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Abstract. We present a form of case-based reuse conducive to the co-
operation of multiple CBR agents in problem solving. First, we present
a form of constructive adaptation for configuration tasks with compo-
sitional cases. We then introduce CoopCA, a multi-agent constructive
adaptation technique for case reuse. The agents suggest possible com-
ponents to be added to the ongoing configuration problem, allowing an
open, distributed process where components used in cases of different
agents are pooled together in a principled way. Moreover, the agents can
use their case base to inform about a similarity-based likelihood that
the suggested component will be adequate for the current problem. We
illustrate CoopCA by applying it to the task of agent team formation1.

1 Introduction

We present a form of case-based reuse conducive to the cooperation of multi-
ple CBR agents in problem solving. First, we present a form of constructive
adaptation for configuration tasks with compositional cases. Constructive adap-
tation is composed of the Hypotheses Generation and the Hypotheses Ordering
processes. Then we introduce CoopCA, a multi-agent constructive adaptation
technique for case reuse, showing how Hypotheses Generation can be extended
to a multi-agent system. The agents suggest possible components to be added to
the ongoing configuration problem, allowing an open, distributed process where
components used in cases of different agents are pooled together in a principled
way. Moreover, the agents can use their case base to inform about a similarity-
based likelihood that the suggested component will be adequate for the current
1 Thanks to David Aha who during ECCBR-2004 in Madrid observed that distributed

and multi-agent approached to CBR focused on the Retrieve process and wondered
aloud why Reuse process had not been extended to cover distributed and multi-agent
scenarios. This work has been partially supported by the CBR-ProMusic project
(IC2003-07776-C02-02) and the SAMAP project (TIC2002-04146-C05-01)



problem. This information is used by the Hypotheses Ordering process that thus
explores the configuration space guided by the cases of all the involved agents.
We illustrate CoopCA proposal by applying this technique to the task of agent
team formation.

1.1 Generative Reuse with Constructive Adaptation

The Reuse process in case-based reasoning when the solution is a complex struc-
ture, like a plan or a design, can be performed in two ways: techniques for reuse
on synthetic tasks, they fall into two families: transformational reuse and gen-
erative reuse [1]. Transformational Reuse takes the solution structure of one
(or several) retrieved case(s) and transforms that structure using some specific
algorithm or search process until a new solution structure is found that is “con-
sistent” (or “adequate”) with the new problem [5, 6]. Generative Reuse, on the
other hand, generates the new solution by construction; the generative process
uses past cases (and their similarity to the new case) to construct the solution
structure of the new case. The canonical technique in CBR literature for planning
tasks is derivational analogy [8].

Constructive adaptation (CA), as presented in [7], is a general technique for
generative reuse based on two basic notions: a) that building a solution for a
new case is a search process, and b) that the search process is guided by a sim-
ilarity measure over the precedent cases stored in a case base. The third basic
idea of CA is that there are two related but distinct tiers of representation,
namely case representation (useful to compute similarities) and state represen-
tations (useful to perform search process). Therefore, CA proposed a two-tiered
process for constructive adaptation, as shown in Fig. 1. Notice that CA fulfills
the requirements for being a form of compositional adaptation [10, 9] since CA
is reuse technique where solution parts coming from multiple cases are reused
and combined together.

This paper presents a more specific version of the Constructive Adaptation
approach adequate for design and configuration tasks. Although less general
than [7], this specialization allows us to define CA in a more detailed and formal
manner. The contribution of this paper is three fold. First, we present an abstract
and formal specification of Compositional Cases, a case description formalism
that is adequate for CBR systems dealing with design and configuration tasks.
The second contribution is a detailed description of Constructive Adaptation for
design and configuration tasks using Compositional Cases;

2 Constructive Adaptation for Compositional Cases

Configuration tasks are amenable to be supported in CBR systems using com-
positional cases— i.e. cases that express the relation between a component and
the role it plays in the object being configured. For instance, in the task of con-
figuring a PC, HardDrive is a role and ATA/IBM-DJSA-210 is a component
that can fulfill that role.
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Fig. 1. The two-tiered process of constructive adaptation.

Constructive adaptation is composed of the Hypotheses Generation (HG) and
the Hypotheses Ordering (HO) processes. Both HG and HO work upon states
(see Fig. 1) representing a partial configuration being considered by the system.
Concerning compositional cases, HG takes a state and generates new states with
refined partial configurations; specifically it takes a open role Ri and generates a
new state for each particular component Cj that can fulfill role Ri. Components
Cj are obtained by retrieval of the configurations in case-base with a role Ri.

Concerning Hypotheses Ordering, HO orders open states assessing the simi-
larity of the state’s partial configuration with respect to the case base of config-
urations. Specifically, let Cj in role Ri be the last component added to a state;
HO will give the state a rank value that is the highest similarity of a case with
Cj in role Ri with respect to the current problem. Notice that we are assess-
ing similarity comparing the problem specification and not the solutions (the
configuration of the cases and the partial configuration of the state).

The only requirement to use CoopCA in a configuration task is that the CBR
system has to be able to describe the characteristics that specify the possible
components that may fill a role. We will call this description as a task specification
(or simply a task) of a role2. As we will see, task specification is the means used
to inform other agents about the current focus of interest in the reuse process.
Then, the agents receiving a task specification can use it as a query to their case
base —and from which the components satisfying it are retrieved.

2 The simplest task specification is just a role name Ri; however, often some con-
straints on the type and/or properties of components that can legally fill the role
are expressed in the task specification
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Fig. 2. Compositional cases consist of a complex component Ci that specifies the roles
for the required subcomponents (Ri

j) and the bindings (W ) of those roles with fur-
ther components (Ckj ). Compositional cases and roles have descriptions (D) used to
establish valid matchings in the application domain.

2.1 A framework for compositional cases

This section develops a domain-independent description framework for case-
based compositional design (or configuration, in the following we will use both
terms synonymously).

First, we will define a language L = 〈R, T , C, O〉 for compositional design,
where R is the set of roles, T is the set of tasks, C is the set of components, and
O is an object language with a subsumption (v) relation3 used to describe tasks
and components. Moreover, a task T ∈ T is a triple T = 〈R,C,D(R,C)〉 where
R is a role in component C and D(R,C) is a description of the characteristics
that specify the possible components that may fill role R. We will use the dot
notation to refer to an element of a tuple, e.g. Ti.R denotes the role of task Ti.

We will distinguish two types of components (C = CE ∪ CX), namely ele-
mentary and complex components. A complex component C ∈ CX is a pair
C = 〈D(C), {(Ri, D(Ri, C))}i=1...n〉 where the head D(C) is a description of
the component in the object language O and the tail is the collection of roles
(and their descriptions) required by C; an elementary component is simply one
that requires no further roles. A complex component defines a collection of new
(sub)tasks that we note Tasks(C) = {Ti|(Ri, D(Ri, C)) ∈ Tail(C)}.

Component matching (Ti � Cj) is a relation that establishes whether a com-
ponent Cj can fulfill a role Ri by checking that if satisfies the associated task
description— i.e. Ti � Cj = D(Ri, C

′) �O D(Cj). Since both descriptions,

3 Subsumption is the inverse relation to satisfaction: given two formulae ψ,ψ′ ∈ O
that ψ subsumes ψ′ (ψ v ψ′) if all that is true for ψ is also true for ψ′ (or that ψ′

satisfies ψ).

4



Fig. 3. Compositional cases represent a configuration that is complete and valid; this
figure shows a configuration with 12 roles that is complete (since all roles are bound).
Elementary components are shown as gray boxes.

D(Ri, C
′) and D(Cj), are expressed in the object language O the relation �O

also depends on the object language.

Definition 1. (Binding) A binding Wk = (Ti
.= Cj) is the assignment of a

specific component Cj to a particular role Ti.R of a component Ti.C.

We note W as the set of all possible bindings in a language L and Wk.T (resp.
Wk.C) the task (resp. component) of a binding Wk. A binding Wk = (Ti

.= Cj)
is legal when their elements satisfy the component matching relation Ti � Cj .

Definition 2. (Configuration) A configuration K ∈ K is a collection of bind-
ings K = {Wk = (Ti

.= Cj)}k=1...m. If all bindings are legal we say the configu-
ration K is valid.

A configuration may be partial or complete: intuitively a configuration is com-
plete when every task has an assigned component; otherwise it’s partial. Let us
note the set of components in a configuration K.C = {Cj |∃Bk ∈ K : Bk.C = Cj}
and the set of tasks K.T = {Ti|∃Cj ∈ K.C : Ti ∈ Tasks(Cj)}.

Definition 3. (Complete Configuration) A configuration K is complete iff
Complete(K) = ∀Ti ∈ K.T : ∃Bk ∈ K : Bk.T = Ti; otherwise K is partial.

We can now define a composite case, and for that purpose we will assume that
a problem specification (or query) Q is a special type of task Q = 〈−,−, D(Q)〉,
namely one that has no role or component but only a description D(Q) in the
object language O specifying the requirements that a solution to the problem
has to satisfy.

Definition 4. (Composite Case) A composite case is a pair (Q, K) where
(Q .= Cj) ∈ K and K is both valid and complete.
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Fig. 4. Matching T � C between a task (role or user query) T and a component C
is valid when their Before-formulae and After-formulae satisfy the plug-in matching
criteria.

Notice that the above definitions of a complete and valid configuration K
does not imply that is satisfies the requirements put forward by Q. In fact, this
is the information provided by a (correct) case base; that is to say, a case (Qr,Kt)
states that it is known that Kt is an adequate solution for Qr. As we will see
in the following sections, this is the information source that will be used by the
process of constructive adaptation.

2.2 Compositional design specialized descriptions

In order to specialize the general description of constructive adaptation (CA)
to the task of compositional design we will make a further assumption con-
cerning the descriptions of tasks and components. We will assume form now on
that tasks and components are described as pairs (B,A) — where B are the
Before-formulae (or preconditions) and A are the After-formulae (or goals) that
characterize what they assume to be true in the world before and after they are
used inside a configuration.

Concerning a component C with D(C) = (BC , AC), AC is a collection of
formulae in language O that express what is true after a component is used for
some role with a legal binding, while BC express what C assumes to be true in
the designed configuration (and should be provided by some other component
in the configuration in order to insure that C fulfills its role).

Concerning a task T = 〈R,C,D(R,C)〉 with D(R,C) = (BT , AT ), AT is a
collection of formulae in language O that express what needs to be true after
whatever component has been chosen to fulfill role R in C, while BT express
that which any component fulfilling role R of C can assume to be true.

Now, since a problem query Q is also a task, it will be a tuple (Q =
〈−,−, (BQ, AQ)〉), where Q.D is a pair of B- and A-formulae. Notice that the
interpretation of the task induced by a query is the following: AQ are the goals
that the configured design has to satisfy and BQ specifies the statements that
can be assumed to be true by the configured design.
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Component matching may now also be specialized to this description frame-
work. Since we had matching as Ti � Cj = D(Ri, C

′) �O D(Cj), now we have
that Ti � Cj = (BT , AT ) �O (BC , AC) can be defined over B-formulae and
A-formulae. Adopting the usual notion of matching from software components
literature (often called plug-in matching) we have that

Ti � Cj = (BT w BC) ∧ (AT v AC) (1)

that is to say, (AT v AC) the component’s A-formulae satisfy all task’s A-
formulae (all of task’s goals are achieved by the component) and (BT w BC) the
task’s preconditions satisfy all component’s preconditions (i.e. a component can
achieve the same goals with less stringent preconditions).

2.3 Compositional design constructive adaptation

We will present now the search process of constructive adaptation for compo-
sitional design. For this purpose, we will define what a state is, how states are
generated (Hypotheses Generation) and how to select the state to be expanded
(Hypotheses Ordering).

Definition 5. (State) A state Z given a query Q is a tuple
Z(Q) = 〈B⊥, A⊥, B>, A>,W⊥,W>,WH〉, where

1. B⊥ and A⊥ are open B- and A-formulae, i.e. those not satisfied in Z
2. B> and A> are closed B- and A-formulae, i.e. those satisfied in Z
3. W⊥ is the set of open bindings (those tasks that are not bound to any com-

ponent in Z), W> is the set of closed bindings (those tasks already bound
to a component in Z), and WH is the last binding (that introduced in the
predecessor state of Z)

A state Z is valid when all bindings in Z.W> are valid.

As we have seen, constructive adaptation is a two-tiered process where case-
based problem solving works both at the case representation tier and the state
representation tier. Therefore, we will need some mapping functions that both
tiers. The first function initial state (IS : Q → Z) that transforms a query Q
into an (initial) state Z0(Q), as follows

IS(Q) = 〈∅, Q.D.A, Q.D.B, ∅, TQ, ∅, ∅〉

that is to say, a state where the Q’s B-formulae become closed preconditions,
A-formulae become open goals, there are no closed bindings except for the open
binding representing the query task itself.

Hypothesis Generation The Hypothesis Generation function (HG : Z → 2Z)
generates the successor states of a state Zi in three steps: 1) an open task is
selected, 2) the components that match that task are gathered, and 3) a successor
state is generated for each of the components that can be bound to the task.
Specifically:
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1. (Open Task Selection) HG takes a task from the state’s open bindings
T j

Zi
∈ Zi.W

⊥. This selection is random since is no reason to order the open
tasks: once an open task is introduced in a configuration it has to be solved
by finding an adequate component; thus, there is no speed up to be gained
in ordering them since solving one task before another makes no difference.

2. (Component Gathering) HG gathers the set of components that match
this task: C(T j

Zi
) = {C|T j

Zi
� C}. This gathering can performed in two

ways:
(a) (Catalog Component Gathering) If all components descriptions are placed

in repository then we only have to check for those components in the cat-
alog that satisfactorily match the task description C(T j

Zi
). This approach

is adequate when all information on components (a Catalog) is directly
available.

(b) (Case-based Component Gathering) If the component descriptions avail-
able are those used in previous configurations stored as cases then a CBR
system withe a retrieval technique supporting subsumption (v) can infer
which components will match the selected task (since we have already
defined � in terms of v in (1).

3. (Successor States) HG generates a new successor state for each component
Ck ∈ C(T j

Zi
) as follows

succ(Zi, T
j
Zi

, Ck) = 〈B⊥, A⊥, B>, A>,W⊥,W>,WH〉

where T j
Zi

is no longer an open task in W⊥ and a new binding T j
Zi

.= Ck has
been added to W>. The Appendix A formally describes how the new state
is generated. Essentially the new component Ck achieves some new goals
not yet achieved in Zi and therefore A> and A⊥ are updated accordingly.
Moreover, if Ck has subtasks they are added to W⊥ and since each subtask
introduces A-formulae and B-formulae again A> and A⊥ need to be updated
accordingly.

Hypothesis Ordering The essential notion of constructive adaptation is to
use cases similar to the current problem to guide the search process. Since in
compositional design a problem query Q = (BQ, AQ) is a specification of the
properties desired for the solution (AQ) plus the assumptions of what can be
assumed to be true (BQ), we need a similarity relation S between Q and the
problem specification part of composite cases (Qi,Ki). The relation S provides
thus a ranking S of the cases in the case base Σ = {(Qi,Ki)}i=1...N

S(Q,Σ) = {〈(Qi,Ki), S(Q,Qi)〉}i=1...N

Next, we have to transform this case ranking into a ranking of the open states
Zopen

t (Q) ⊂ Z at a step t in the CA process.
For this purpose, consider the latest hypothesis to which the CA process

is committed to in an open state, namely Z.WH the last component added to
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the configuration. Since CA will pick the highest ranking state in Zopen
t (Q) to

expand (generating successor states) we are interested into assessing how likely
that the partial configuration of an open state Z is to lead to a correct solution.
Since comparing the whole structure of the of the partial configuration with the
case base would be excessively time consuming, CA will assess this likelihood by
considering only the latest hypothesis Z.WH of each open state.

Let us call note Z.WH .C the component Cj bound by the latest hypothesis
Z.WH = (Ti, Cj) in state Z and let be Σ|(Ti,Cj) ⊂ Σ the subset of cases in the
case base where the component Cj fills role Ti. Since the similarity relation S
induces also a ranking of the cases in this subset S(Q,Σ|(Ti,Cj)) we can now
define the function M that yields the similarity degree of highest ranking case
in Σ|(Ti,Cj), namely

M(Σ, Ti, Cj) = max({S(Q,Qk)|(Qk,Kk) ∈ Σ|(Ti,Cj)}) (2)

The ranking relation R induces a ranking over the open states by computing
a heuristic value ri for each open state Zi:

R(Zopen
t (Q)) = {〈Zi, ri〉} = {〈Zi,M(Σ, Zi.W

H .T, Zi.W
H .C)}Zi∈Zopen

t (Q)〉

that is to say, each open node Zi is ranked according to the degree of similarity
of the highest ranking case that has current hypothesis component Zi.W

H .C
fulfilling Zi.W

H .T , the current hypothesis role.

Goal Test The last element of constructive adaptation is the Goal Test function
GT: Z → {True, False}. Goal Test checks whether a state Z is solution, i.e.
whether the state corresponds to a valid solution that satisfies the problem
query Q:

GT(Z,Q) = V alid(Z)∧Satisfies(Z,Q) = (Z.W⊥ = ∅)∧(Z.A⊥ = ∅)∧(Z.B⊥ = ∅)

namely, there is no task not bound to a component (Z.W⊥ = ∅), all Q.A goals
are satisfied (Z.A⊥ = ∅), and there is no B-formula required by a configures
component that is not satisfied (Z.B⊥ = ∅).

Notice that in CA the similarity relation S is left open and may vary across
different application domains and representation languages used to specify the
problem query Q. In our experiments we have used SHAUD, a similarity relation
for feature terms [2], but other similarity relations can be used — e.g. RIBL-2
for Horn clause representation[3].

3 Multi-Agent Cooperative Constructive Adaptation

In this section we will present a distributed framework for case reuse using con-
structive adaptation. For this purpose we will focus on a particular application
that is essentially distributed: team formation of cooperative agents. Team for-
mation is the process by which, given a task to be achieved specified by a user
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or an agent, such that no single agent is capable of achieving it, a selection of
agents with the required capabilities is made and then organized as a multi-agent
system with the required interactions protocols to coordinate those agents.

The reason we focus of team formation is that a distributed form of the
case reuse process only makes sense if the knowledge used for reuse is itself
distributed. Multi-agent systems can be characterized precisely by this fact: there
is no central repository of containing the information and knowledge. In other
words, each agent has a local view of the problem solving episodes in which
it is involved, and each agent has its specific capabilities (and its particular
knowledge). Clearly, if a task can be performed using the capabilities of a single
agent there is no need to form a term.

We will now present the cooperative constructive adaptation (CoopCA) tech-
nique in the framework of agent team formation. CoopCA assumes that the agents
are willing to cooperate in forming a team and sharing the necessary information.
The next subsections will first express the concept of team as a compositional
case and later will present the distributed reuse technique of CoopCA.

3.1 Teams as compositional cases

Agent teams can be modeled as compositional cases; in fact, the ORCAS frame-
work [4] represents agent teams as compositional cases and uses case-base rea-
soning to form teams adequate for specific tasks. Recall the general schema of
compositional cases in Fig. 2: an agent team fills this schema if we interpret
components Ci as agents, roles Ri

j as subtasks, component descriptions D(Ci)
as descriptions of agent capabilities, and role descriptions D(Ri

j , Ci) as descrip-
tions of agents subtasks as shown in Fig. 5 . A team is formed when the bindings
W are established associating to each role/subtask an agent with a capability
suitable to achieving that task. We say an agent Ci plays role Ri

j in a team when
such a binding W exists, and agent Ci acts as coordinator of the agents that
play the roles defined by Ci. Moreover, agent Ci can either solve role/subtask
Ri

j either alone or defines further subtasks (that will be achieved by a subteam
of which Ci is the coordinator).

We will view the process of team formation as a compositional design task.
Let us assume there is a user that poses a query Q to a broker, i.e. an agent
that will be in charge of designing the team structure, then negotiate the specific
agents that will fulfill the team roles, and finally setting up the interaction pro-
tocols for the agent team. In this paper we will deal mainly with the first stage,
namely designing the team structure, although some issues on selecting agents
will also be discussed. Concerning the second and third stages, no CBR is used
there, but see [4] for details. Now, the current approach in multi-agent systems
(MAS) is to assume there is one or several “yellow pages” services where agents
register their capabilities.

Our model, however, will be to use an experience-based approach. Specifi-
cally, we assume that the broker agent that uses CBR on a case base composed of
previous teams; the broker will try to use CoopCA to form new teams by reusing
old teams in its case base. In fact, this two approaches to find adequate agents as
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Fig. 5. Team as a compositional case.

team components are called in Section 2.3 Catalog Component Gathering (since
yellow pages is a catalog of agent capabilities) and Case-based Component Gath-
ering (since the new team will have capabilities used in past teams stored in
the case base). Moreover, these two approaches are not incompatible: the broker
may resort to use the yellow pages catalog if need be.

Finally, notice that what we call broker agent is in fact a role; that is to
say, there is no such a thing as the broker but a number of agents that have
played the broker role in forming new teams. Therefore, there is no unique and
centralized repository of cases describing teams; instead, we have that agents
playing the role of brokers have individual case bases storing their experience
in team formation. We can now see that the knowledge for team formation is
essentially distributed and thus the reuse process that CoopCA embodies should
be such that makes use to this distributed knowledge as far as possible. In what
follows, we will call a description of a team stored as a case in the case base of
an individual agent a team-case.

3.2 Cooperative Constructive Adaptation

The assumptions made by CoopCA are the following: 1) there is a collection of
agents Bl(ab) that played the role broker and store their team designs on an
individual case base; and 2) there is an acquaintance relation A(ab, ak) among
the agents in Bl(ab) such that for an agent ab then ∀ak ∈ Bl(ab) : Al(ab, ak); i.e.
either A(ab, ak) (ak is an acquaintance of ab or there is a chain of acquaintances of
length not larger that l that links ab and ak). When an agent in Bl(ab) receives
a query Q to form a team it will use CoopCA to design such a team using
the collective experience in team formation of the agents in Bl(ab). Moreover,
notice that in a MAS framework there are several agents that can possess the
same capability and, thus, the same team design can be realized by different
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collections of agents. We assume in the following that the capabilities are the
components of CoopCA for team design.

CoopCA follows basically the CA search process described in section 2.3 and
summarized in Fig. 6 with a few modifications. The broker agent that receives
the query Q will perform the CA search process (i.e. it will generate new states
and maintain the open and closed states) but it will need the help of other
agents to generate the hypothesis and to rank them. In other words, Hypothesis
Generation and Hypothesis Ordering will require the broker to communicate
with other agents and use the acquired information to generate and order the
hypothesis during search. Let us first consider Hypothesis Generation and later
we will turn to Hypothesis Ordering.
Cooperative Hypothesis Generation. The cooperative hypothesis genera-
tion function will generate the successor states with the help of other agents in
Bl(ab). For this purpose we need to modify the second step (Component Gather-
ing); steps Open Task Selection and Successor States are not modified. We will
use a distributed form of Case-based Component Gathering such that an broker
agent ab will send a message (containing a task description) to his acquaintance
agents A(ab, ak); in turn they will send this message to their acquaintance agents
up to l times. Those agents in Bl(ab) that receive the message and find some
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Fig. 7. Image capture of the CBR broker in ORCAS.

component in their case bases that satisfy that task description will answer to the
broker ab with a message containing the component(s) and a degree of similarity.

More formally, the broker agent interacts with its acquaintance agents to
obtain the information concerning a specific task in the following steps:
(1) Start Cooperation: First the broker agent ab informs its acquaintance
agents of the task to be performed and sends a message m1 containing the query
Q = (BQ, AQ). This information is forwarded by ab’s acquaintances to their
respective acquaintances until all agents in Bl(ab) has this information. Notice
that Q will be used by the agents to compute the similarity using definition (2).
The agents are of course free to decline to cooperate, so only those that send
back an acceptance message before a time τm1 will be considered in the following
steps as members of the multi-agent system A.
(2) Current Task: Let T j be the current task given by Open Task Selection.
The broker agent broadcasts a message m2 containing the task description T j

to the agents in A and waits for their answers before time τm2 . Figure 7 shows a
snapshot of the visualization tool of the ORCAS platform with the current state
of a CBR broker agent using constructive adaptation; notice the goals on the left
(the first 6 achieved and the last 3 still open) and the task/capability bindings
of the current sate on the right.
(3) Available Capabilities: Every agent ak ∈ A will receive message m2

and execute the Case-based Component Gathering process over their case base
retrieving a set of components Ck(T j) that match the task description T j . Notice
that a retrieved “component” is in fact a specific agent that uses a capability in
some role in some team-case, and what interests the broker ab are the available

13



capabilities matching the current task T j . For each component Ci ∈ Ck(T j)
agent ak will send a message m3 with a tuple 〈T,C,A, M〉 containing:

〈T j , Ci,Ak(Ci),Mk(Ci)〉
where Ci is a capability adequate for task T j , Ak(Ci) is the set of agents known
to ak that possess capability Ci, and Mk(Ci) is the maximum degree of similarity
—defined in Hypothesis Ordering in equation (2).
(4) Hypothesis Generation: Now the broker ab has received a set of messages
M3 of type m3, from which it knows the set of available capabilities Ck(T j) =⋃

m∈M3
m.C. Then a new successor state is generated for each capability Ci ∈

Ck(T j), and this ends the Hypothesis Generation precess. Moreover ab also
builds a list of available agents A(Ci) =

⋃
m∈M3(Ci)

m.A for each capability
c ∈ Ck(T j) from the relevant messages M3(Ci) = {m ∈M3|Ci = m.C}.
(5) Hypothesis Ordering: Since M3 also contains the similarity information
needed for Hypothesis Ordering, the broker simply has to aggregate the values
coming from different agents for each capability c ∈ Ck(T j). For our purposes,
the maximum similarity value is a good option so a capability c will have as
similarity value M(A, T j , Ci) = maxm∈M3(Ci)m.M . This value allows the bro-
ker to use the ranking relation R to order the open states in the constructive
adaptation process. Once Hypothesis Ordering finishes, then either the search is
terminated by the Goal Test and the next step is (6), or it goes to step (2).
(6) Agent Selection and Instruction: When the team design is finished
the broker ab has a complete specification of the hierarchical team structure.
This last step consists of selecting for each particular task/capability (T j .= Ci)
binding an agent with capability Ci, i.e. one of the set A(Ci) computed in step
(3). We will not go into the details of this process (explained in [4]), suffice to
say the broker has to negotiate with the candidate agents and select a crew to
fully staff the team and then provide the selected agents with the instructions
on how to coordinate to achieve the global task.

We have seen that CoopCA is a straightforward extension of constructive
adaptation for compositional cases for multi-agent scenarios. CoopCA is in fact
applicable to scenarios where the knowledge exploited in the Reuse process is in
some way distributed over a collection of entities, e.g. web services.

4 Conclusion

This paper discusses three different but related issues relevant to case-based
reasoning. First, the definition of compositional cases as a useful abstraction
for a wide variety of CBR applications in design and configuration tasks; com-
positional cases are however limited to tasks where the designed structure is
hierarchical. Second, constructive adaptation (CA) for compositional cases spe-
cializes the basic ideas of CA [7] in a generic reuse algorithm that is valid for any
CBR system that espouses compositional cases for a task; CA for compositional
cases leaves open which representation language O is used for B-formulae and
A-formulae. The language O can be anyone (from Horn clauses to description
logics to simple concept taxonomies) adequate for a specific domain as long as
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the operation of subsumption (or satisfaction) is supported and some relational
case similarity (e.g. SHAUD [2] in ORCAS or RIBL-2 [3] for Horn clauses) is
defined.

Third, we have shown that CA can be extended in a natural way to a dis-
tributed design task, and we have focused on applying CoopCA to the task of
agent team formation. CoopCA shows the power of applying CBR to multi-agent
systems tasks such as team formation. Often in MAS agents are supposed to be
capable of reasoning and learning but they rarely are on practice. Let’s think
about the yellow pages approach to team formation: agents are assumed to go
to the yellow pages every time a new team is to be formed: this is just because
agents are assumed not to learn. We have shown that learning team-cases a bro-
ker agent will not need to repeat needles work for every team it forms. Once
a broker ab has formed a team for task T i and a new task T j similar to T i

arrives, ab already knows most of the components (agents and their capabili-
ties) that most likely will be in the new team. Thus learning cases decreases not
only search costs but also communication costs among agents. In fact, since in
a given environment most tasks tend to be repetitive, CoopCA shows that the
CBR approach offers a straightforward way to form teams efficiently.

The CoopCA is now simply using a best-first search regime with similarity-
based heuristic; as future work we want to use more powerful (satisficing) search
regimes that would allow also to minimize solution costs.

A Successor

The successor function generates a new state Zj given a current state

Zi = 〈B⊥
i , A⊥i , B>

i , A>i ,W⊥
i ,W>

i ,WH
i 〉

for a new component Ck filling a role TZi
∈ W⊥

i as follows

Zj = succ(Zi, T
j
Zi

, Ck) = 〈B⊥
j , A⊥j , B>

j , A>j ,W⊥
j ,W>

j ,WH
j 〉

where

(Current Hypothesis) WH = (T j
Zi

.= Ck)
(Closed Bindings) W>

j = W>
i ∪ (T j

Zi

.= Ck)
(Open Taks) W⊥

j = W⊥
i ∪ Tasks(Ck)

(Open A-formulae) A⊥j = {x ∈ A⊥i |@y ∈ Ck.A : y v x}
The open A-formulae A⊥j are those in the previous state A⊥i such that are
not satisfied (v) by a formula in the postconditions of the new component
Ck.A

(Closed A-formulae) A>j = A>i ∪ {x ∈ Ck.A|@y ∈ A>i : y v x}
The closed A-formulae are those in the previous state A>i or in the post-
conditions of the new component (Ck.A) that are not satisfied (v) by any
formula in A>i .
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(Closed B-formulae) B>
j = B>

i ∪ {x ∈ B⊥
i |∃y ∈ Ck.A : x v y}

A new formula is added to closed B-formulae when a formula in open B-
formulae B⊥

i is satisfied (v) by a formula in the goals of the new component
Ck.A.

(Open B-formulae) B⊥
j = {x ∈ Ck.B|@y ∈ B> : y v x} ∪ {x ∈ B⊥

i |@y ∈
Ck.A : x v y}
A new formula is added to open A-formulae when the new component Ck

has some formula as a precondition Ck.B that is not satisfied (v) by any
formula in the closed B-formulae B>; moreover when an open B-formula
becomes closed it is removed.

Essentially the process is the following. Since a component satisfies a task if
and only they satisfy the component matching, there is no need for adding the
goals of a component subtasks to the open A-formulas. Whichever component
will be bound to it will satisfy them and then we will have to remove them to
closed A-formulas. We only have to check the goals of the query problem: how
introducing a new component satisfies one or more general goal. Dually, when
a component is introduced we have to check if some of its preconditions are not
satisfied by the problem query B-formulas (or by some component’s goals).
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