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ABSTRACT

This paper introduces the Approximate Ethical Embedding Process,
an algorithm for automating the design of ethical environments for
learning agents. Our algorithm helps build environments wherein
multiple agents learn policies that align with an ethical (moral) value
while simultaneously pursuing their individual objectives. Therefore,
we contribute to endowing environment designers with algorithmic
tools for building ethical environments. Moreover, we demonstrate
the ethical design process for two different settings of a gathering
environment, where agents have to adhere to beneficence to promote
the collective survival of the population. Our experiments show
that our approximate embedding process successfully generates
environments that incentivise the learning of value-aligned policies.

KEYWORDS

Ethical values, learning for value alignment, multi-agent reinforce-
ment learning.

1 INTRODUCTION

As autonomous agents gain more prevalence in daily tasks [5, 12, 35,
38], their risks also become more apparent. Thus, various interna-
tional initiatives, such as the Artificial Intelligence (AI) Act [8], man-
date the systems to behave aligned with human values [9, 27, 30].
Thereby, as Multi-Agent Reinforcement Learning (MARL) algo-
rithms have found application in diverse domains, they have also
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been used to instil value-alignment in the context of Machine Ethics
[26, 40].

Machine Ethics pursues that (ethical) value-aligned behaviour
involves proactivity in performing good (praiseworthy) actions (e.g.,
[9]). To achieve such an objective, the literature on Machine Ethics
has extensively used Reinforcement Learning (RL) to help agents
learn to behave ethically. Specifically, it is common in the literature
[1, 3,16, 20, 32, 37] to adopt an agent-centered approach to value
alignment: an agent is guided towards a value-aligned behaviour by
providing it with extrinsic, manually-tuned ethical rewards incorpo-
rated into its learning environment.

Alternatively to the agent-centered approach, we find in the lit-
erature recent environment-centered approaches to value alignment
[22, 23]. This strand of research takes an environment designer per-
spective. This perspective focuses on automating the design of an
ethical environment — the so-called ethical embedding process —
for either a single agent [22] or multiple agents [23]. In such ethical
environments, agents are guaranteed to learn ethical policies. The
environment-centered approaches to value alignment are particularly
appealing with respect to agent-centered approaches because they
provide theoretical guarantees regarding the learning of ethical poli-
cies and the automation of the reward design. Nonetheless, these
approaches are based on strict theoretical assumptions (e.g., full ob-
servability, convergence to optimality of agents’ learning), severely
compromising their scalability.

Against this background, our goal is to contribute to the appli-
cability of environment-centered approaches to value alignment.
Thus, our primary contribution is a new ethical embedding algorithm
(henceforth approximate embedding) that goes beyond the scalability
of the embedding algorithm in [23] (henceforth optimal embedding).
There are major differences between our approximate embedding
and previous optimal embedding. First, our approximate embedding
adopts more realistic assumptions (e.g., partial observability, and no
need for MARL algorithms with convergence guarantees). Second,
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the approximate embedding builds on a completely different techni-
cal methodology compared with the optimal embedding, as we now
detail.

Like optimal embedding, our approximate embedding takes as
input a multi-objective environment, with ethical and individual ob-
jectives (rewards), to produce a single-objective ethical environment
wherein agents learn. This approach prevents agents from learning
unethical policies by ensuring that it is in their best interest to be-
have ethically. First, by considering more realistic assumptions, our
approximate embedding requires introducing a new type of environ-
ment: an ethical Multi-objective Partially Observable Markov Game
(MOPOMG), which extends MOPOMGs defined in [28]. Moreover,
it implements two key computations differently from optimal embed-
ding: (1) computing the reference (ethical) joint policy for agents to
learn in an ethical environment; (2) computing the ethical weight to
combine ethical and individual rewards into a single reward so that
the ethical joint policy is the optimal policy to learn in the ethical
environment.

In more detail, our approximate embedding computes a reference
ethical joint policy as a Nash equilibrium of an ethical MOPOMG
using Deep Reinforcement Learning (DRL). DRL has impressive
results in approximating Nash equilibria despite its lack of theoret-
ical guarantees [2, 13, 39]. Computing the ethical weight calls for
introducing the Ethical Weight Finder, a novel algorithm based on
binary search. In short, we make the following key contributions:

e We present a novel ethical embedding algorithm for building,
under realistic assumptions, multi-agent ethical environments
that incentivise the learning of ethical policies.

o We demonstrate how a novel multi-agent extension of a state-
of-the-art multi-objective RL algorithm, lexicographic proxi-
mal policy optimization (LPPO) [29], can be applied to ap-
proximate ethical equilibria in Multi-objective Partially Ob-
servable Markov games. Our novel algorithm, Multi-Agent
LPPO (MALPPO), utilises Lagrange multipliers to learn ethi-
cal policies, enabling agents to effectively adopt ethical poli-
cies within an ethical MOPOMG.

e We employ the approximate embedding to build ethical en-
vironments for an ethical version of the Gathering Game
[11, 14]. We empirically demonstrate that approximate em-
bedding produces ethical environments where agents do learn
to adhere to the moral value of beneficence to guarantee the
survival of the whole agent population.

2 BACKGROUND

The multi-agent reinforcement learning literature formally defines
a multi-agent environment as a Markov game (MG) [2]. MGs are
sequential decision-making settings where agents simultaneously
act to modify the environment state and accumulate individual re-
wards. When agents have limited sensing capabilities over states, it
is characterised as a Partially Observable Markov Game (POMG)
[2]:

Definition 2.1 (POMG: Partially Observable Markov Game). A
partially observable Markov Game (POMG) is defined as a tuple
(S, Ai=Lon Ri=Lon T gi=ln gi=ln v). Here, S is a finite
set of states, and each A? represents the set of actions available to
agent i. The transition function T : § x AL x § — [0, 1] defines

the probability of moving from state s to the next state s’, given
the joint action a = (a', ..., a™) of all agents. For each agent i, the
reward function R : § x A=1"" x § — R specifies the reward r!
after applying joint action a to state s and transitioning to state s’.
O=LM i5 a finite set of observations and the function Q*=1""">"
AFELn 5§ % 0L [0, 1] represents the probabilities over
the agent’s possible observations o’ given the state s and a joint
action a. Finally, y € (0, 1] is the discount factor which indicates
how important future rewards are on the current state.

In MARL, each agent i aims to learn a policy (i.e., a behaviour)
7' that maximises its expected discounted accumulation of rewards
E[Z2,r'r].

Similarly, RL defines the value! V7 (s) as the expected discounted
return a policy 7 gets from state s onwards. Knowing such value
function enables an agent to choose the actions that lead to the
most valuable states. However, computing an exact value function is
computationally challenging for environments with large state and
action spaces.

Typically, a joint policy 7 = (rx!,...,7") that maximises the
return for all agents does not exist. Consequently, following the game
theory literature, the main solution concept in MARL is reaching
a Nash equilibrium (NE) [2], defined as a joint policy in which no
agent can unilaterally improve its current accumulation of rewards:

Definition 2.2 (Nash equilibrium). Given a Partially-Observable
Markov Game M, a Nash equilibrium is a joint policy (rl, 7, )
satisfying that for every agent i and every state observation ¢ =
(01,...,0™), with each o in O, the policy 7! of agent i is a best-
response against 77 ! (s), that is, it maximises the return against the
joint policy of the rest of the agents 7 ':

i = i
Virtazy (0 2 Vi

Al )

(3), for every r'and V3 € 0, (1)

where V£ (5) is the expected discounted accumulation of rewards
E[X2, y'r' | m,0] of agent i if all agents follow the joint policy
7 = (n!, 7!} after observing &.

Computing Nash equilibria in Markov games is a complex but
well-studied problem [4, 17, 36]. The exact computation of equilib-
ria is computationally intensive, with complexity increasing rapidly
in high-dimensional environments. Recently, state-of-the-art single-
agent algorithms leveraging deep neural networks —extended to
multi-agent scenarios— have been employed to approximate equi-
libria under paradigms such as independent learning and centralised
training with decentralised execution [6, 18, 39].

Multi-Objective MARL. When considering multiple (m > 1) learn-
ing goals in a POMG, agents aim to maximise the accumulation
of rewards obtained with respect to each of the objectives in the
so-called Partially Observable Multi-Objective Markov Game [28]:

Definition 2.3 (MOPOMG: Multi-Objective Partially Observ-
able Markov game). A (finite) partially observable m-objective
Markov game of n agents is defined as a tuple M = (5, AF=L ",
ﬁizl""’”, T, 0L 0 gisln, y) whose elements S, AlELn
0!, 0%, and y are defined exactly like those of an POMG. On a

"Here, “value" refers to a metric used in RL to evaluate the utility of states or actions.
This term is not related to moral or ethical values.



MOPOMG, the reward function R=1""" = (RI ... ,RL ) is vecto-
rial, where each scalar reward function R;. € RI=1 1 s the reward
function regarding the j-th objective. Accordingly, at each simulation
time step, the agent i gets a vectorial reward signal 7 = (ri, ceey rf;l).

Ina MOPOMG M, the value V7™ of a policy r is a vector. Compar-
ing vectorial returns requires additional information about objective
priorities. This information, such as a user’s prioritisation among
objectives, is crucial for determining an optimal solution. A weight
vector w € R™ can represent this prioritisation, allowing the scalari-
sation of value vectors as w - V7 into comparable scalar values. The
single-agent MORL literature [25] defines the convex hull (CH) as
the set of policies that are optimal for some scalarisation weight
vector w. Therefore, in the single-agent literature, the CH is a solu-
tion set containing the optimal policies for any linear prioritisations
a final user might prefer. However, the CH has been extended to
multi-agent scenarios only when agents fully cooperate and share
exactly the same objective [24].

Besides linear scalarisation with a weight vector, multi-objective
literature, also considers non-linear prioritisations. Lexicographic
orders (LO) [33] are explicit orderings of the objectives where ob-
jectives are prioritised over those that follow them on the ordering.
Thus, the two policies are compared objective-wise, following the
LO. Imagine a policy m; that receives a return Vo= (3,4,5) and 7
with V7 = (3,5,3). Then, for an LO £, = {V; = V; = V3}, policy
7y is better, as it has equal V; and has greater V»; under another LO
b ={V3 = Vq = Va}, m1 is optimal over i as it gets more return for
Va.

3 THE EMBEDDING PROBLEM

We aim to set up environments where agents learn to perform their
tasks while being value-aligned. Crucially, we aim to design an
environment in which the only optimal behaviour is the intended
ethical behaviour within the environment.

Hence, our problem amounts to creating environments where
agents are incentivised to learn behaviours aligned with an extrinsic
ethical objective, independently of the learning algorithm they use.

Rather than developing a learning algorithm, we focus on trans-
forming the agents’ learning environment. This environment-centered
perspective is motivated by the fact that such environments may be
utilised by third-party entities whose choice of learning algorithms
is unknown.

To design an ethical environment, our algorithm takes as input
an initial (henceforth source) environment with two objectives: an
individual task representing the agents’ primary goal and an ethical
objective that evaluates and quantifies the agents’ alignment with a
specific moral value. A moral value or ethical principle, in Ethics,
represents a moral goal worth pursuing [34]. The environment is
then transformed into a single-objective ethical environment, where
the two objectives are embedded together in one reward function
that prioritises the ethical objective. Therefore, maximising this
single reward can only lead to value-aligned behaviour. Henceforth,
we formalise the Ethical Embedding problem by defining: first,
the agents’ source and ethical environments; and then the problem
itself of how to transform an original environment into an ethical
environment wherein agents learn to behave ethically.

We model the agents’ source environment as a 2-objective Par-
tially Observable Markov game with: an individual reward function
Ré (the reward function that rewards each agent i for fulfilling its
individual objective), and an ethical reward function R’ that rewards
each agent i when behaving ethically. In our work, we employ the
ethical framework presented in [21] to construct ethical reward func-
tions grounded in the literature on ethical theory. However, any other
ethical framework for properly designing R. could be used. We refer
to such family of Markov games as Ethical Multi-Objective Partially
Observable Markov Games:

Definition 3.1 (Ethical MOPOMG). An Ethical Multi-Objective
Partially-Observable Markov Game (EMOPOMG) M is defined as a
tuple (S, AT=Leon, RISL-o RIEL-om RIEL-R T Of=Lecat QI=Lesnt yy
such that for each agent i: First, Ré is the individual reward func-
tion of each agent i, representing their individual objective. Then,
R}'\[ : S x Al — R~ is the normative reward function of each agent
i, penalising blameworthy actions. Finally, R}E :Sx AL — R is the
evaluative reward function of each agent i, rewarding praiseworthy
actions.

Tuple elements S, A=L+" T, =L Q=11 and y of M are
defined identically to Partially Observable Markov games (POMG).

We define an ethical equilibrium of an Ethical MOPOMG as a
Nash equilibrium with respect to the ethical reward function ﬁe =
ﬁN + R}, where ﬁe denotes Rffl """ . Among ethical equilibria, we
highlight best-ethical equilibria. A best-ethical equilibrium 7. is a
Nash equilibrium with respect to the individual reward function of
agents, subject to also being an ethical equilibrium.

Notice that the notion of Ethical MOPOMG and ethical equilib-
rium of an Ethical MOPOMG generalise analogous concepts in [23],
which considers full observability.

Thus, the Ethical embedding problem is: how to design, from
a given Ethical MOPOMG M, a (single-objective) POMG M,
that provides enough incentives to the agents to learn to behave
ethically (a best-ethical equilibrium). These incentives are provided
to agents by weighting ethical rewards with a large enough ethical
weight w, > 0 such that the (scalar) reward that each agent receives
R(i) + we - RL promotes the agents to behave ethically. Formally, we
refer to our target environment as an Ethical Partially Observable
Markov Game:

Definition 3.2 (Ethical Partially Observable Markov Game). Let
M be an Ethical MOPOMG with reward functions R}, RL for each
agent i. We refer to the Ethical Partially Observable Markov Game
M, associated with M to a (single-objective) POMG with reward
function Ré + we - Rf; with we > 0, such that at least one Nash
equilibrium of M, is a best-ethical equilibrium in M.

To ease notation, we mark M_,,, to denote a single-objective
POMG with rewards Ré +w - RL resulting of scalarising M’s rewards
(Ri,Ré), with ethical weight w, for each agent i.

Moreover, henceforth, we refer to an Ethical MOPOMG as a
source environment and to its respective Ethical POMG as the target
environment.

Next, Section 4 outlines our algorithm for designing ethical envi-
ronments.
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Figure 1: Approximate Ethical Embedding Process.

4 SOLVING THE EMBEDDING PROBLEM

This section introduces approximate embedding as a process to de-
sign an ethical environment where all agents are incentivised to
behave ethically. Figure 1 outlines the approximate embedding pro-
cess. Following the environment-centered perspective previously
mentioned, this process aims to design an ethical environment by
transforming a multi-objective environment (a source environment
M) into an ethical single-objective environment (the target environ-
ment M,). Our purpose is that in the ethical environment M., any
third-party agent, independently of its learning algorithm, will learn
a value-aligned behaviour. The approximate embedding process
follows three steps:

(1) Reference policy computation. We compute a so-called
reference joint policy m, in the source environment. This is
the ethical policy we want agents to, ultimately, jointly learn
in the ethical single-objective, target environment.

(2) Ethical weight computation. We compute the ethical weight
we to transform the source environment into our target envi-
ronment.

(3) Ethical environment synthesis. We build the target environ-
ment as a POMG (M, = M_,,,) by scalarising the ethical
rewards in the original environment using the ethical weight
we computed at the previous step.

Subsections 4.1 and 4.2 detail the main steps of approximate
embedding.

4.1 Reference policy computation

The first thing we must compute to obtain our target environment is
an ethical policy that serves as a reference. Using the value vectors
(multi-objective returns) of this policy, we will be able to properly
design an ethical environment where ethical behaviour is preferred
over individual behaviours. This reference policy is formally a best-
ethical equilibrium in the source environment, the MOPOMG. As
defined in Section 3, this best-ethical equilibrium corresponds to
the equilibrium agents reach when prioritising ethical rewards over
individual rewards. This reference policy 7, is important for two
reasons. First, it is the joint policy we want to incentivise the agents
to learn in the target environment. Second, we will need it to find
a scalarisation weight, the so-called ethical weight we, to combine
ethical and individual rewards in the target environment.

To obtain such an ethical reference policy, we need a learning al-
gorithm that always prioritises ethical returns over individual returns.
In the MORL literature, this type of non-linear prioritisation is stud-
ied under the name of lexicographic RL [10, 29, 33]. Lexicographic
RL (LRL) prioritises objectives according to an explicit ordering.

Using a lexicographic learning algorithm in an ethical MOPOMG
M, which prioritises the ethical objective over the individual objec-
tive (Re = Ryp), ensures the learned joint policy first optimises the

ethical objective and then, without altering their obtained ethical
return, optimise the individual objective. Notice that, when learning
a joint policy in an ethical MOPOMG with a lexicographic algo-
rithm, any Nash equilibrium will be a best-ethical equilibrium by
definition.

Consequently, by using a lexicographic learning algorithm in the
source environment M, we can obtain ethical joint policies that abide
by the ethical objective. This reference policy, 7, represents the
behaviour we aim to establish as the optimal policy in the resulting
scalarised ethical environment M., so that any agent learning in M,
finds it optimal to align with the moral value encoded in R,.

However, no such algorithm exists for multi-agent environments.
Subsequently, to learn a best-ethical equilibrium, we implemented a
new lexicographic multi-agent algorithm. We provide more details
on this contribution in Sections 5 and 6.2. The next section shows
how to exploit a reference policy 7, to compute the ethical weight.

4.2 Ethical weight computation

Recall that our goal is to build a target environment M, whose
optimal policy for any learning algorithm is the (ethical) reference
policy 7. Since the target environment M, is intended to be single-
objective, we must find an ethical weight we that scalarises the
ethical reward in the original environment M and sets 7, as the
equilibrium in target environment M.

We can exploit the multi-objective returns of the reference policy
V7 to compute the ethical weight. Since we know that the reference
policy is the one that attains the largest ethical return, the ethical
weight w, that we choose to scalarise the source environment M
must be large enough to make 7, the optimal policy in the scalarised
environment M,.. More technically, we must compute an ethical
weight we such that the Nash equilibrium 7, attains more scalarised
return than any other equilibrium in M,. Thereafter, we will be able
to build our target environment M, using w, wherein the (ethical)
reference policy stands as the optimal policy to learn.

When computing the ethical weight we, we target an ethical
weight we as low as possible while still capable of incentivising the
learning of ethical equilibria. There are two reasons for searching
for such an ethical weight. First, a large ethical weight could hinder
or even prevent agents from learning their individual objectives, as
demonstrated in the experiments section. Second, we consider that a
reward function might have an associated cost when deploying the
agents. Thus, an excessive weight w, would involve a higher cost.

Since we know that an ethical equilibrium s, prioritising ethical
reward exists, we assume there must be an ethical weight w, suf-
ficiently large such that when learning with scalarised objectives
R = Ry + we - Re, the ethical objective is completely prioritised over
the individual objective.

With that assumption in mind, we argue that, in the space of
possible weights, we can differentiate two intervals: (i) [0, we) with



weights that do not incentivise the learning of an ethical equilib-
rium enough, and (ii) [we, o0) with ethical weights that effectively
incentivise ethical behaviour. Note that any weight w in the inter-
val [we, ) allows the building of a scalarised, target environment
whose ethical equilibrium is the reference policy. However, for the
reasons mentioned above, we pursue the lowest possible ethical
weight we.

To identify we, we need a method for testing whether a given
weight w qualifies as an ethical weight. Once computed a reference
policy 7, testing whether a weight w is ethical is straightforward:
(1) build a scalarised environment M,,y; (2) learn the optimal joint
policy 7 in M., (the so-called approximate reference policy);
(3) compare the ethical returns of 7 and 7. If 7 achieves close
enough ethical return to the reference policy’s ethical return (i.e.,
|VF — V.| < 7 for some policy approximation error t > 0), then
we consider w as an ethical weight. We do so because it sufficiently
incentivises the learning of a policy that is as ethical as the reference
policy. For simplicity, henceforth, we will refer to testing whether a
weight w is ethical as function test(M,,y, 7).

This definition for a single-agent test (M), 7) function can be
extended to multi-agent setups simply by adding a sum over the
agents returns such that ‘ p [Ve” - Veﬂ; ] ’ <T.

By repeatedly using the test function, we get valuable information
on the value of w, needed to create an environment whose equilib-
rium is 7. Therefore, the set of joint policies obtained after testing
different weights on a MOPOMG is relevant to inform our search for
the minimum ethical weight. To characterise this set more rigorously,
we introduce the Nash Convex Hull (NCH) for a MOPOMG, which
we define as the set of joint policies that include a Nash equilibrium
for any possible linear scalarisation weight vector. Formally:

Definition 4.1 (Nash Convex Hull). The Nash Convex Hull (NCH)
of a MOPOMG M is the set of policies that contains the Nash equi-
librium of all possible scalarisations M<,;,> performed with any
linear scalarisation weights w.

NCH(M) = {zx € TM|3% : m € NE(M3))},

where ITM is the set of possible policies in M and NE(Mzy)
is the set of equilibria that exist in the scalarised POMG M 5.

To obtain the ethical weight, there is no need to compute the
whole NCH. Consequently, the resulting set of our search is a subset
of the NCH that contains the Nash equilibria associated with the
candidate ethical weights considered throughout the search for the
minimal ethical weight. Additionally, considering that the learning
algorithm might lack guarantees to find exact equilibria, we frame
the set of policies we compute as an approximate NCH. Later in this
section, we detail the construction of this NCH.

With test(M;,,), 7) and considering a finite search space between
0 and an upper bound set by the environment designer based on
domain knowledge, we can use any search algorithm to find our
desired ethical weight. We propose using a general search paradigm
like binary search [15] to automate the search of an ethical weight
inside a search interval w, € I.

In particular, we propose to follow the principles of binary search.
Then, our weight computation would work as follows. Let I =
[wy, w,] represent the unexplored search space, where wy is not an

ethical weight and w; is an ethical weight. We can set w; to 0 be-
cause it produces an environment without ethical rewards, and hence
no ethical policies. Regarding w;, the environment designer can set
it to any large upper-bound number based on their expert knowledge.
Thus, the search would begin with an initial, non-negative solution
we = wy /2, along with a precision parameter e, which controls the
depth of the search, and a policy approximation parameter 7. We test
with Test(M,,, /2y, 7) whether wy /2 is an ethical weight. That is,
we test whether the optimal policy in M., /o) is as ethical as the
reference policy. If it is, we update the interval to I = [wy, wy/2]. If
not, we update it to I = [w, /2, w,]. The procedure continues itera-
tively narrowing interval I until the distance between its endpoints
is less than or equal to €, while ensuring that the left endpoint re-
mains a non-ethical weight and the right endpoint remains an ethical
weight. The right endpoint is the approximation to the minimum
ethical weight we are looking for. We refer to the whole process as
the Ethical Weight Finder (EWF). The full pseudocode of the EWF
is shown in 1.

Algorithm 1 Ethical Weight Finder

1: procedure ENF(M, wy, wr, €, T)
2: de— wr—w

3: while d > € do

4: we wit g

5: if TEST(M4yy. 7) then
6: W — W

7 else

8: W — w

9: end if

10: d— wr —w

11: end while

12: return wy

13: end procedure

It is important to note that this algorithm does not compute the
exact we that makes 7z, the optimal policy. Instead, it constructs
an approximate subset NCH around such theoretical we. Since we
progressively narrow the interval containing the exact w, to a width
of €, by the end of the search, we obtain a set of policies that are
Nash equilibria for weights close to w,. As environment designers,
we then select the weight that best incentivises ethical behaviour.

In this section, so far, we have demonstrated how to perform a
binary search to identify the desired ethical weight we, minimising
the number of times we run a learning algorithm, as this is the
most computationally expensive part of the search. The approach
described so far is only informed by the value vectors. We tried
to develop a method as generic as possible following the lines of
[31]. However, we recognise that the search can be optimised in
different ways that may result in a more optimal search for specific
environments, i.e. any environment-specific heuristic.

S IMPLEMENTING APPROXIMATE
EMBEDDING

In this section, we detail how to compute the two main elements of
our approximate embedding process: the reference joint policy and
the approximate reference policies, both of which are necessary for
finding our desired ethical weight.



Recall that the first element, the reference policy, is a best-ethical
equilibrium in a source multi-objective POMG. Thus, its compu-
tation requires a lexicographic multi-objective RL algorithm. Re-
cently, the work in [29] introduced value-based and policy-based
lexicographic RL algorithms (Lexicographic DQN, A2C, and PPO).
Nonetheless, those algorithms only exist and were tested for the
single-agent case. Therefore, to compute a reference policy, we are
forced to develop a multi-agent version of a state-of-the-art lexico-
graphic RL algorithm, as we do and detail in Section 6.

The second type of elements we need to compute in our em-
bedding, approximate reference policies, are formally Nash equi-
libria in a single-objective POMG. Thus, we can find them using
single-objective multi-agent deep reinforcement learning (MADRL)
techniques. Indeed, MADRL techniques have shown great results in
approximating equilibria for complex cooperative games [6, 7, 39]
by extending powerful single-agent algorithms to MARL scenarios.
Examples include IPPO and IA2C [2], as well as their centralised
training and decentralised execution (CTDE) counterparts, MAPPO
and MAA2C [2].

The next section presents a practical example using our process
from Section 4 to design an ethical environment. There, we detail the
lexicographic RL algorithm employed to compute a reference policy
together with the MADRL algorithm employed to approximate Nash
equilibria. Moreover, we examine the learning cost of the whole
design process.

Individual Objective Ethical Objective
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Figure 2: Sum of the individual and ethical returns of all agents
for the learned reference policies in environments M, (solid
line) and M, (dash-dot line).

6 EMPIRICAL ANALYSIS

In this section, we employ our approximate embedding to build
ethical environments for the Ethical Gathering Game (EGG), an
ethical extension of the Gathering Game originally introduced in [14]
and outlined in Section 6.1. Our purpose is twofold: (1) to quantify
the price to pay, the cost, to fabricate ethical environments through
approximate embedding (Section 6.2); and (2) to empirically verify
that agents do learn best-ethical policies in the designed ethical
environments (Section 6.3).

6.1 The Ethical Gathering Game

The Ethical Gathering Game (EGG) is a grid-world environment
where agents with different capabilities gather apples to survive [23].
An agent survives if it manages to accumulate apples beyond some
survival threshold. The EGG is an ethical extension of the well-
known Gathering Game [14] in the MARL literature. The EGG

simulates an unequal environment where only efficient agents can
survive by themselves while inefficient agents require the efficient
agents’ help.2 The EGG also introduces a public donation box:
agents can either donate apples to the box or retrieve apples from it.
Then, two objectives drive agents in the EGG: an individual objective
to collect apples for personal survival, and an ethical objective to
contribute to collective survival. Therefore, our goal as environment
designers will be to create ethical environments whose agents learn
the moral value of beneficence to help the whole agent population
survive. For that, we will instil alignment with beneficence through
approximate embedding.

Importantly, since the EGG uses the same grid size as the original
Gathering game, any EGG environment goes far beyond the capa-
bilities of optimal embedding approaches (e.g., [22, 23]) to build
ethical environments. Therefore, discard using optimal embedding
to design EGG ethical environments.

Source environments. We considered two source environments with
five agents, a survival threshold set to 40 and a 15-apple donation
box capacity each: My, contains a minority of efficient agents (40%),
and M contains a majority of efficient agents (80%).

MOPOMG formalisation. The EGG is a MOPOMG whose agents
act during a 500-step gathering season. To specify a source envi-
ronment, following Def. 3.1 of Ethical MOPOMG, we define an
individual reward function R(i) that gives a reward of +1 to an agent
for each collected apple. There are two types of agents: an inefficient
agent has a 15 % chance of gathering an apple from the ground, while
an efficient agent has an 85 % chance. An agent receives a negative
reward R(i) = —1 when: (i) being below the survival threshold at a
given time step, or (ii) donating an apple to the public donation box.
As to ethical reward, Ré = Rji\l + RE, we penalise unethical actions
(ij = —1 when taking an apple from the donation box despite
having enough to survive), and positively reward ethical actions
(RE = 0.7 when donating an apple when having enough to survive,
namely accumulated apples beyond the survival threshold).
Metrics. Once designed an ethical environment, we will have the
agents independently learn their policies. We will then employ two
metrics to analyse whether they have learned to behave ethically:
(i) the survival rate (how many times all agents are able to reach
the survival threshold on average); (ii) the ethical returns (the
accumulation of discounted ethical rewards that all agents obtain on
average).

6.2 Designing ethical environments

Approximate embedding implementation. As discussed in Section
5, we must select the MADRL algorithms that implement our ap-
proximate embedding process. From Section 4.1, the first step must
compute a reference policy using a lexicographic algorithm. Because
of the action-space size and number of agents, we would need a lex-
icographic MADRL algorithm. Due to a lack of such multi-agent
algorithms in the literature, we developed our so-called Multi-agent
Lexicographic PPO—a novel algorithm extending MAPPO [39]
with a lexicographic order along the lines of [29].

Thereafter, as explained in Section 4.2, we must compute several
Nash equilibria in multiple scalarised POMGs during the search

2The Gathering Game [14] deals with resource depletion, a different problem from ours,
for which agents must coordinate to survive.



for the ethical weight. Thus, we applied standard MAPPO for this
second step. Finally, we ran MALPPO and MAPPO using the EPy-
MARL library [19].

Learning reference policies. We applied approximate embedding to
our two source environments: minority (M) and majority (Mpyr).
We first computed the reference joint policy for each environment us-
ing MALPPO, our novel lexicographic algorithm. Figure 2 presents
the expected (individual and ethical) returns that the reference policy
obtained in each environment. We summed up the returns over all
agents and smoothed them using an exponential moving average at
0.6 to reduce variance visually.

Finding ethical weights. We applied the EWF algorithm to search
for the ethical weight for our two EGG environments. Recall that an
ethical weight allows us to scalarise ethical rewards from a source
environment so that the reference (ethical) policy becomes optimal
in an ethical, target environment. For both environments, we used
[0,10] (w; = 0,w, = 10) to search for ethical weights, 7 = 4.0 as
policy approximation error, and € = 0.2.

Now, for each environment, we search for an as-low-as-possible
ethical weight we that produces a scalarised environment M, )
whose Nash equilibrium is ethical, namely a good approximation
of the reference policy. Figure 3 shows the evolution of the search
for the ethical weight in each environment for six iterations. For
iteration i and ethical weight w, (different for each i), we show the
multi-objective expected returns of policy i (blue circle), which we
previously computed with MAPPO as a Nash equilibrium in the
scalarised environment M<We>. As iterations increase, w, evolves
as well as the (approximate) Nash equilibrium in each M, . The
Nash equilibrium for each w, can be regarded as an approximation
to the reference policy, and the set of policies that we obtain, as an
approximate NCH as defined in Def.4.1. Notice that the approximate
reference policies within each shaded grey area can be considered
ethical because they are close enough, according to policy approx-

imation error 7, to the reference policy (‘ T [Ve” - Ve”; ] <r
considering all n agents). From the resulting set of policies, we fi-
nally select we = 2.5 and w, = 1.71875 as ethical weights for M,
for My respectively because they are the lowest weights leading to
good enough approximations of their reference policies. In detail,
our EWF converged to these points because we obtained the final
intervals I,, = [2.34375, 2.5] for My, and Iy = [1.56,1.71875] for
M, with both intervals with a length smaller than € = 0.2, and with
the left extrema being unethical, and the right extrema being ethical.
Notably, in Figure 3, we observe that using a weight larger than
strictly necessary (i.e., policies learned with we = 5) is detrimental
to individual return while providing only a marginal improvement
in ethical return. This underscores the importance of identifying the
approximate minimal weight as we motivated in Section 4.2.

Embedding cost. To measure the cost of the design process, we
analyse the number of algorithm executions required to compute:
(1) the reference policy; and (ii) the approximate reference policies
when searching for the ethical weights. For each source environment,
we run MALPPO once (to compute each reference policy), and we
run MAPPO six times (during the ethical weight search). The total
amount of steps needed to learn the necessary policies to design
ethical environments is 420M for both M, and My;. MALPPO

needed 80M steps to learn both policies, while the different runs of
MAPPO during both binary searches needed 70M on average.

We conclude that there is a price to pay to design an ethical
environment wherein agents are incentivised to learn an ethical
policy. In this particular experiment, designing each EGG ethical
environment required running our MARL algorithms seven times.
The next section shows that this investment paid off because agents
did learn ethical policies in the EGG ethical environments.

Agents Ethical Ethical Individual Individual
Return 7, Return s, Return 7, Return 7,
1 17.54 + 8.67 1835+5.83 26.15+1697 27.18 £9.53
2 17.61 + 8.53 17.51 £579  26.4 +16.78 26.17 £ 9.68
3 1.69 + 1.42 077 +£1.09  -8.01 £10.87 -8.85+8.24
4 1.7+ 1.31 0.54 £ 091 -7.83 £10.64 -10.16 £ 8.70
5 1.64 + 1.34 0.60 + 0.85 -7.63 £10.52  -10.36 + 8.62
Efficient 17.575 £0.035 1793 +042 1838 +0.13 26.67 + 0.50
Inefficient  1.676 + 0.026 0.63 +0.09 -7.82 £0.15 -9.79 + 0.67

Table 1: Value vectors of each agent for the reference policy 7,
and the ethical policy . learned in the designed M,,. Results
correspond to an average of 2000 rollouts. Recall that 7, is the
same policy for all agents but it is not the case of ..

Agents Ethical Ethical Individual Individual
Return 7,  Return s, Return 7, Return 7,
1 7.13+£3.97 726+459 19.11+£9.49 19.70 + 10.64
2 6.96 +4.13 7.09 +4.81 18.59 £9.63 18.10 = 10.18
3 7.08 £3.89 749 +474 18.75+10.01 20.30+10.80
4 7.05+396 741+4.62 18.65+9.77 20.40+10.29
5 0.83+0.66 0.00+002 -793+586 -18.10+8.44
Efficient 7.05+0.06 734+026 18.775+0.2 19.92 £ 1.16
Inefficient 0.83 +0.00 0.00+0.00 -7.93+0.00 -18.10+0.00

Table 2: Value vectors of each agent for the reference policy 7z,
and the ethical policy 7. learned in the designed M. Results
correspond to an average of 2000 rollouts. Recall that 7, is the
same policy for all agents but it is not the case of ..

6.3 Learning in the ethical environments

Finally, we built the ethical environments for the source environ-
ments M, and Mp using the weights computed above. In these
ethical environments, we let agents learn with a single-objective
learning algorithm to test whether they do learn to behave ethically.
Specifically, we employed independent PPO (IPPO) [7], where all
agents learn independently within each environment.

The results obtained in the designed environments show that,
indeed, agents were incentivised to learn a joint policy as ethical
as the reference policy, as the metrics in Table 3 illustrate. First
of all, the collective survival is achieved almost 100% of the times
for both the reference policy 7, and the joint policy 7. that agents
learn in both target ethical environments (column 3 of Table 3). For
comparison, an unethical policy s, trained in an environment with
ethical weight we = 0, reaches a much lower level of collective
survival. Moreover, in terms of ethical returns, joint policies learnt
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Figure 3: Approximate reference policies obtained in the search for the ethical weights of environments M,,, (left) and M, (right).
Black lines show the approximate NCH around the exact ethical weight needed to build an ethical environment.

Policy Survival rate in M,,, Survival rate in M

7y 100% 99%
T 100% 98%
T 10% 66%

Table 3: EGG metrics for the reference (r,), ethical (r.), and
unethical (7,,) policies. The expected ethical return of the policies
is shown only for the efficient agents of the population.

in the target ethical environments obtain very close average returns
to those obtained by the reference policies (column 4 of Table 3).

Considering all agents returns, not only efficient agents, Tables
1 and 2 show the value vectors of the ethical policy 7. and the ref-
erence policy 7, for all agents. Overall we can see how the value
vectors are within the tolerance parameter 7 = 4 we established
for the ethical return. Interestingly, the policies 7. learned in the
designed environments achieve better individual returns than the
reference policy. When looking at the statistics of the ethical gather-
ing game rollouts, we find that agents in 7, learned to gather more
apples than those in 7, in the same amount of time.

Note that both policies have been achieved through different algo-
rithms. While in the reference policy, agents shared the same value
and policy network, in the ethical policy, each agent learned its own
value and policy networks. This can explain the difference between
deviation for agents sharing efficiency groups in both policies.

Finally, Figure 4 helps us understand the policies that inefficient
and efficient agents learn in the majority, My, environment. Agents
learn analogous policies in the minority, My, environment The
figure shows the median number of apples (over 2000 policy rollouts)
efficient and inefficient agents have throughout the episode. We
observe that, in all runs, efficient agents have learned to donate their
surplus apples to aid inefficient agents in survival. Moreover, agents
collect apples from the donation box only when they do not have
enough apples to survive. This behaviour confirms again that, indeed,
agents have been incentivised to learn to behave ethically.

In summary, all results from the experiments we conducted cor-
roborate that the approximate embedding algorithm can design envi-
ronments where agents learn best-ethical policies.

Number of apples through time
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Figure 4: Median number of apples (and inter-quartile ranges)
collected by agents throughout 2000 episodes of 500 steps in
Mps.

7 CONCLUSIONS AND FUTURE WORK

This work introduced the Approximate Embedding, an algorithm for
designing environments where all agents are incentivised to learn to
behave ethically, independently of the learning algorithm used. Our
empirical analysis shows that by combining MORL and deep rein-
forcement learning tools, our approximate embedding successfully
incentivises the learning of ethical policies in a large environment
such as the Ethical Gathering Game. As future work, we plan on
evaluating our approximate embedding in further environments. Nev-
ertheless, this will first require the engineering of more MARL envi-
ronments with ethical considerations because they do not currently
exist.
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