

Dual intuitionistic negation was introduced by Ce-
cylia Rauszer in [18], in the framework of what she
called semi-Boolean algebras, expansions of Heyt-
ing algebras with the dual operator � of the rel-
ative pseudo complement →. This dual operator,
called pseudo-difference, is required to satisfy the
following condition: a � b ≤ c iff a ≤ b ∨ c. Dual
intuitionistic negation, that is called ∨-complement
in [18], and here denoted D, is the negation asso-
ciated to �, i.e. D(x) = 1 � x. This negation
is after used by Priest [19] in the setting of para-
consistent systems and also studied by Ertola et al.
in the context of Intuitionism in [20], and in [21]
in the context of the logics of formal inconsistency,
studied by Carnielli et al. in [8]. In this section we
will study D-paraconsistency in the setting of fuzzy
logics. First we introduce a Hilbert-style axiomati-
zation of truth-preserving fuzzy logics LD, and after
we study their degree-preserving counterparts L≤

D .
Among other things, we show that logics L≤

D are D-
paraconsistent and study some of their properties.
We formally define LD as the logic obtained by

expanding the language of L by the unary connec-
tive D and whose additional axioms and rule are as
follows:

(D1) ϕ ∨Dϕ
(D2) Dϕ ∨ ¬Dϕ
(DR) from ϕ ∨ ψ derive Dϕ→ ψ

Indeed, this system corresponds to the strength-
ening with (D2) of the axiomatization of the dual

of intuitionistic negation D, in the frame of intu-
itionistic logic, presented in [20] and consisting of
(D1) and (DR). Actually, it can be checked that an
equivalent and simpler axiomatization of LD is the
following one, that we will use from now on:

(D1) ϕ ∨Dϕ
(DN) from ϕ ∨ ψ derive ¬Dϕ ∨ ψ

First of all, we show that LD satisfies the congru-
ence property (Cng) for D.

Lemma 12. In LD the following deduction holds:

ϕ→ ψ `LD
Dψ → Dϕ.

Proof. First of all, applying the rule (DN) to axiom
(D1) one proves that Dϕ ∨ ¬Dϕ is a theorem of
LD. Now, in MTL the following deduction holds:
ψ ∨ ¬ψ `MTL (ψ → ϕ) ↔ (¬ψ ∨ ϕ). Therefore, in
LD, (Dψ → Dϕ)↔ (¬Dψ ∨Dϕ) is also a theorem.
Finally, from ϕ→ ψ and ϕ∨Dϕ one can easily prove
ψ∨Dϕ, and using (DN) one obtains ¬Dψ∨Dϕ, and
hence, Dψ → Dϕ as well.

Therefore, it follows that the congruence condi-
tion (Cng) for D indeed holds, and thus LD is a
Rasiowa-implicative logic. Since the rule (DN) is
closed under ∨-forms, it follows that LD is semi-
linear as well. The corresponding algebraic seman-
tics is given by the class of LD-algebras, structures
〈A,∧,∨,&,→, D, 0, 1〉 such that theD-free reduct is
an L-algebra and the two following properties hold
for each x ∈ A:

• x ∨D(x) = 1;
• if x ∨ y = 1 then ¬D(x) ∨ y = 1.

From this definition, the class of LD-algebras is a
quasivariety, but later we shall see that it is indeed
a variety. Since LD is semilinear, it is complete
with respect to the class of LD-chains. Moreover, it
is easy to check that if L is standard complete, then
so it is LD. Notice that in an LD-chain, the two
conditions above univocally force the D operator to
be of the following form:

D(x) =
{

1, if x < 1
0, if x = 1.

Therefore, D is the dual intuitionistic negation (it
satisfies D(x) = min{y | x ∨ y = 1}), and also ¬D
is exactly the Monteiro-Baaz 4 operator in a chain.
Indeed one can check that the logic LD is equivalent
to L4, since in L4 the connective D is definable as

D(ϕ) := ¬4(ϕ)

and, vice-versa, in LD the 4 is definable as

4(ϕ) := ¬D(ϕ).

Thus, in fact, LD can be considered as a 4-core
fuzzy logic.
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Proposition 13. The logic LD is not D-
paraconsistent.

Proof. It is enough to observe that there is no LD-
chain A such that e(ϕ) = e(Dϕ) = 1 for some A-
evaluation e, since e(Dϕ) = 1 iff e(ϕ) < 1.

The logic L≤D is defined from LD as usual, that
is, with the same axioms but restricting the rule
(DN) to apply only to theorems, in other words, by
replacing (DN) by the following rule:

(DN-r) If `LD
ϕ ∨ ψ, from ϕ ∨ ψ derive ¬Dϕ ∨ ψ

It is very easy to check that for any L, L≤D is
D-paraconsistent. Indeed, it is clear that in any
LD-chain, x ∧ D(x) > 0 for 0 < x < 1. Hence,
for instance it holds that ϕ,Dϕ 0L≤

D

0. It is also
clear that, if p and q are two different propositional
variables, then p,Dp 6`L≤

D

q. Moreover, we can show
that the logics L≤D are indeed both boldly and gently
D-paraconsistent.

Proposition 14. For any L, the logic L≤D is boldly
and gently D-paraconsistent.

Proof. Suppose that ψ = σ(p1, . . . , pn) such that 0L
ψ. Then there exists an evaluation v on some LD-
chain such that v(ψ) < 1. In order to prove that LD

is boldly D-paraconsistent is enough to show that
there exists a formula ϕ such that ϕ,Dϕ 6`L≤

D

ψ. Let
ϕ = q be a variable not occurring in ψ. Then, define
a LD-evaluation v′ such that v′(pi) = v(pi) for each
i = 1, . . . , n and v′(q) = β such that 1 > β >
v′(ψ) = v(ψ). Then we clearly have v′(q ∧ Dq) =
v′(q) > v′(ψ), and hence p,Dp 6`L≤

D

ψ, and hence
L≤D is not partially explosive with respect to any σ.
In order to prove that LD is gently D-

paraconsistent, take ©(p) = 4(p ∨ ¬p) = ¬D(p ∨
¬p). An easy computation shows that the formula
©(p) satisfies the required conditions.

Notice that the usual argument using Kleene ax-
ioms showing that a degree-preserving fuzzy logic
L≤ is partially explosive (and hence not boldly para-
consistent) used in Proposition 8 cannot be applied
when the considered negation is the dual intuition-
istic negation D. For instance L≤D is not partially
D-explosive although Kleene axiom (ϕ ∧ Dϕ) →
(ψ ∨Dψ) trivially holds since the formula ψ ∨Dψ
is a theorem of L≤D.

4.2. Adding an involutive negation

As far as we know, expansions with an involutive
negation have only been studied when considered
together with the Monteiro-Baaz 4 operator [22].
Here we define an expansion of a core fuzzy logic
L by an involutive negation without using 4.4 We

4Of course, the interesting case is when the negation ¬ of
L is not involutive.

define the logic L∼ as the expansion of L by a new
unary connective ∼ with the following additional
axiom and rule:

(∼) ∼∼ϕ↔ ϕ

(OR) from (ϕ→ ψ) ∨ χ derive (∼ψ → ∼ϕ) ∨ χ

Note that, using (∼) and (OR), one can show that
∼1↔ 0 and ∼0↔ 1.
An L∼-algebra is a structure 〈A,∧,∨,&,→

,∼, 0, 1〉 such that the ∼-free reduct is an L-algebra
and the two following properties hold for each
x, y, z ∈ A:

• ∼∼x = x;
• if (x→ y) ∨ z = 1 then (∼y → ∼x) ∨ z = 1.

From [14] it is immediate that L∼ is complete
w.r.t. the class of all L∼-algebras and more specifi-
cally w.r.t. the class of L∼-chains.
Given the axiomatization of L∼, we can easily

obtain an axiomatization of L≤∼ just by replacing
the (OR) rule by its restriction to theorems:

(OR-r) if `L∼ (ϕ→ ψ) ∨ χ,
from (ϕ→ ψ) ∨ χ derive (∼ψ → ∼ϕ) ∨ χ

Now we turn our attention to paraconsistency
with respect to ∼.

Proposition 15. L∼ is not ∼-paraconsistent but
L≤∼ is always ∼-paraconsistent.

Proof. Observe that there is no evaluation e such
that e(ϕ) = e(∼ϕ) = 1, and hence, for each formula
ϕ, {ϕ,∼ϕ} `L∼ ψ for any ψ, and thus L∼ is explo-
sive. On the other hand, the proof that the logic
L≤∼ is ∼-paraconsistent is the same as in Proposi-
tion 7, the main difference being that the logic L≤∼
is ∼-paraconsistent for any axiomatic extension of
MTL, and not only for non SMTL extensions, be-
cause ∼ is involutive. Indeed, if A is an L∼-chain
with more than two elements, one can always find
an A-evaluation e with e(p ∧ ∼p) > 0.

Proposition 16. L≤
∼ is partially ∼-explosive with

respect to σ(p) = p ∨ ∼p.

Proof. It is obvious that Kleene’s axiom is also valid
for the negation ∼. Then the proof of Proposition 8
is also valid and therefore the logic L≤

∼ is partially
∼-explosive.

Finally, whether L≤
∼ is ∼-gently paraconsistent

depends on the initial logic L. For example, if L
is an axiomatic extension of SMTL, then in the L∼
the operator4 is definable as the composition of the
two negations ¬ and ∼, and thus L∼ is gently ∼-
paraconsistent. Indeed take©(ϕ) = 4(ϕ∨¬ϕ) and
an obvious computation proves that the operator©
satisfies the required conditions.
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5. Conclusions

In this paper we have been concerned with exploring
paraconsistent properties of different kinds of formal
systems of fuzzy logic. It has been shown that, while
truth-preserving fuzzy logics are not paraconsistent,
a class of degree-preserving fuzzy logics are indeed
paraconsistent, and some of them can be even con-
sidered as proper LFIs, so the fuzzy logic paradigm
provides brand new examples of well-behaved para-
consistent logics. As a final remark, we would like to
point out that the kind of inconsistencies these para-
consistent fuzzy logics can deal with only arise from
the very reason of dealing with intermediate degrees
of truth, that is, all these systems immediately be-
come explosive as soon as one forces propositions
to be two-valued. Practical inconsistency handling
mechanisms using these paraconsistent fuzzy logics
remain to be explored.
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