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Abstract A (continuous) t-norm is called equationally definable when the corre-
sponding standard BL-algebra [0, 1]∗ defined by ∗ and its residuum is the only (up to
isomorphism) standard BL-algebra that generates the same variety Var([0, 1]∗). In
this chapter we check that a continuous t-norm ∗ is equationally definable if and only
if the t-norm is a finite ordinal sum of copies of the three basic continuous t-norms,
i.e. Łukasiewicz, Gödel and Product t-norms.

1 Introduction

A core constituent of fuzzy logic in narrow sense [15], from where the discipline
of Mathematical fuzzy logic has been intensively developed in the last two decades
[5, 10, 11, 14], is the family of residuated many-valued logical calculi with truth
values on the real unit interval [0, 1], and with min, max, a (left-continuous) t-norm
∗ and its residuum →∗ as basic truth functions, interpreting respectively the lattice
meet and joint connectives, a strong conjunction and its adjoint implication. These
logics are also known as t-norm based fuzzy logics.

In this framework, Hájek introduced in [11, 12] the so-called Basic Fuzzy logic,
BL for short, to capture the 1-tautologies common to all many-valued calculi in [0, 1]
defined by a continuous t-norm and its residuum, as proved in [4]. Thus, BL is in
fact a common sublogic of three well-known fuzzy logics: Łukasiewicz’s infinitely-
valued logic, Gödel’s infinitely-valued logic and Product logic, corresponding to the
three basic t-norms, i.e. Łukasiewicz, minimum and product t-norms.
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72 F. Esteva and L. Godo

The variety of BL-algebras constitutes the algebraic semantics of Hájek’s BL,
which is generated by the so-called standard BL-algebras [0, 1]∗, that is, the
BL-algebras defined on the real unit interval [0, 1], and that in turn are induced
by continuous t-norms ∗ and their residuum→∗. Some subvarieties of BL generated
by a single standard BL-chain [0, 1]∗ are well-known, in particular the subvarieties
of MV algebras, Gödel algebras and Product algebras, the algebraic counterparts of
Łukasiewicz, Gödel and Product logics respectively. These varieties are respectively
generated by the standard algebras defined by Łukasiewicz, minimum and product t-
norms, and are fully described and equationally characterized in the literature. A step
further was done in [8], where all varieties Var([0, 1]∗) of BL-algebras generated
by a single standard BL-chain [0, 1]∗ was proved to be finitely axiomatizable.

Then the question arises of whether such an axiomatization of Var([0, 1]∗)
(i.e. a set of equations) univocally characterizes ∗ itself, in the sense of whether
[0, 1]∗ is the only (up to isomorphism) standard BL-algebra that generates the same
variety Var([0, 1]∗). When this is so, we say that ∗ is equationally definable.

As a rather direct consequence of results in [8], in this short note, and after
introducing some needed preliminaries, we check in Sect. 3 that a continuous t-norm
is equationally definable if and only if the t-norm is a finite ordinal sum of the
three basic continuous t-norms, while in Sect. 4 we show how to effectively find a
set of equations of Var([0, 1]∗) for an arbitrary equationally definable continuous
t-norm ∗.

2 Preliminaries

We start with some elementary andwell-known definitions and results about t-norms,
just for the sake of the paper being self-contained. A t-norm is a binary operation
on [0, 1] that is commutative, associative, non-decreasing (monotone) in both vari-
ables and that have 0 as absorbent and 1 as unity. A t-norm is continuous if it is
continuous as real function of two variables. The three basic continuous t-norms are
minimum (min), product (the usual product of reals, ⊙) and Łukasiewicz (denoted
∗L and defined by x ∗L y = max(0, x + y − 1)). The greatest and smallest continu-
ous t-norms are the minimum and the Łukasiewicz t-norms respectively, i.e., for all
continuous t-norm ∗ and for all x, y ∈ [0, 1], we have x ∗L y ≤ x ∗ y ≤ min(x, y).

The following are some basic results on continuous t-norms, see e.g. [13] for
further details and results:

• Any continuous t-norm is an ordinal sum of (possibly infinitely-many) copies1 of
the minimum, product and Łukasiewicz t-norms.

• A t-norm ∗ is continuous if and only if it satisfies the divisibility condition: for all
x, y ∈ [0, 1] with x > y there exists z ∈ [0, 1] such that y = x ∗ z.

1If we allow for at most a countable number of degenerated components with a single idempotent
element.
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On the Equational Characterization of Continuous t-Norms 73

• Each left-continuous t-norm ∗ uniquely defines a binary operation →∗, called
the residuum of ∗, that satisfies the following condition: for all x, y, z ∈ [0, 1],
x ∗ y ≤ z if and only if x ≤ y →∗ z (residuation or adjunction condition).

• The residuum →∗ of a left-continuous t-norm ∗ is actually defined as x →∗ y =
max{z ∈ [0, 1] : x ∗ z ≤ y} (residuated implication).

• A left-continuous t-norm ∗ is continuous if and only if the following equation is
satisfied: for all x, y ∈ [0, 1], x ∗ (x →∗ y) = min(x, y) (Divisibility equation).

On the oher hand, it is also well known that the algebraic counterpart of Hájek’s
BL logic [11] is given by the variety of BL-algebras, i.e. algebraic structures A =
(A,∧,∨, ∗,→, 0, 1) satisfying:

• (A,∧,∨, 0, 1) is a bounded distributive lattice,
• (A, ∗, 1) is a commutative monoid with unit 1,
• ∗ and → form and adjoint pair, i.e. they satisfy the residuation condition: for all
x, y, z ∈ A, x ∗ y ≤ z if and only if x ≤ y → z,

• Prelinearity: for all x, y ∈ A, (x → y) ∨ (y → x) = 1,
• Divisibility: for all x, y ∈ A, x ∗ (x → y) = x ∧ y.

In other words, BL-algebras are a subclass of residuated lattices, namely, the class
of bounded, commutative, integral residuated lattices further satisfying pre-linearity
and divisibility.

A standard BL-chain is a BL-algebra defined over the real unit interval [0, 1]. It
is easy to prove that:

• A continuous t-norm and its residuum defines a standard BL-chain,
• Each standard BL-chains is defined by a continuous t-norm and its residuum.

The last items shows that there is a bijection between continuous t-norms and
standard BL-chains. From now on, we will denote by [0, 1]∗ the BL-algebra
([0, 1],min,max, ∗,→∗, 0, 1) defined by a continuous t-norm ∗ and its residuum.

The ordinal sum representation for continuous t-norms extends to an ordinal sum
representation for standard BL-chains in the obvious way, the only new thing to
consider is the definition of the residuum over the whole ordinal sum in terms of
the residuum over each component. Using a similar representation for BL-chains, in
[4] it was proved that the logic BL is complete with respect to the class of standard
BL-chains, or in other words, that the whole variety of BL-algebras is generated by
the class of standard BL-chains.

A related class of algebraic structures is that ofhoops. Inwhat followswe introduce
some basic definitions and results about hoops and the decomposition theorem for
BL-chains as ordinal sums of hoops that we will use in the next section, see [2, 3, 9]
for more details.

Definition 1 A hoop is an algebraic structure A = (A, ∗,→, 1) such that:

• ∗ is a binary commutative operation with unit 1, i.e. x ∗ y = y ∗ x and 1 ∗ x = x
for all x, y ∈ A
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• → is a binary operation satisfying:

– for all x ∈ A, x → x = 1,
– for all x, y, z ∈ A, (x ∗ y) → z = x → (y → z),
– for all x, y ∈ A, x ∗ (x → y) = y ∗ (y → x).

The associated order relation is defined by: x ≤ y if x → y = 1.

A basic hoop is a hoop satisfying the following condition:

• ((x → y) → z) ∗ (y → x) → z) → z = 1

A Wajsberg hoop is a hoop satisfying the following condition:

• for all x, y ∈ A, (x → y) → y = (y → x) → x .

A cancellative hoop is a hoop such that:

• for all x, y, z ∈ A, x ∗ y ≤ x ∗ z implies that y ≤ z.

From this definition, one can check the following facts and properties:

(i) ≤ as defined above is indeed an ordering and 1 is maximal
(ii) ∗ is associative
(iii) ∗ is monotonically increasing w.r.t. ≤: x ≤ y implies x ∗ z ≤ y ∗ z
(iv) (∗,→) is an adjoint pair: x → y ≤ z iff x ∗ y ≤ z
(v) x ∗ (x → y) ≤ y
(vi) 1 → x = x

Furthermore, regarding the classes of basic, Wajsberg and cancellative hoops, the
following relationship among them hold: every Wajsberg hoop is basic and each
cancellative hoop isWajsberg (hence basic as well). Note that hoops have an greatest
element, but they may lack a least element. A hoop A = (A, ∗,→, 1) is called
bounded if (A,≤) has a least element. Then it turns out that cancellative hoops
coincide with unboundedWajsberg hoops, while bounded Wajsberg hoops coincide
with MV-algebras.
Prominent examples of Wajsberg hoops are the following:

• 2, defined on a set of two elements {a, 1}, that is in fact a two-element Boolean
algebra.

• Ł = ([0, 1], ∗Ł,→Ł, 1), the (bounded) Wajsberg hoop defined over [0, 1] by the
Łukasiewicz t-norm and its residuum.

• C= ((0, 1],⊙,→⊙, 1), the (unbounded) cancellative hoop defined over (0, 1] by
the product t-norm and its residuum.

A similar construction to the ordinal sums for t-norms and BL-chains can be also
defined for hoops.

Definition 2 Let (I,≤) be a totally ordered set, and for all i ∈ I let Ai = (Ai , ∗i ,
→i , 1) be a hoop such that Ai ∩ A j = {1} for every j ̸= i . Then the ordinal sum of
this family is the structure

⊕
i∈I Ai = (

⋃
i∈I Ai , ∗,→, 1), where the operations are

defined as follows:
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x ∗ y :=

⎧
⎪⎨

⎪⎩

x ∗i y if x, y ∈ Ai ,

x if x ∈ Ai\{1}, y ∈ A j , and i < j,
y if y ∈ Ai\{1}, x ∈ A j , and i < j.

x → y :=

⎧
⎪⎨

⎪⎩

x →i y if x, y ∈ Ai ,

y if x ∈ Ai , y ∈ A j , and i > j,
1 otherwise.

Notice that in an ordinal sum of hoops, the greatest element is common to all
the hoops and to the ordinal sum as well. For instance, the product standard chain
[0, 1]Π = ([0, 1],⊙,→⊙, 0, 1), viewed as a bounded hoop, can be decomposed as
the ordinal sum of 2 and C, i.e. [0, 1]Π = 2 ⊕ C. Actually, in [1] the authors prove
that any BL-chain, viewed as a bounded basic hoop, can be decomposed as an ordinal
sum of linearly orderedWajsberg hoops. Restricted to standard BL-chains, this result
amounts to say that any standard BL-chain, as a hoop, can be decomposed as an
ordinal sum of (suitably arranged) copies of the Wajsberg hoops 2, C and Ł. In this
way, besides viewing the standard product algebra as the ordinal sum of 2 plus C, we
can understand the standard Gödel chain as being isomorphic to the ordinal sum of
continuum many of copies of 2 (one for each element of a Gödel component), while
the standard Łukasiewicz chain [0, 1]Ł = ([0, 1], ∗Ł,→Ł, 0, 1) coincides with Ł as
hoop.

As already mentioned, regarding the ordinal sums of hoops just defined, one can
notice that the main difference with respect to the ordinal sum of BL-chains is that
the top elements of the components are identified with the top element of the ordinal
sum. Therefore, for instance, when considering the decomposition of a BL-chain as
an ordinal sum of Wajsberg hoops (2,C or Ł in the case of standard BL-chains),
the top of any component is the top of the ordinal sum, and given two consecutive
components, the bottom (if it exists) of the second component is not in the first
component. Notice also that the decomposition of any standard BL-chain as ordinal
sum of hoops has always a first component that is either 2 (if it is an SBL-chain2) or
Ł otherwise.

Finally recall that a set of equations determine a variety (or equational class) of
algebraic structures. By inspecting their definition, it is clear that the classes of hoops,
basic hoops andWajsberg hoops are indeed varieties. The class of cancellative hoops
turns out to be a variety as well, since the condition used in Definition 2 can be shown
to be equivalent to the validity of the equation x = y → (y ∗ x).

Thus it is interesting to know how the varieties generated by the main three
prominentWajsberg hoops, 2, C andŁ, are related to each other. To do sowe consider
the following three terms:

• eŁ(x) = (x → x2) ∨ ((x → x3) → x2)
• eC(x) = (x → x2)
• e2(x) = (x → x3) → x2

2That is, a standard BL-chain defined by an strict continuous t-norm.
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where xn stands for x∗ n. . . ∗x . An easy computation shows that the equation
eŁ(x) = 1 is valid in 2 and C and not in Ł, eC(x) = 1 is a valid equation in 2
and neither in C nor in Ł, and finally, the equation e2(x) = 1 is valid in C and neither
in 2 nor in Ł.

Therefore, it is clear that C and Ł do not belong to variety of hoops Var(2)
generated by 2, while 2 and Ł do not belong to the variety Var(C) generated by C.
On the other hand, it is easy to check that both 2 and C belong to the variety of
hoops Var(Ł) generated by Ł, since 2 is a subhoop of Ł and C is a subhoop of the
well-known Chang algebra, which is an MV-algebra, and thus belongs to Var(Ł).

Summarising, we have

2,C ∈ Var(Ł), C,Ł /∈ Var(2), 2,Ł /∈ Var(C),

and thus, the following strict inclusions among varieties hold:

Var(2) ⊂ Var(Ł), Var(C) ⊂ Var(Ł).

3 Characterization of Standard BL-Chains
that Are Equationally Definable

Let us denote by [0, 1]∗ either the standard BL-chain, or its corresponding hoopwhen
no confusion exists, definedover [0, 1]by a continuous t-norm∗ and its residuum→∗.
The goal of this section is to characterize those continuous t-norms ∗ that admit an
equational characterization in the sense that the variety Var([0, 1]∗) is uniquely
generated by [0, 1]∗, that is, for any other standard BL-chain [0, 1]◦ with ◦ being a
t-norm non isomorphic to ∗, Var([0, 1]∗) ̸= Var([0, 1]◦). In such a case, we can
say that the set of equations defining Var([0, 1]∗) characterize ∗.

Actually, generalizing the well-known Mostert and Shields representation theo-
remof continuous t-norms,Hájek showed in [12] that every standardBL-chain [0, 1]∗
can be isomorphically decomposed as an ordinal sum (over a bounded ordered index
set) of Gödel, Łukasiewicz and Product BL-chain components. However, as hoops,
each Gödel BL-chain is isomorphic to an ordinal sum of (possibly infinite) copies
of 2, while Łukasiewicz and Product components on a closed real interval are iso-
morphic to Ł and Π = 2 ⊕ C respectively. Then any standard BL-chain, as a hoop,
will be isomorphic to a (possibly infinite) ordinal sum ofWajsberg hoops Ł, C and 2.

The following definition and proposition are particular cases of more general
definitions and results given in [8], and therefore here we only state them without
proofs.

Definition 3 (i) We will denote by Fin the set of ordinal sums (as hoops) of
finitely-many copies of Ł, 2 and C, and whose first component is either Ł or 2.
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On the Equational Characterization of Continuous t-Norms 77

(ii) Let A be a standard BL-chain whose decomposition as ordinal sum of hoops
is A = A0 ⊕ (

⊕
i∈I Ai). Then Fin(A) is the set of all finite ordinal sums⊕

i=0,...,n Bi of Wajsberg hoops satisfying the following conditions:

• Each Bi is either 2, C or Ł,
• B0 is either 2 or Ł,
• There are components A0 < A1 < · · · < An of A such that for every i =
0, . . . , n: (i) if Bi = Ł then Ai is isomorphic to Ł; (ii) if Bi = C, then Ai is
isomorphic either to C or to Ł; and (iii) if Bi = 2, thenAi is isomorphic either
to 2 or to Ł.

Example 1 Consider the standard BL-chain A = G ⊕ Ł ⊕ Π . Then, for instance,
2 ⊕ Ł and 2 ⊕ 2 ⊕ Ł ⊕ C are in Fin(A), while neither Ł ⊕ B for any B ∈ Fin, nor
2 ⊕ Ł ⊕ Ł are in Fin(A).

As shown next, the set of Fin([0, 1]∗) of BL-chains univocally determines the
variety V ([0, 1]∗) induced by the t-norm ∗.

Proposition 1 (c.f. Theorem 3.9 of [8]) Let [0, 1]∗, [0, 1]◦ be two standard
BL-chains. Then Var([0, 1]∗) ⊆ Var([0, 1]◦) if, and only if, Fin([0, 1]∗) ⊆
Fin([0, 1]◦). Hence, V ar([0, 1]∗) = Var([0, 1]◦) if, and only if, Fin([0, 1]∗) =
Fin([0, 1]◦).

Notation convention: In the following, given two continuous t-norms ∗ and ◦, we
will write ∗ ≡ ◦ to denote that they isomorphic in the usual sense of t-norms, that
is, when there exists an increasing bijection f : [0, 1] → [0, 1] such that, for any
x, y ∈ [0, 1], x ◦ y = f −1( f (x) ∗ f (y)).

The following lemma is straightforward to check.

Lemma 1 If ∗ and ◦ are two continuous t-norms such that both [0, 1]∗ and [0, 1]◦
have a finite ordinal sum decomposition in terms of BL-components, then ∗ ≡ ◦ if,
and only if, they have the same decomposition,

From the above proposition and lemma, the characterization of the equationally
definable standard BL-chains follows.

Proposition 2 A continuous t-norm ∗ admits an equational characterization if, and
only if, the corresponding standardBL-chain [0, 1]∗ can be decomposed as an ordinal
sum with finitely-many copies of components Ł,G and Π .

Proof First we prove that for a continuous t-norm ∗whose decomposition as ordinal
has a finite number of components, Var([0, 1]◦) = Var([0, 1]∗) if and only if ◦ ≡
∗ (the components of their decomposition as ordinal sums are the same). By the
previous proposition, this is equivalent to prove that if ◦ is a continuous t-norm such
that ◦ ̸≡ ∗, then Fin(◦) ̸= Fin(∗). We prove this claim by cases, adapting a more
general proof in [8]:
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78 F. Esteva and L. Godo

• If the decomposition of [0, 1]◦ has more components than the decomposition of
[0, 1]∗ then it is evident that there exist BL-chains in Fin(◦) that are not in Fin(∗).
For example let ◦ be a continuous t-norm obtained as Ł ⊕ G, and let ∗ be a contin-
uous t-norm obtained as Ł ⊕ Π ⊕ G. Then it is clear that 2 ⊕ C ∈ Fin([0, 1]∗)
but 2 ⊕ C /∈ Fin([0, 1]◦).

• An analogous reasoning proves the statement when the decomposition of [0, 1]◦
has more components than the decomposition of [0, 1]∗.

• If the number of components of the decomposition [0, 1]∗ and [0, 1]◦ is the same,
then they need to differ in some component and thus we can findBL-chains that are
in Fin(∗) and not in Fin(◦) and viceversa. For example, let ◦ be the continuous
t-norm obtained as Ł ⊕ Ł ⊕ G and let ∗ be the continuous t-norm obtained as
Ł ⊕ Π ⊕ G. Then we have that 2 ⊕ C ∈ Fin([0, 1]∗) but 2 ⊕ C /∈ Fin([0, 1]◦),
while Ł ⊕ Ł ∈ Fin([0, 1]◦) and Ł ⊕ Ł /∈ Fin([0, 1]∗).

In the case the decomposition of [0, 1]∗ has infinitely many components, it is easy
to prove that there exist infinitely-many continuous t-norms ◦ such that ∗ ̸≡ ◦ but
Fin([0, 1]∗) = Fin([0, 1]◦). We do not formally prove the statement but we give
some examples:

• If the decomposition of [0, 1]∗ consists of an infinite number of Łukasiewicz
components Ł, then any other standard BL-chain [0, 1]◦ whose decomposition
beginswith anŁ component and contains infinitelymanyŁukasiewicz components
together with (finitely or infinitely many) components Π or G, defines the same
variety, namely, the full variety of BL-algebras, see [1].

• If the decomposition of [0, 1]∗ begins with a 2 component and contains an infinite
number of Łukasiewicz components, then any other standard BL-chain [0, 1]◦
whose decomposition begins with a 2 component and contains infinitely many
Łukasiewicz components together with (finitely or infinitely many) components
Π orG, defines the same variety, namely, the full variety of SBL-algebras, see [1].

4 How to Find a Set of Equations of an Equationally
Definable t-Norm

After identifying in the last section which t-norms are equationally definable, in this
section we show how to find an effective set of equations for each of them, again rely-
ing in results from [8]. It has to be remarked that the equations actually characterise
the variety generated by the standard algebra [0, 1]∗ for a given equationally definable
t-norm ∗, and hence the equations will involve not only the operation corresponding
to the t-norm but the operation corresponding to its residuum as well.

Firstwe introduce an equation thatwill have a key role in axiomatizing the varieties
V ([0, 1]∗).
Definition 4 LetA be a BL-chain whose decomposition as ordinal sum ofWajsberg
hoops has finitely many components, i.e., A = ⊕

i=0,1,...,n Ai. Then we will denote
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by eA the following equation on n + 1 variables,

⎡

⎣
( ∧

i=0,...,n−1

((xi+1 → xi ) → xi ) ∗ (¬¬x0 → x0)
)

→
( ∨

i=0,...,n

xi
)
⎤

⎦ ∨
∨

i=0,...,n

eAi (xi ) = 1

(eA)

where eAi (x) = eŁ(x) if Ai = Ł, eAi (x) = eC(x) if Ai = C, and eAi (x) = e2(x) if
Ai = 2.

Notation convention: for the sake of a simpler notation, from now on we will use
Fin(∗) and Var(∗) to respectively denote Fin([0, 1]∗) and Var([0, 1]∗).

Lemma 2 Let ∗ be a continuous t-norm whose corresponding standard BL-chain
has a decomposition as ordinal sum with finitely many components Ł, Π and G, and
letA ∈ Fin. Then eA is valid in all BL-chainsB ∈ Fin(∗) if and only ifA /∈ Fin(∗).

And from this result, we can prove the following equational characterization as a
particular case of a more general result in [8, Theorem 5.2].

Proposition 3 Let ∗ be a continuous t-norm whose corresponding standard
BL-chain [0, 1]∗ has a decomposition as ordinal sum with finitely many components
Ł, Π and G. Then,

V ar(∗) is axiomatized by the set of equations AX (∗) = {eB : B ∈ Fin(∗⊥)},
where Fin(∗⊥) = Fin\Fin(∗).

Note that AX (∗) may contain an infinite number of equations. However we can
do it better. Actually, one can show that one needs only a finite subset of AX (∗) to
axiomatize Var(∗). Indeed, it is only necessary to keep from Fin(∗⊥) only thoseBL-
chains that are minimal in the following sense. Define an ordering relation in the set
Fin as follows: for all A,B ∈ Fin, define A ≼ B if A ∈ Var(B). And denote by
Min(∗⊥) the minimal elements of Fin(∗⊥) with respect to the order ≼. It is then
clear that it is enough to consider the set of equations corresponding to the BL-chains
of Min(∗⊥), and moreover, it can be shown that Min(∗⊥) is always finite, and hence
that Var(∗) can be axiomatized by a finite set of equations.

Proposition 4 Let ∗ be a continuous t-norm whose decomposition as ordinal sum
of t-norms has finitely many components. Then:

(i) The set Min(∗⊥) is finite.
(ii) V ar(∗) is axiomatized by the finite set of equations

AXmin(∗) = {eB : B ∈ Min(∗⊥)}.

Following [8], given an arbitrary continuous t-norm ∗ and its decomposition as
ordinal sum of Ł, G and Π components, an algorithmic procedure to find the set
Min(∗⊥) can be given. The idea to find the minimal elements of Fin which are not
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2 C  2 L 

2 C 2  2 C C 2 C L 

Fig. 1 Analysis for ∗ = G ⊕ Ł

in Fin(∗) is to iteratively checking ordinal sums from Fin of increasing length (1,
2, 3, etc.). At a given step i , a given current ordinal sum B of length i is checked
whether there is another non-discarded ordinal sumB′ of length≤i such thatB′ ≼ B.
If so, the current ordinal sum is discarded for further analysis at step i + 1. Otherwise
B ∈ Min(∗⊥) only if B is checked to not belong to Fin(∗). At next step i + 1, only
those non-discarded ordinal sums at step i are expanded with a new component, and
the procedure starts over. This iterative procedure ends in a finite number of steps.
We exemplify this procedure with two examples.

Example 2 Consider a continuous t-norm ∗ isomorphic to G ⊕ Ł. The above itera-
tive procedure, depicted in Fig. 1 as a spanning tree, yields:

Min(∗⊥) = {Ł, 2 ⊕ C ⊕ 2, 2 ⊕ C ⊕ C}.

Example 3 Consider a continuous t-norm ∗ isomorphic to G ⊕ Ł ⊕ Π ⊕ Ł. The
above iterative procedure, depicted in Fig. 2, yields:

Min(∗⊥) = {Ł, 2 ⊕ C ⊕ Ł ⊕ 2, 2 ⊕ C ⊕ Ł ⊕ C}.

Therefore using the result of the previous proposition, we automatically have a
finite set of equations AXmin(∗) univocally characterising ∗, since the only contin-
uous t-norm algebra (up to isomorphism) belonging to Var(∗) is [0, 1]∗ itself.
Dedication

This short note is dedicated to Peter Klement in the occasion of his retirement. We
are deeply indebted to Peter, not only for his outstanding and numerous scientific
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Fig. 2 Analysis for ∗ = G ⊕ Ł ⊕ Π ⊕ Ł

contributions to the field of fuzzy logic, but also for his incredible task of fostering
the exchange of ideas and the collaboration among researchers in our community,
mainly (but not only) through his Linz Seminars on Fuzzy Set Theory since 1979.
Congratulations Peter!
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