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Abstract

Multi-objective reinforcement learning (MORL) is an excellent framework for
multi-objective sequential decision-making. MORL employs a utility function to
aggregate multiple objectives into one that expresses a user’s preferences. However,
MORL still misses two crucial theoretical analyses of the properties of utility
functions: (1) a characterisation of the utility functions for which an associated
optimal policy exists, and (2) a characterisation of the types of preferences that can
be expressed as utility functions. In this paper, we contribute to both theoretical
analyses. As a result, we formally characterise the families of preferences and
utility functions that MORL should focus on: those for which an optimal policy is
guaranteed to exist. We expect our theoretical results to foster the development of
novel MORL algorithms that exploit our theoretical findings.

1 Introduction

Sequential decision-making problems are ubiquitous, impacting areas like autonomous driving [6],
robotics [35], finance [3] and healthcare [4], to name a few. Recently, Reinforcement Learning (RL)
has emerged as a pivotal framework for addressing sequential decision-making tasks [11, 13]. Most
of the RL literature has focused on problems for which an agent deals with a single objective (e.g.
get rich in finance, win a race). However, real-world scenarios often present multiple, conflicting
objectives [32] (e.g., a self-driving car must ensure safety, efficiency, and passenger comfort).

Multi-Objective Reinforcement Learning (MORL) has developed as one of the most promising
frameworks for addressing multi-objective decision-making [19, 18, 22]. Despite its novelty compared
to single-objective RL, the current state of the art in MORL shows promising results for tackling
real-world problems that are inherently multi-objective [10, 32]. Most MORL approaches are utility-
based and assume that there exists a utility function [10] that combines all objectives into a single
one, allowing the learning agent to ponder between them. However, deciding the most appropriate
utility function is a problem in itself. Given that, the literature on MORL focuses on learning a set of
candidate policies, called the undominated set [10], which maximise all possible utility functions. In
that way, once a utility function is decided, the decision-maker can directly select the policy from the
undominated set that maximises it.
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Thus, utility functions are widely considered a fundamental concept of MORL [31]. Utility functions
capture a user’s preferences over different objectives and drive the learning [22]. Hence, both
concepts (utilities and preferences) are at the core of state-of-the-art MORL. The state-of-art approach
of considering the undominated set as the most general solution concept of MORL relies on two
assumptions:

1. On utilities: It assumes that for every utility function, there exists a policy optimising it.
2. On preferences: It assumes that any user preference can be expressed as a utility function.

Unfortunately, none of the assumptions is correct. There are many examples of preferences that
cannot be expressed with a utility function (e.g., the lexicographic order [34], as proved in [5]).
Likewise, even for problems with a finite amount of possible states and actions, there are many utility
functions for which there is no optimal policy for any state (we provide an explicit example in the
later sections).

These two counterexamples raise the need for answering the following two main theoretical questions:
(1) for which type of utility functions are optimal policies guaranteed to exist? (2) what types of
preferences can be represented as utility functions? The state of the art on MORL has not addressed
these fundamental research questions so far.

Against this background, we propose an in-depth analysis of utility functions in MORL by means of
the following three contributions:

1. We provide two novel MORL fundamental theoretical concepts. We introduce the first
formal definition of preferences between policies in MORL and the first formal definition of
utility maximisation in MORL.

2. Given a utility function in MORL, we characterise the sufficient conditions that guarantee
the existence of an optimal policy maximising it.

3. We characterise under which conditions we can express preferences between policies
as utility functions. These are represented by a type of function called quasi-representative
utility function, which preserves the most preferred policies as its maximal points.

We expect that our theoretical results will lead to novel MORL algorithms that can exploit the
analytical properties of the utility functions introduced here.

The remainder of this paper is organised as follows. Section 2 provides the necessary background in
multi-objective reinforcement learning. Then, Section 3 provides sufficient conditions to guarantee
the existence of utility-maximising policies. Next Section 4 characterises the family of preferences
that can be represented with utility functions. Thereafter, Section 5 presents the related work. Finally,
Section 6 summarises our main theoretical findings and sets paths for future research.

2 Background

2.1 Single-objective reinforcement learning

In single-objective reinforcement learning (RL), sequential decision-making problems are formalised
as Markov decision process (MDP) [11, 27]. An MDP represents an environment in which an agent
is capable of repeatedly acting upon it to make it to transition it to a different state, and immediately
receive a scalar reward (representing the agent’s objective) after each action:
Definition 1 (Markov Decision Process). A (single-objective)1 Markov Decision Process (MDP) is
defined as a tuple ⟨S,A, R, T ⟩ of two sets and two functions: the set of states S, the set of actions
A(s) available at each state s, the reward function R : S ×A× S → R, and the transition function
T : S ×A×S → [0, 1] specifying the probability T (s, a, s′) = P(s′ | s, a) that the next state is s′ if
an action a is performed upon the state s.

An agent’s behaviour in an MDP is called a policy π. A policy π(s, a) describes how likely an agent
will perform action a if the agent is currently in state s. The agent’s objective is to learn the policy
that accumulates the maximum sum of discounted rewards. Thus, to evaluate a given policy, we need

1Through the paper, we refer to a single-objective MDP simply as an MDP.
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to compute the (expected) discounted sum of rewards that an agent obtains by following it. This
operation is formalised by means the so-called value function V : S → R, defined as:

V π(s)
.
=E[

∞∑
k=0

γkR(St+k, At+k, St+k+1) | St = s, π], (1)

where γ ∈ [0, 1) is the discount factor, indicating how much we care about future rewards. Value
functions allow us to partially order policies [27]. Hence, they allow to formalise the agent’s objective
as learning the policy that maximises the value function. This policy is defined as the optimal policy:

Definition 2 (Optimal policy). Given an MDP M, its optimal policy π∗ is the policy that maximises
the value function V π . Formally:

V π∗(s) ≥ V π(s), (2)

for every state s of the MDP M, and every policy π of M.

The optimal policy is the solution concept in single-objective RL. For any MDP with a finite state
and action space, at least one optimal policy exists, which is also deterministic and stationary [7].

2.2 Multi-objective reinforcement learning

Multi-objective reinforcement learning (MORL) deals with environments in which an agent pursues
multiple objectives simultaneously (for example, in a healthcare context, the health and the autonomy
of a patient). Recall that in single-objective RL, the reward function represents the agent’s objective.
Thus, MORL considers environments with multiple reward functions, called Multi-Objective Markov
Decision Processes [19, 10]. Formally:

Definition 3 (Multi-Objective MDP). An n-objective Markov Decision Process (MOMDP) is defined
as a tuple ⟨S,A, R⃗, T ⟩ where S , A and T are the same as in an MDP, and R⃗ : S ×A× S → Rn is
a vector of reward functions, providing a reward function Ri for each objective i ∈ {1, . . . , n}.

Policies in a MOMDP are evaluated by means of a value function vector V⃗ , defined as the vector of
all value functions per objective V⃗ (s) = (V1(s), . . . , Vn(s)).

If not all objectives can be fully fulfilled simultaneously, the agent needs to prioritise between them.
To represent an agent’s preferences with respect to multiple objectives, most approaches in MORL
assume that the value function of each objective can be aggregated into a single function. That way,
the agent’s goal becomes to maximise this aggregated value function.This aggregation is performed
by means of a utility function u (also called a scalarisation function)[18, 22]. In MORL, a utility
function u is defined as a function mapping the domain of all value functions (a subset of the real
coordinate space Rn) to the real space R. With u, the agent’s goal can be expressed as learning a
policy that maximises the function (u ◦ V⃗ )(s) = u(V⃗ (s)). Formally2:

Definition 4 (Utility function). Let M be a MOMDP of n objectives. Any function u : Rn → R is a
utility function of M.

The family of linear utility functions is especially notable. Any linear utility function l returns a
weighted sum of value functions (l ◦ V⃗ )(s) = w⃗ · V⃗ (s). For linear utility functions, the scalarised
problem of maximising l ◦ V⃗ can be solved with single-objective reinforcement learning algorithms3.

While in single-objective RL there is a clear definition of the solution concept (a deterministic and
stationary optimal policy), there is no equivalent for MORL. Instead, the utility function is typically
assumed to be unknown, and that we only have minor assumptions about it (e.g., that it is linear or
that it is monotonically increasing) [19, 22, 10]. With that in mind, the solution concept in MORL is
to learn a set of candidate policies π, with each of them optimising a possible utility function u. The
next Section explores typical solution concepts in MORL.

2The presented definition of the utility function follows the Scalarised Expected Returns (SER) criterion,
which is by far the most popular one in the MORL literature [10]. We focus exclusively on the SER criterion.

3Because the linear utility function for V⃗ also induces a utility function for R⃗. Notice that u(V⃗ (s)) =

w⃗ · V⃗ (s) = w⃗ · E[
∑∞

t=0 γ
kR⃗t+k+1 | s] = E[

∑∞
t=0 γ

kw⃗ · R⃗t+k+1 | s].
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2.3 Solution concepts of MOMDPs

The solution concepts in MORL depend on how much is assumed about the utility function. If
nothing is assumed, the goal is to learn the set of maximal policies for any utility function. It is
important to remark what it means for a policy to be maximal for a utility function. By far, the
majority of the MORL community follow the so-called state-independent (SI) criterion to define
optimality [19, 18, 22, 10]. Given a MOMDP, this criterion considers that a policy π∗ maximises a
utility function if and only if it is maximal among the expectation of possible initial states (for some
value function V⃗ and the random variable of possible initial states S0). We denote this expectation
with V⃗SI :

V⃗ π
SI

.
= E[V⃗ π(S0)]. (3)

Due to its simplicity, the state-independent (SI) criterion is widely used in MORL and RL in general.
While it is generally innocuous in single-objective RL, it can generate contradictory policies in
multi-objective RL, as we will show in Example 4 below.

Considering this state-independent criterion, all solution concepts for MOMDPs have been formalised
exclusively for it. Thus, the state-of-the-art general solution, the undominated set, is defined as the
set of policies that are maximal for at least one utility function. Formally [10]:
Definition 5 (Undominated set). Given a MOMDP M, its undominated set U(M) is defined as the
set of policies for which there exists a utility function u with a maximal scalarised value.

U(M)
.
= {π ∈ Π(M) | ∃u : ∀π′ ∈ Π(M), u(V⃗ π

SI) ≥ u(V⃗ π′

SI )}, (4)
where Π(M) is the set of all possible policies of an MOMDP M.

We recall that the definition of undominated set makes no assumption on the structure of the utility
function. If we constrain it to be a linear function, then the solution concept becomes the convex hull.
The convex hull of a MOMDP contains all policies that are maximal for at least one linear utility
function (again, according to the SI criterion). Formally [10]:
Definition 6 (Convex hull). Given an MOMDP M, its convex hull CH(M) is the subset of policies
π∗ that are optimal for some weight vector w⃗:

CH(M)
.
= {π ∈ Π(M) | ∃w⃗ ∈ Rn : ∀π′ ∈ Π(M), w⃗ · V⃗ π

SI ≥ w⃗ · V⃗ π′

SI }, (5)
where Π(M) is the set of policies of M.

3 Utility optimal policies

Recall that the MORL literature defines solution concepts following the state-independent criterion.
However, for a proper analysis of utility functions in MORL, we require more precise definitions
considering each and every state of a MOMDP.

Furthermore, recall that, in single-objective MDPs, value functions impose a partial order over policies
of an MDP [27]. However, thanks to Banach’s fixed point theorem, we know that a deterministic
and stationary optimal policy always exists for any finite MDP (and, thus, for every state) [7]. These
theoretical properties become much weaker in multi-objective MDPs. In particular, the Banach fixed
point theorem does not generalise even for finite MOMDPs. Thus, we may have finite MOMDPs for
which no optimal policy exists for any state. These “more precarious" theoretical results motivate
even more the need for studying the existence of optimal policies in a MOMDP at two different
levels: one at a single-state level (i.e., considering a single state), and another one at the all-states
level (considering all states).

We begin by defining utility optimality at the state level: a given policy π is optimal at state s with
respect to a given utility function u if and only if it obtains more scalarised discounted returns than
any other policy at s. Formally:
Definition 7 (utility optimal policy at a state). Let M be a MOMDP with state set S . Let ΠM be the
set of policies of M. Let u be a utility function. Then, a policy π∗ ∈ ΠM is optimal with respect to
utility function u at state s ∈ S if and only if:

(u ◦ V⃗ π∗)(s) ≥ (u ◦ V⃗ π)(s), (6)

for every policy π ∈ ΠM. We say that π∗ is ⟨u, s⟩-optimal for short.
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Example 1. Consider a MOMDP M with two states: an initial state s1 and a terminal state s2.
An agent can perform two actions (a1, a2) in this environment, with rewards R⃗(s1, a1) = (1, 0),
R⃗(s1, a2) = (0, 1) respectively. Consider the utility function u(x, y) = x+sin(y). The deterministic
policy π(s1) = a1 that obtains vectorial value V⃗ π(s1) = (1, 0) is clearly ⟨u, s1⟩-optimal since
sin(y) < y for any y ∈ [0, 1].

In the same vein as in single-objective RL, given a MOMDP, we define a policy as utility optimal at
the all-states level (or simply utility optimal) as a utility optimal policy in every state in the MOMDP.
Formally:
Definition 8 (utility optimal policy). Let M be a MOMDP with state set S. Let ΠM be the set of
policies of M. Let u be a utility function. Then, a policy π∗ ∈ ΠM is optimal with respect to utility
function u if and only if:

(u ◦ V⃗ π∗)(s) ≥ (u ◦ V⃗ π)(s), (7)

for every policy π ∈ ΠM, and every state s ∈ S. We say that π∗ is u-optimal for short.
Example 2. In the MOMDP in Example 1, policy π(s1) = a1 is u-optimal since there are only two
states, and the second one is terminal.

We know that a (deterministic) u-optimal policy always exists for any linear utility function, as shown
in Section 2.2. However, this is not always the case for arbitrary utility functions. The following three
examples illustrate conditions that are not enough to guarantee the existence of neither deterministic
nor stochastic utility optimal policies in finite MOMDPs. These conditions are:

1. That the utility function is monotonically increasing (a family of utility functions specially
studied in MORL [18, 10]. Example 3 illustrates how this condition is not enough to
guarantee a deterministic u-optimal policy.

2. That the utility function is strictly monotonically increasing. Example 5 shows how this
condition is not enough to guarantee a stochastic ⟨u, s⟩-optimal policy for any given state s.

3. That the utility function is both strictly monotonically increasing and continuously differ-
entiable. Example 4 shows how even assuming both conditions there are utility functions
without stochastic u-optimal policies.

In the following Example 3 we consider the Chebyshev function (also called Tchebycheff, a well-
known utility function in MORL [17, 19, 18, 10]. The Chebyshev function returns more scalar value
the nearest a given input value x is to a reference value r⃗. Moreover, the Chebyshev function is also
monotonically increasing [18].
Example 3. Let ϵ > 0 be a small real number, r⃗ ∈ Rn a reference value, and w⃗ ∈ Rn a weight
vector such that each wi ≥ 0. The Chebyshev function ψr⃗,ϵ,w : Rn → R is defined as [17]:

ψr⃗,ϵ,w⃗(x)
.
= −(max

i
wi · |ri − xi|+ ϵ ·

∑
i

wi · |ri − xi|). (8)

Let M be a 2-objective deterministic MDP with three states s1, s2, and s3 such that s3 is the
terminal state. Regarding actions, there is one possible action in s1, which has associated rewards
R⃗(s1, a1) = (1, 0). Action a1 transitions the state to s2. Then, in state s2, there are two possible
actions with associated rewards R⃗(s2, a2) = (2, 20) and R⃗(s2, a3) = (3, 1). All actions in s2
transition to terminal state s3.

This environment has two possible deterministic policies. The first policy is π1(s1) = a1, π1(s2) = a2.
This policy obtains values V⃗ π1(s1) = (3, 20), V⃗ π1(s2) = (2, 20). The second policy is π2(s1) =
a1, π2(s2) = a3. This policy obtains values V⃗ π2(s1) = (4, 1), V⃗ π2(s2) = (3, 1). We select as
reference point r⃗ = (3.5, 20), associated weights w⃗ = (1, 1/19), and ϵ = 0. For this configuration
we have: for policy π1, ψ(V⃗ π1(s1)) = −0.5, ψ(V⃗ π1(s2)) = −1.5. For policy π2, ψ(V⃗ π2(s1)) =

ψ(V⃗ π2(s2)) = −1. Clearly, π1 is the only deterministic ⟨ψ, s1⟩-optimal policy, while π2 is the only
deterministic ⟨ψ, s2⟩-optimal policy. Thus, no deterministic ψ-optimal policy exists.

Example 3 showed that deterministic u-optimal policies do not necessarily exist in finite MOMDPs,
a fact that was already known in the MORL literature [18]. But we can go one step further: the
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next Example 4 shows that being finite is not enough for an MOMDP to guarantee the existence
of stochastic u-optimal policies. Moreover, the utility function from Example 4 is both strictly
monotonically increasing and continuously differentiable:
Example 4. Consider the utility function u(x, y) =

√
x2 + 1 + y

20 , which is strictly monotonically
increasing for any (x, y) ∈ R+ × R, and continuously differentiable in R2. Let M be the same
2-objective deterministic MDP from Example 3.

This environment has the same two deterministic policies from Example 3. The first policy is
π1(s1) = a1, π1(s2) = a2, which obtains scalarised values u(V⃗ π1(s1)) ≈ 4.16, u(V⃗ π1(s2)) ≈ 3.24.
The second policy is π2(s1) = a1, π2(s2) = a3, which obtains scalarised values u(V⃗ π2(s1)) ≈
4.17, u(V⃗ π2(s2)) ≈ 3.21.

It is easy to check that π1 is the absolute ⟨u, s2⟩-optimal policy, while π2 is the absolute ⟨u, s1⟩-
optimal policy. We leave the details at Appendix A.1. Thus, no stochastic u-optimal policy exists.

Our third example is a finite MOMDP and a strictly monotonically increasing utility function u for
which no stochastic ⟨u, s⟩-optimal policy exists for any state s.
Example 5. Consider the utility function u such that if x = y, then u(x, x) = 0, and otherwise
u(x, y) = 1

|x−y| . Let M be the 2-objective deterministic MDP from Example 1 with two states s1
and s2 such that s1 is the initial state and s2 is the terminal state. There are two possible actions in
s1 with associated rewards R⃗(s1, a1) = (1, 0) and R⃗(s1, a2) = (0, 1).

Every policy of M will be of the form π(s1, a1) = p and π(s1, a2) = 1− p for some p ∈ [0, 1]. The
vectorial value of such policy at state s1 will be V⃗ π(s1) = (p, 1 − p). Notice how every possible
value belongs to the Pareto Front of M. Thus, any utility function is strictly monotonically increasing
in M, including the one defined in this example.

In particular, for any policy, its scalarised value will be u(1, 1− p) = 1
|2p−1| .

If for any policy π we have π(s1, a1) = p < 1
2 , then the policy π′ such that π(s1, a1) = p + ϵ,

with ϵ > 0 small enough so that p + ϵ < 1
2 obtains more scalarised value than π. Similarly, if

π(s1, a1) = p > 1
2 , we can find an alternative policy π′ such that π(s1, a1) = p − ϵ that obtains

more scalarised value than π. Thus, no ⟨u, s1⟩-optimal policy exists in this MOMDP.

The result of Example 5 is specially significant because most MORL literature (with its state-
independent criterion that only considers initial states S0), focuses on computing ⟨u, S0⟩-optimal
policies on strictly monotonically increasing utility functions [19, 10]. As we have shown in Example
5, such optimal policies are not guaranteed to exist.

Therefore, the logical next question after these three examples is to ask for which families of utility
functions there exists at least one global utility optimal policy or at least one utility optimal policy for
every state. In particular, we focus on stationary policies, like in single-objective RL. Formally:
Problem 1. For which families of utility functions is guaranteed that a stationary ⟨u, s⟩-optimal
policy will exist for every state s of every possible finite MOMDP?
Problem 2. For which families of utility functions is guaranteed that a stationary u-optimal policy
will exist for every possible finite MOMDP?

Next, Sections 3.1 and 3.2 focus on providing sufficient conditions to guarantee the existence of utility
optimal policies in a state and utility optimal policies in general, respectively.

3.1 Utility optimal policy at a state existence

This Section introduces a family of utility functions that solve Problem 1. In particular, we offer a
sufficient condition to guarantee the existence of a stationary ⟨u, s⟩-optimal policy for every state s
of a finite MOMDP. This sufficient condition is that the utility function is continuous. Formally:
Theorem 1. Let M be a finite MOMDP. Let u be a continuous utility function for all value functions
of all policies Π(M) of M. Then, for every state s of M, at least one stationary ⟨u, s⟩-optimal
policy exists.

Proof 1. See Appendix A.3.
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Continuous utility functions are one the most extensively studied and applied family of functions due
to their well-behaved properties (e.g., existence of absolute maximum and minimum). Nevertheless,
recall that Theorem 1 only provides sufficient conditions, and thus there might exist ⟨u, s⟩-optimal
policies for discontinuous utility functions. We offer such an example in the proof of Theorem 3.

3.2 Utility optimal policy existence

Demanding that the same policy is u-optimal for some utility function u for every state of the
MOMDP is a much harder problem than demanding it for a given state. Thus, in this case, it is
not enough that the utility function is continuously differentiable (i.e., continuous and all partial
derivatives also continuous), and it is not enough that the utility function is also strictly monotonically
increasing (as seen in Example 4).

It is already known that, for linear utility functions, we can obtain a u-optimal policy. So, the question
is if we can find at least another family of utility functions for which a u-optimal policy exists.
Theorem 2 presents such a family: utility functions that result from composing an affine function
together with a strictly monotonically increasing function. Formally:

Theorem 2. Let M be a finite multi-objective MDP M. Let u be a utility function decomposable as
u(x) = h(g(x)), with g(x) : Rn → R being an affine function, and h(x) : R → R being a strictly
monotonically increasing function for all value functions of all policies Π(M) of M. At least one
deterministic and stationary u-optimal policy exists.

Proof 2. See Appendix A.4.

Notice that, in particular, Theorem 2 also covers linear utility functions. Linear utility functions are
one of the most widely applied families of utility functions in MORL [18, 10]. To finish this Section,
we show an example of a function composed by an affine and a strictly monotonically increasing
function (that hence satisfies Theorem 2) that produces a non-linear (and non-affine) utility function
for which a u-optimal policy exists.

Example 6. Consider any 2-objective MDP M where all rewards are positive (i.e., R⃗(s, a) ∈
R+ × R+ for all s, a), and a utility function u defined as

u(x, y) = − 1

x+ y + 3 + sin(x+ y + 3)
. (9)

We decompose u(x, y) as u(x, y) = h(g(x, y)) with g(x, y) = x+ y + 3 being affine, and h(x) =
− 1

x+sin(x) being strictly monotonically increasing. By Theorem 2, a u-optimal policy exists.

Notice that Theorem 2 only provides sufficient conditions of utility functions u for guaranteeing the
existence of u-optimal policies. In fact, Example 2 shows a non-affine utility function for which an
u-optimal policy exists in a particular MOMDP.

4 Preference relations in MORL

In the previous section, we characterised the utility functions for which we can compute a utility
optimal policy. However, as mentioned in the Introduction, a more fundamental question remains
unanswered: Which user’s preferences can be expressed as utility functions in a given MOMDP?

We require formalising preference relations and their maximal elements in MOMDPs to answer
this last question. Preference relations, also known as binary relations, allow us to express, among
two elements of a set, which one we prefer [25, 14]. While the state of the art in MORL makes no
distinction between preference relations and utility functions [10], it is important to maintain them as
two separate concepts. First of all, let us provide a formal definition of preference relations in MORL,
inspired by [25]:

Definition 9 (Preference relation in a MOMDP). Let M be a MOMDP of n objectives. We define a
preference relation in M as any binary relation ⪰ over at least one pair of value vectors of Rn. In
particular, we say that:
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• a value function V⃗1 ∈ V is weakly preferred to another value function V⃗2 ∈ V if and only if
V⃗1(s) ⪰ V⃗2(s) for every state s of M. In short, we denote V⃗1 ⪰M V⃗2.

• a value function V⃗1 ∈ V is strictly preferred to another value function V⃗2 ∈ V if and only if
V⃗1(s) ⪰ V⃗2(s) for every state s of M and not V⃗2(s′) ⪰ V⃗1(s

′) for at least one state s′ of
M. In short, we denote V⃗1 ≻M V⃗2.

If for two value vectors we have that V⃗1(s) ⪰ V⃗2(s) and V⃗2 ⪰ V⃗1(s), we say that they are indifferent,
and we denote it with the ≈ symbol. Notice that this definition makes no assumption over the
preference relation. We do not impose that this preference relation is a pre-order, a partial order, or a
total order [9]. Considering that the MORL literature applies utility functions of all kinds, we did not
want to restrict our definition.

Following the game theory literature, humans have preferences, and we (sometimes) can represent
them as utility functions, but not the other way around [14]. In fact, sometimes, a utility function
that fully represents our preferences may not exist. If such a utility function exists, we call it the
representative utility function of preference relation ⪰. Formally:

Definition 10 (Representative utility function). Let M be a MOMDP, and let ⪰ be a preference
relation in M. Then, we define a utility function u as representative of the preference relation ⪰ if
and only if, for every pair of possible value functions V⃗1, V⃗2, and every state s of M:

V⃗1(s) ⪰ V⃗2(s) ⇐⇒ (u ◦ V⃗1)(s) ≥ (u ◦ V⃗2)(s). (10)

Some (but not all) preference relations have representative utility functions. However, any utility
function u, is representative of some preference relation ⪰u defined as exactly fulfilling Equation 10.

In order theory, for any quasi-order (i.e., a preference relation that is at least reflexive and transitive),
we can define the concept of maximal elements [9]. In our case, given a preference relation ⪰ between
the value functions of a MOMDP, its maximal elements would be the value functions associated with
the policy that we expect the agent to learn. Formally:

Definition 11 (Maximal element). Let M be a MOMDP. Let ⪰ be a preference relation in M that is
at least reflexive and transitive (a quasi-order). Then, the value vector V⃗∗(s) of value function V⃗∗ is a
maximal element in state s if and only if for every other possible value function V⃗ of M:

V⃗ (s) ⪰ V⃗∗(s) =⇒ V⃗∗(s) ⪰ V⃗ (s). (11)

Example 7. In finite single-objective MDPs, the optimal value V∗(s) is a maximal element for every
state s, for the preference relation ⪰ defined as V (s) ⪰ V ′(s) ⇐⇒ V (s) ≥ V ′(s).

As mentioned in the introduction above, not all preference orders in MORL can be represented as
a utility function. One of the most well-known cases is the lexicographic order [5, 2]. Although
Lexicographic MORL has been studied in detail [8, 29, 12, 30, 24], almost no work in MORL (with
the exception of [23]) has noticed that an associated utility function does not exist in general. Let us
see through an example why the lexicographic order cannot be represented as a linear utility function.
For utility functions in general, we refer to Corollary 2 of [23].

Example 8. Consider a MOMDP M with two states: an initial state s1 and a terminal state s2. An
agent can perform three actions in this environment (a1, a2, a3), with rewards R⃗(s1, a1) = (1, 0),
R⃗(s1, a2) = (0, 1), and R⃗(s1, a3) = (1, 1), respectively. Consider now the lexicographic order ⪰
such that objective 1 is always preferred to objective 2. Hence, R⃗(s1, a3) ≻ R⃗(s1, a1) ≻ R⃗(s1, a2).
Any linear utility function here will be of the form uα,β(x, y) = α · x+ β · y. For uw to represent
≻, it must satisfy uα,β(1, 1) > uα,β(1, 0) and uα,β(1, 0) > uα,β(0, 1), for example, u10,1(x, y) =
10x+ y.

However, policies can be stochastic, and thus, we can have for instance any policy π such that
π(s1, a1) = p, π(s1, a2) = 1− p, with 1 ≥ p ≥ 0, which has associated value V⃗ π(s1) = (p, 1− p).
Hence, the utility function must also satisfy u(1, 0) > u(0.9, 0.1) > · · · > u(0.1, 0.9) > u(0, 1).
And it needs to be absolutely precise: u(p+ ϵ, 1− p− ϵ) > u(p, 1− p) for every ϵ > 0 arbitrarily
small. Thus, it is impossible to represent the lexicographic order as a linear utility function.
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While lexicographic orders cannot be represented with utility functions in MOMDPs, they do have
maximal elements among finite MOMDPs. A utility function that shares the exact same maximal
elements as a lexicographic order would be very helpful. With such a utility function, we could still
find the policies that maximise a lexicographic order with state-of-the-art MORL algorithms. Having
formalised maximal elements in MOMDPs for any quasi-order, we can introduce utility functions
that at least preserve maximal elements. We call this kind of utility function quasi-representative.
Formally:
Definition 12. Let M be an MOMDP. Let ⪰ be a preference relation ⪰ in M that is at least reflexive
and transitive (a quasi-order). Let u be a utility function such that for every state s of M:

V⃗∗(s) is a maximal element of ⪰ at state s ⇐⇒ V⃗∗(s) ∈ argmax
V⃗

[(u ◦ V⃗ )(s)]. (12)

Then, we say that u is quasi-representative of ⪰ in M.
Example 9. Consider the MOMDP M in Example 8. The utility function u(x, y) = 10x + y is
quasi-representative of the lexicographic order because u(1, 1) > u(1, 0) and u(1, 1) > u(0, 1).

In fact, quasi-representative utility functions allow us to define an equivalence relation between
utility functions. Hence, by abuse of notation, we will also say that two utility functions are quasi-
representative for a given MOMDP if and only if they share the same maximum elements for every
state s of this MOMDP.
Example 10. Consider the same MOMDP M and the lexicographic order ⪰ from Example 8. For
example, utility functions u(x, y) = 10x + y and u′(x, y) = 15x + y + 30 share the same utility
optimal policy (which is π(s1) = a3), and hence are quasi-representative for M and ⪰.

Notice that if a utility function u is representative of some preference relation ⪰, it is also quasi-
representative of ⪰. Notice also that a utility function may be representative or quasi-representative
of a given preference order for some MOMDP but not for other MOMDPs.

Now, given a MOMDP, what conditions must a preference order meet to be represented by a quasi-
representative utility function? Essentially, it is sufficient to have a maximal element for every state
of the MOMDP. We present now a family of preference orders for which a quasi-representative utility
function always exists for every finite MOMDP:
Theorem 3. Let ⪰ be a preference relation and M any finite MOMDP. Assume that ⪰ is: (1)
complete (either a ⪰ b or b ⪰ a or a ≈ b for every two possible value vectors a, b of M); (2)
transitive (if a ⪰ b, and b ⪰ c, then a ⪰ c); and (3) at least one maximal element V⃗ (s) exists for
every state s of M. Then, a quasi-representative utility function exists for ⪰ in M.

Proof 3. We offer a constructive proof. For every state s, consider its set of maximal elements V⃗∗(s)
according to ⪰, which is non-empty for every state due to Condition (3). Since the preference relation
is complete, for every state s all its maximal elements will share the same value (i.e., V⃗1(s) = V⃗2(s)

for every two V⃗1, V⃗2 ∈ V⃗∗(s)). Hence, without loss of generality, we consider that there is a single
maximal element per state. Then, the number of maximal elements is at most |S|, and we can order
them according to ⪰ (we can order them because ⪰ is total and transitive). Then, set a number
between 1 and |S| for each of these elements, ordered by ⪰. For every other vector x ∈ Rn, set
u(x) = 0. Now, by construction, for every state s we have that maxV⃗ (u ◦ V⃗ )(s) ∈ V⃗∗(s). In other
words, u is a quasi-representative utility function, such that it returns the most preferred value vector
for each state s according to ⪰.

Completeness and transitivity are very common conditions for preference relations in game theory
[14]. The third condition is required for MOMDPs since we are dealing with an infinite amount of
policies. For instance, Example 5 showed a finite MOMDP for which there is no maximum element
for any environment state.

The main takeaway from Theorem 3 is that MORL algorithms should focus on the family of preference
relations that fulfils all its conditions. Such conditions are sufficient to guarantee the existence of a
quasi-representative utility function, as we just proved.

The family of preference relations satisfying the conditions of Theorem 3 has examples aplenty,
such as the previously mentioned family of lexicographic orders. Moreover, any continuous utility
function is representative of a total order that satisfies all conditions of Theorem 3.
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5 Related work

Most of the literature in MORL focuses on creating novel solution concepts in MORL and algorithmic
methods to solve them (e.g., [28, 33, 20, 24, 21]). Instead, we focus on characterising for which
families of utility functions these solutions exist, a largely overlooked theoretical problem despite its
relevant implications. Take for instance the work in [33], where Van Moffaert et al. present a method
for computing the Pareto front of a given MOMDP. They implicitly assume that this Pareto front
will always include the solution policy (a u⟩-optimal policy in our terms), but as we have proven in
Example 4, this is not always the case.

Then, regarding the study of preference relations in MORL, to the best of our knowledge the only
other works in the literature apart from ours are [23, 26]. Skalse et al.’s theoretical results in [23]
complement ours by stating that, for every so-called objective (a preorder between policies), a u-
optimal policy exists if and only if this objective can be represented with a linear utility function.
This aligns with our results in Theorem 2. However, they do not establish whether there may be more
families of utility functions for which a u-optimal policy exists, as we do with Theorem 2. Moreover,
our preference definition allows for ordering policies in each state of the environment, providing
more granularity than their objective definition. This difference is also significant, because it allows
us to identify issues in the solution concepts of MORL as we have tried to illustrate with Examples 5
and 4.

Next, Subramani et al. in [26] follow on the work in [23], but they tackle a different problem than us.
Their focus is on compare the expressivity of the MORL framework with other frameworks. They
aim to know which objectives (defined identically to [23]) can be represented on each framework.
However, like [23], their objective definition does not allow them to order policies differently per
state, unlike our preference definition.

To finish, closely related to our work, Miura in [15] tackles the problem of characterising preferences
and their properties in constrained MDPs [1]. They define preferences as sets of acceptable policies
and aim to find for which environments they can set the constraints and reward functions of a
constrained MDP (CMDP) for which the acceptable policies are optimal. While CMDPs and
MOMDPs share many similarities, they belong to separate research area. The major difference
between them is that a CMDP has constraints, while an MOMDP has a utility function.

6 Conclusions

Multi-objective reinforcement learning (MORL) is the most promising framework for dealing with
sequential decision-making problems with multiple objectives. In MORL, the learning agent ponders
between the multiple objectives by means of a utility function aligned with the user’s preferences.
However, the state of the art in MORL has disregarded two fundamental theoretical problems related
to utility functions: (1) for which utility functions an associated optimal policy is guaranteed to exist?
and (2) which preference relations can be expressed as a utility function?

In this paper, we contributed to the state of the art in MORL by formalising both problems for the
first time and by analysing each one. For utility functions, we first formalised the concept of utility
optimality in MORL. Then, we provided sufficient and insufficient conditions for such a policy to
exist for any finite MOMDP. For preference relations, we first formalise them for MOMDPs, and
we also provide the minimal conditions to guarantee that they can be expressed as a particular type
of utility function, the so-called quasi-representative utility functions. We expect our theoretical
contributions to spark interest in both theoretical and practical MORL research. In fact, our results
have direct practical consequences: to avoid contradictory policies, the MORL community needs to
design algorithms that check that their learned policies are utility optimal.

We envision many directions for future research. On the theoretical side, a generalisation of the
presented theoretical results to multi-agent multi-objective environments would be of great interest in
the MORL literature [22]. On the algorithmic side, we expect to see the development of algorithms
that exploit our Theorems to compute utility optimal policies.
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[10] C. F. Hayes, R. Rădulescu, E. Bargiacchi, J. Källström, M. Macfarlane, M. Reymond, T. Ver-
straeten, L. M. Zintgraf, R. Dazeley, F. Heintz, E. Howley, A. A. Irissappane, P. Mannion,
A. Nowé, G. Ramos, M. Restelli, P. Vamplew, and D. M. Roijers. A practical guide to multi-
objective reinforcement learning and planning. Autonomous Agents and Multi-Agent Systems,
36, 2022.

[11] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey. J. Artif.
Int. Res., 4(1):237–285, May 1996.

[12] C. Li and K. Czarnecki. Urban driving with multi-objective deep reinforcement learning. In Pro-
ceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems,
AAMAS ’19, page 359–367, Richland, SC, 2019. International Foundation for Autonomous
Agents and Multiagent Systems.

[13] Y. Li. Deep reinforcement learning: An overview, 2017. cite arxiv:1701.07274.

[14] M. Maschler, E. Solan, and S. Zamir. Game Theory, 2nd Edition. Cambridge University Press,
2013.

[15] S. Miura. On the expressivity of multidimensional markov reward. In Proceedings of the 2022
Conference on Reinforcement Learning and Decision Making., 07 2023.

[16] E. L. Pennec. Reinforcement Learning Book of Proofs. 2023.

11



[17] P. Perny and P. Weng. On finding compromise solutions in multiobjective markov decision
processes. volume 215, pages 969–970, 01 2010.

[18] D. Roijers and S. Whiteson. Multi-Objective Decision Making. Synthesis Lectures on Ar-
tificial Intelligence and Machine Learning. Morgan and Claypool, California, USA, 2017.
doi:10.2200/S00765ED1V01Y201704AIM034.

[19] D. M. Roijers, P. Vamplew, S. Whiteson, and R. Dazeley. A survey of multi-objective sequential
decision-making. J. Artif. Int. Res., 48(1):67–113, Oct. 2013.

[20] D. M. Roijers, S. Whiteson, and F. A. Oliehoek. Computing convex coverage sets for faster
multi-objective coordination. J. Artif. Intell. Res., 52:399–443, 2015.

[21] W. Röpke, C. Hayes, P. Mannion, E. Howley, A. Nowe, and D. Roijers. Distributional multi-
objective decision making, 05 2023.
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A Appendix

Next, we provide the proofs of all theoretical results of An Analytical Study of Utility Functions in
Multi-Objective Reinforcement Learning that could not fit in the main paper.

A.1 Last part of Example 4

Example 11. Recall the utility function u(x, y) =
√
x2 + 1 + y

20 .

As previously mentioned This environment has two possible deterministic policies. The first policy is
π1(s1) = a1, π1(s2) = a2. This policy obtains values V⃗ π1(s1) = (3, 20), V⃗ π1(s2) = (2, 20), and
scalarised values u(V⃗ π1(s1)) ≈ 4.16, u(V⃗ π1(s2)) ≈ 3.24.

The second policy is π2(s1) = a1, π2(s2) = a3. This policy obtains values V⃗ π2(s1) =

(4, 1), V⃗ π2(s2) = (3, 1), and scalarised values u(V⃗ π2(s1)) ≈ 4.17, u(V⃗ π2(s2)) ≈ 3.21.

Any stochastic policy π will be of the form pπ1 + (1− p)π2 with 1 ≥ p ≥ 0. That means that:

• At state s1 it will obtain value V⃗ π(s1) = (3p+4(1− p), 20p+(1− p)) = (4− p, 19p+1),
and scalarised value u(V⃗ π(s1)) =

√
(4− p)2 + 1 + 19p+1

20 .

• At state s2 it will obtain value V⃗ π(s2) = (2p+3(1− p), 20p+(1− p)) = (3− p, 19p+1),
and scalarised value u(V⃗ π(s2)) =

√
(3− p)2 + 1 + 19p+1

20 .

Consider now the scalarised value of the stochastic policy π as a function u′(p, s) depending on the
real variable p. Its derivative is

u′(p, s) =
p− αs√

p2 − 2αsp+ α2
s + 1

+
19

20
, (13)

where αs1 = 4, αs2 = 3. The derivative u′(p, s1) has a root r1 ≈ 0.958, and the derivative u′(p, s2)
has a root r2 ≈ −0.042. Both roots are global minima, and thus u′(0, s1) is a global maximum for
[0, 1] at state s1, and u′(1, s2) is a global maximum for [0, 1] at state s2. In other words, π1 is the
absolute ⟨u, s2⟩-optimal policy, while π2 is the absolute ⟨u, s1⟩-optimal policy. Thus, no stochastic
u-optimal policy exists.

A.2 Preliminaries for Theorems

This Section is devoted to prove an indispensable theorem: that our search for the utility optimal
policy can be reduced to searching only among stationary policies.
Lemma 4. Let M be any finite MOMDP. Then, for every policy π, there exists another stationary
policy π′ such that, for every state s of M, it obtains the same expected returns: V⃗ π(s) = V⃗ π′

(s)
for every state s.

Proof 4. Direct generalisation from single-objective MDPs, in which for any policy π, there is
another stationary policy π′ such that for every state s0 it achieves the same value V π(s0) = V π′

(s0).
See Proposition 1.1. of [16] for a full proof for single-objective MDPs.

Theorem 5. Let M be any finite MOMDP. Let u be a utility function under the SER criterion. Then:

• If an ⟨u, s⟩-optimal policy π∗ exists for a state s of M, there is at least another stationary
policy π′

∗ such that π′
∗ is also ⟨u, s⟩-optimal.

• If an u-optimal policy π∗ exists for M, there is at least another stationary policy π′
∗ such

that π′
∗ is also u-optimal.

Proof 5. We only cover the first case, with the second one being analogous. Let π∗ be such that
u(V⃗ π∗)(s) ≥ u(V⃗ π)(s) for every state s. Then, by Lemma 4, there exists another stationary policy
π′
∗ such that V⃗ π∗(s) = V⃗ π′

∗(s) for every state s. Thus, u(V⃗ π′
∗(s)) = u(V⃗ π∗(s)) ≥ u(V⃗ π(s)), and

so π′
∗ is also u-optimal.
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Notice that Theorem 5 need not be true for utility functions under the ESR criterion.

A.3 Proof of Theorem 1

Theorem 6. Let M be a finite MOMDP. Let u be a continuous utility function for all value functions
of all policies Π(M) of M. Then, for every state s of M, at least one stationary ⟨u, s⟩-optimal
policy exists.

Proof 6. Without loss of generalisation we only consider stationary policies thanks to Theorem 5.

Given M, consider the polytope (i.e., n-dimensional bounded polyhedron) formed by a convex
coverage set CCS of M at state s (which has a finite amount of deterministic stationary policies as
vertices) [18].

Such polytope, by definition of CCS, envelops all images of all possible value functions at state s for
M. Moreover, the image of any value function at state s can be expressed as a convex combination
of the deterministic stationary policies of CCS at that state [18].

Since u is a continuous function, and the polytope formed by CCS is closed and bounded, by the
Extreme Value Theorem there exists a maximum value vector V⃗∗(s) for u in the polytope.

Since for any value vector V⃗∗(s) in the polytope there is an associated stochastic stationary policy [18],
we can find the policy π∗ associated with V⃗∗(s) that achieves the maximum value in the polytope.

Thus, there exists a ⟨u, s⟩-optimal policy for every state s of the MOMDP.

A.4 Proof of Theorem 2

Lemma 7. For every finite single-objective MDP M, any utility function u that is strictly monotoni-
cally increasing preserves the ordering between policies. That is, for every two value functions V1
and V2, for every state s:

(u ◦ V1)(s) > (u ◦ V2)(s) ⇐⇒ V1(s) > V2(s), (14)
(u ◦ V1)(s) = (u ◦ V2)(s) ⇐⇒ V1(s) = V2(s). (15)

In particular, any optimal policy is also u-optimal in M and vice-versa.

Proof 7. Direct from the definition of strictly monotonic function.

Lemma 8. For every finite single-objective MDP M, for any affine utility function u, there exists a
deterministic and stationary u-optimal policy in M.

Proof 8. Any affine function u is quasi-representative of another linear utility function l defined
as l(x) .

= f(x) − f(0). For any linear utility function l, there always exists a deterministic and
stationary l-optimal policy.

With these two Lemmas, we can prove that there exists a family of non-linear utility functions for
which an u-optimal policy exists (and moreover, the policy is deterministic and stationary): utility
functions product of composing an affine function together with a strictly montonically increasing
function.

Theorem 9. Let M be a finite multi-objective MDP M. Let u be a utility function decomposable as
u(x) = h(g(x)), with g(x) : Rn → R being an affine function, and h(x) : R → R being a strictly
monotonically increasing function for all value functions of all policies Π(M) of M. At least one
deterministic and stationary u-optimal policy exists.

Proof 9. Direct consequence of combining Lemma 7 and Lemma 8.

We divide the proof in two steps. First, we prove that a function decomposable in a linear function
and a strictly monotonically increasing function has u-optimal policies:

15



(i) First, as Lemma 7 states, applying a strictly monotonically increasing utility function to
a single-objective MDP does not modify its set of deterministic and stationary optimal
policies.

(ii) Second, every linear utility function lu can transform a MOMDP M into a single-objective
MDP M′ with the scalarised reward function lu̇⃗R. Of course, all optimal policies of the
single-objective MDP M′ are precisely the lu-optimal policies of M (for the technical
proof of this see Section 2.2 of the main paper).

(iii) These two facts together tell us: given a utility function f that can be decomposed into
a strictly monotonically increasing function smi, and a linear function lu, then f(x) =
smi(lu(x)) will have deterministic and stationary f -optimal policies (which will be exactly
the deterministic and stationary lu-optimal policies).

Next, we prove that the following two functions are quasi-representative: a function decomposable in
an affine function and a strictly monotonically increasing function, and another decomposable in a
linear function and a strictly monotonically increasing function.

(iv) Next, Lemma 8 proves that any affine utility function af is quasi-representative of another
linear utility function lu. More precisely, in every MOMDP, all af -optimal policies are
also lu-optimal policies and vice-versa for the linear utility function lu defined as lu(x) =
af(x)− af(0). This is because any affine function af(x) can be decomposed as af(x) =
A(x) + b, with A(x) being a linear function and b = af(0), a constant.

(v) Now, consider a utility function f(x) = smi(af(x)) that can be decomposed as a product
of a strictly monotonically increasing utility smi function and an affine utility function af .
Consider also the utility function f ′(x) = smi(af(x)−af(0)). This second function f ′(x)
is composed by a strictly monotonically increasing function and a linear function, so as
previously proven in (iii), there are deterministic and stationary f ′-optimal policies.

(vi) Then, recall that by (iv), utility functions af(x) and af(x)−af(0) are quasi-representative
(i.e., they share the same optimal policies). Thus, it is clear that smi(af(x)) and
smi(af(x)−af(0)) are also quasi-representative, because strictly monotonically increasing
functions preserve the ordering by definition.

Finally, since f ′(x) = smi(af(x)− af(0)) has deterministic and stationary f ′-optimal policies, and
f(x) = smi(af(x)) and f ′(x) are quasi-representative, we conclude that there are also deterministic
and stationary f -optimal policies.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We characterised preferences that can be expressed as utility functions with
Theorem 3, and we characterised sufficient conditions for utility functions to have associated
optimal policies with Theorems 1 (per state), and 2 (for the whole MOMDP).
Guidelines:
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NA answer to this question will not be perceived well by the reviewers.
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• It is fine to include aspirational goals as motivation as long as it is clear that these goals
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2. Limitations
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Answer: [Yes]
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transparent by looking at their necessary conditions.
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• The answer NA means that the paper has no limitation while the answer No means that
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• The authors are encouraged to create a separate "Limitations" section in their paper.
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
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is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Every Theorem and Lemma has its respective proof. Each proof lists all neces-
sary previous theoretical results to be proved. Every Theorem clearly states its assumptions.
Every Theorem is numbered and has its respective proof inmediately below.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: As a fully theoretical paper, the paper does not include experiments.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

18



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: As a fully theoretical paper, the paper does not include experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: As a fully theoretical paper, the paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: As a fully theoretical paper, the paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: Justification: As a fully theoretical paper, it does not include any experiment.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: As a fully theoretical paper, it did not include human subjects or participants,
there is no dataset involved, and we envision no potential harmful consequences in society
of our theorems.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: As a fully theoretical paper, it poses no societal impact on itself.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: As a fully theoretical paper, it poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: Justification: As a fully theoretical paper, it does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Justification: As a fully theoretical paper, it does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Justification: As a fully theoretical paper, it does not involve crowdsourcing
nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: As a fully theoretical paper, it does not involve crowdsourcing nor research
with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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