
On the Logic of Normative Systems

ThomasÅgotnes1, Wiebe van der Hoek2, Juan A. Rodrı́guez-Aguilar3,
Carles Sierra3, Michael Wooldridge2

1Bergen University College 2University of Liverpool 3CSIC-IIIA
Norway United Kingdom Catalonia, Spain
tag@hib.no wiebe,mjw@csc.liv.ac.uk jar,carles@iiia.csic.es

Abstract

We introduceNormative Temporal Logic(NTL), a
logic for reasoning about normative systems.NTL
is a generalisation of the well-known branching-
time temporal logicCTL, in which the path quan-
tifiers A (“on all paths. . . ”) andE (“on some
path. . . ”) are replaced by the indexed deontic
operatorsOη and Pη, where for exampleOηϕ
means “ϕ is obligatory in the context of norma-
tive systemη”. After defining the logic, we give
a sound and complete axiomatisation, and discuss
the logic’s relationship to standard deontic logics.
We present a symbolic representation language for
models and normative systems, and identify four
different model checking problems, corresponding
to whether or not a model is represented symboli-
cally or explicitly, and whether or not we are given
an interpretation for the normative systems named
in formulae to be checked. We show that the com-
plexity of model checking varies fromP-complete
up toEXPTIME-hard for these variations.

1 Introduction
Normative systems, or social laws, have been widely pro-
moted as an approach to coordinating multi-agent sys-
tems[Shoham and Tennenholtz, 1996]. Crudely, a norma-
tive system defines a set of constraints on the behaviour of
agents, corresponding to obligations, which may or may not
be observed by agents. A number of formalisms have been
proposed for reasoning about normative behaviour in multi-
agent systems, typically based on deontic logic[Meyer and
Wieringa, 1993]. However the computational properties of
such formalisms – in particular, their use in the practical de-
sign and synthesis of normative systems and the complexity
of reasoning with them – has received little attention. In this
paper, we rectify this omission. We present Normative Tem-
poral Logic (NTL), a logic for reasoning about normative sys-
tems, which is closely related to the well-known and widely-
used branching time logicCTL [Emerson, 1990]. In NTL, the
universal and existential path quantifiers ofCTL are replaced
by indexed deontic operatorsOη andPη, whereOηϕ means
that “ϕ is obligatory in the context of the normative system
η”, and Pηϕ means “ϕ is permissible in the context of the

normative systemη”. Here, ϕ is a temporal logic expres-
sion over the usualCTL temporal operatorsg,♦, , and
U (every temporal operator must be preceded by a deontic
operator, cf.CTL syntax), andη denotes a normative system.
In NTL, obligations and permissions are thus, first,contextu-
alisedto a normative systemη and, second, have atemporal
dimension. It has been argued that the latter can help avoid
some of the paradoxes of classical deontic logic.NTL gener-
alisesCTL because by lettingη∅ denote the empty normative
system, the universal path quantifierA can be interpreted as
Oη∅

; much of the technical machinery developed for reason-
ing with CTL can thus be adapted forNTL [Emerson, 1990;
Clarkeet al., 2000]. NTL is in fact a descendent of theNorma-
tive ATL (NATL) logic introduced in[Wooldridge and van der
Hoek, 2005]: however,NTL is muchsimpler (and we believe
more intuitive) thanNATL , and we are able to present many
more technical results for the logic: we first give a sound and
complete axiomatisation, and then discuss the logic’s rela-
tionship to standard deontic logics. We introduce a symbolic
representation language for normative systems, and investi-
gate the complexity of model checking forNTL, showing that
it varies fromP-complete in the simplest case up toEXPTIME-
hard in the worst. We present an example to illustrate the
approach, and present some brief conclusions.

2 Normative Temporal Logic
Kripke Structures: Let Φ = {p, q, . . .} be a finite set of
atomicpropositional variables. A Kripke structure(overΦ)
is a quadK = 〈S,S0,R,V〉, where:S is a finite, non-empty
set ofstates, with S0 ⊆ S (S0 6= ∅) being theinitial states;
R ⊆ S× S is a total binary relation onS, which we refer to
as thetransition relation1; andV : S→ 2Φ labels each state
with the set of propositional variables true in that state. A
path over R is an infinite sequence of statesπ = s0, s1, . . .
which must satisfy the property that∀u ∈ N: (su, su+1) ∈ R.
If u ∈ N, then we denote byπ[u] the component indexed byu
in π (thusπ[0] denotes the first element,π[1] the second, and
so on). A pathπ such thatπ[0] = s is ans-path.

Normative Systems: In this paper, a normative system is
a set of constraints on the behaviour of agents in a system.

1A relationR⊆ S× S is total iff ∀s∃s′ : (s, s′) ∈ R.

More precisely, a normative system defines, for every possi-
ble system transition, whether or not that transition is con-
sidered to be legal or not. Different normative systems may
differ on whether or not a transition is legal. Formally, a nor-
mative systemη (w.r.t. a Kripke structureK = 〈S,S0,R,V〉)
is simply a subset ofR, such thatR\ η is a total relation. The
requirement thatR\η is total is areasonablenessconstraint: it
prevents normative systems which lead to states with no suc-
cessor. LetN(R) = {η | (η ⊆ R) & (R\ η is total)} be the
set of normative systems overR. The intended interpretation
of a normative systemη is that(s, s′) ∈ η means transition
(s, s′) is forbidden in the context ofη; henceR\η denotes the
legal transitions ofη. Since it is assumedη is reasonable, we
are guaranteed that a legal outward transition exists for every
state. Ifπ is a path overR andη is a normative system over
R, thenπ is η-conformantif ∀u ∈ N, (π[u], π[u + 1]) 6∈ η.
Let Cη(s) be the set ofη-conformants-paths (w.r.t. someR).

Since normative systems are justsets(of disallowed tran-
sitions), we cancomparethem, to determine, for example,
whether one ismore liberal(less restrictive) than another: if
η ⊂ η′, thenη places fewer constraints on a system thanη′,
henceη is more liberal. Notice that, assuming anexplicit rep-
resentation of normative systems, (i.e., representing a norma-
tive systemη directly as a subset ofR), checking such prop-
erties can be done in polynomial time. We can also operate
on them with the standard set theoretic operations of union,
intersection, etc. Taking the union of two normative systems
η1 andη2 may yield (depending on whetherR\ (η1 ∪ η2) is
total) a normative system that ismore restrictive(less liberal)
than either of its parent systems, while taking theintersection
of two normative systems yields a normative system which is
less restrictive(more liberal). Care must be taken when oper-
ating on normative systems in this way to ensure the resulting
system is reasonable.

Syntax of NTL: The language ofNTL is a generalisation of
CTL: the only issue that may cause confusion is that, within
this language, we refer explicitly to normative systems, which
are semanticobjects. We will therefore assume a stock of
syntactic elementsΣη which will denote normative systems.
To avoid a proliferation of notation, we will use the symbolη
both as a syntactic element for normative systems in the lan-
guage, and the same symbol to denote the corresponding se-
mantic object. Aninterpretationfor symbolsΣη with respect
to a transition relationR is a functionI : Ση → N(R). When
R is a transition relation of Kripke structureK we say thatI
is an interpretation overK. We will assume that the symbol
η∅ always denotes theemptysetnormative system, i.e., the
normative system which forbidsno transitions. Note that this
normative system will be reasonable foranyKripke structure.
Thus, we require that for allI : I(η∅) = ∅. The syntax ofNTL
is defined by the following grammar:

ϕ ::= ⊤ | p | ¬ϕ | ϕ∨ϕ | Pη
fϕ | Pη(ϕU ϕ) | Oη

fϕ | Oη(ϕU ϕ)

wherep ∈ Φ andη ∈ Ση. Sometimes we callα occurring
in an expressionOηα or Pηα a temporal formula(although
such anα is not a well-formed formula).

Semantic Rules: The semantics ofNTL are given with re-
spect to the satisfaction relation “|=”. K, s |=I ϕ holds when

K is a Kripke structure,s is a state inK, I an interpretation
overK, andϕ a formulae of the language, as follows:

K, s |=I ⊤;

K, s |=I p iff p ∈ V(s) (wherep ∈ Φ);

K, s |=I ¬ϕ iff not K, s |=I ϕ;

K, s |=I ϕ ∨ ψ iff K, s |=I ϕ or K, s |=I ψ;

K, s |=I Oη
fϕ iff ∀π ∈ CI(η)(s) : K, π[1] |=I ϕ;

K, s |=I Pη
fϕ iff ∃π ∈ CI(η)(s) : K, π[1] |=I ϕ;

K, s |=I Oη(ϕU ψ) iff ∀π ∈ CI(η)(s),∃u ∈ N, s.t.K, π[u] |=I

ψ and∀v, (0 ≤ v< u) : K, π[v] |=I ϕ

K, s |=I Pη(ϕU ψ) iff ∃π ∈ CI(η)(s),∃u ∈ N, s.t.K, π[u] |=I

ψ and∀v, (0 ≤ v< u) : K, π[v] |=I ϕ

The remaining classical logic connectives (“∧”, “ →”, “ ↔”)
are assumed to be defined as abbreviations in terms of¬,∨,
in the conventional manner. We writeK |=I ϕ if K, s0 |=I ϕ
for all s0 ∈ S0, K |= ϕ if K |=I ϕ for all I , and|= ϕ if K |= ϕ
for all K. The remainingCTL temporal operators are defined:

Oη♦ϕ ≡ Oη(⊤U ϕ) Pη♦ϕ ≡ Pη(⊤U ϕ)
Oη ϕ ≡ ¬Pη♦¬ϕ Pη ϕ ≡ ¬Oη♦¬ϕ

Recalling thatη∅ denotes the empty normative system, we
obtain the conventional path quantifiers ofCTL as follows:
Aα ≡ Oη∅

α, Eα ≡ Pη∅
α.

Properties and Axiomatisation: The following Proposi-
tion makes precise the expected property thata less liberal
system has more obligations (and less permissions) than a
more liberal system.

Proposition 1 LetK be a Kripke structure, I be an interpre-
tation overK, andη1, η2 ∈ Ση: If I (η1) ⊆ I(η2) thenK |=I

Oη1
ϕ→ Oη2

ϕ andK |=I Pη2
ϕ→ Pη1

ϕ.

We now present a sound and complete axiomatisation forNTL
and some of its variants. First, letNTL− be NTL without
the empty normative systemη∅. Formally, NTL− is defined
exactly asNTL, except for the requirement thatΣη contains
theη∅ symbol and the corresponding restriction on interpre-
tations. An axiom system forNTL−, denoted⊢−, is defined
by axioms and rules (Ax1)–(R2) in Figure 1.NTL− can be
seen as amulti-dimensionalvariant ofCTL, where there are
several indexed versions of each path quantifier.

Going on toNTL, we add axioms (Obl) and (Perm) (Fig-
ure 1); the corresponding inference system is denoted⊢. We
then, have the following chain of implications inNTL (the
second element in the chain is a variant of the deontic ax-
iom discussed below). If something is naturally, or physically
inevitable, then it is obligatory in any normative system; if
something is an obligation within a given normative system
η, then it is permissible inη; and if something is permissible
in a given normative system, then it is naturally (physically)
possible:

⊢ (Aϕ→ Oηϕ) ⊢ (Oηϕ→ Pηϕ) ⊢ (Pηϕ→ Eϕ)

Finally, let NTL+ be the extension ofNTL obtained by ex-
tending the logical language with propositions on the form

(Ax1) All validities of propositional logic

(Ax2) Pη♦ϕ↔ Pη(⊤U ϕ)

(Ax2b) Oη ϕ ↔ ¬Pη♦¬ϕ

(Ax3) Oη♦ϕ ↔ Oη(⊤U ϕ)

(Ax3b) Pη ϕ↔ ¬Oη♦¬ϕ

(Ax4) Pη
f(ϕ ∨ ψ) ↔ (Pη

fϕ ∨ Pη
fψ)

(Ax5) Oη
fϕ↔ ¬Pη

f¬ϕ

(Ax6) Pη(ϕU ψ) ↔ (ψ ∨ (ϕ ∧ Pη
fPη(ϕU ψ)))

(Ax7) Oη(ϕU ψ) ↔ (ψ ∨ (ϕ ∧ Oη
fOη(ϕU ψ)))

(Ax8) Pη
f⊤ ∧ Oη

f⊤

(Ax9) Oη (ϕ→ (¬ψ ∧ Pη
fϕ)) → (ϕ→ ¬Oη(γ U ψ))

(Ax9b) Oη (ϕ → (¬ψ ∧ Pη
fϕ)) → (ϕ→ ¬Oη♦ψ)

(Ax10) Oη (ϕ → (¬ψ ∧ (γ → Oη
fϕ))) → (ϕ →

¬Pη(γ U ψ))

(Ax10b) Oη (ϕ→ (¬ψ ∧ Oη
fϕ)) → (ϕ→ ¬Pη♦ψ)

(Ax11) Oη (ϕ→ ψ) → (Pη
fϕ→ Pη

fψ)

(R1) If ⊢ ϕ then⊢ Oη ϕ (generalization)

(R2) If ⊢ ϕ and⊢ ϕ→ ψ then⊢ ψ (modus ponens)

(Obl) Oη∅
α→ Oηα

(Perm) Pηα→ Pη∅
α

(Obl+) η ⊑ η′ → (Oηα→ Oη′α)

(Perm+) η ⊑ η′ → (Pη′α→ Pηα)

Figure 1: The three systemsNTL− ((Ax1)–(R2), derived from
an axiomatisation ofCTL); NTL ((Ax1)–(R2),(Obl),(Perm));
NTL+ ((Ax1)–(R2),(Obl+),(Perm+)).α stands for a temporal
formula.

η ≡ η′ andη ⊏ η′ (⊑ can then be defined), interpreted in
the obvious way (e.g.,K, s |=I η ⊏ η′ iff I(η) ⊂ I(η′)). An
axiom system forNTL+, denoted⊢+, is obtained from⊢− by
adding the schemes (Obl+) and (Perm+) (Figure 1).

Theorem 1 (Soundness and Completeness)The inference
mechanism⊢− is sound and complete with respect to validity
of NTL− formulas, i.e., for every formulaϕ in the language
of NTL−, we have|= ϕ iff ⊢− ϕ. The same holds for⊢ with
respect to formulas fromNTL and⊢+ with respect toNTL+.
Proof: All three cases are proven by adjusting the tech-
nique presented in[Emerson, 1990]. For the NTL− case,
the tableau-based construction of[Emerson, 1990] immedi-
ately carries through: we will encounter, for every generated
state, successors of different dimensions. For the case ofNTL,
which includes the symbolη∅, we have to add clauses corre-
sponding to (Obl) and (Perm) to the construction of the clo-
surecl(ϕ) of a formulaϕ: if Oη∅

α (respectively,Pηα) is in
cl(ϕ) then alsoOηα (respectively,Pη∅

α) should be incl(ϕ).
In the case ofNTL+, we have to close offcl(ϕ) under the
implications of axioms (Obl+) and (Perm+). 2

Going beyondNTL+, we can impose further structure on
Ση and its interpretations. For example, we can add unions
and intersections of normative systems by requiringΣη to in-
clude symbolsη ⊔ η′, η ⊓ η′ whenever it includesη andη′,

and require interpretations to interpret⊔ as set union and⊓
as set intersection. As discussed above, we must then further
restrict interpretations such thatR\ (I(η1) ∪ I(η2)) always is
total. This would give us a kind of calculus of normative sys-
tems. LetK be a Kripke structure andI be an interpretation
with the mentioned properties:

K |=I Pη⊔η′ϕ→ Pηϕ K |=I Pηϕ→ Pη⊓η′ϕ
K |=I Oηϕ→ Oη⊔η′ϕ K |=I Oη⊓η′ϕ→ Oηϕ

(all of which follow from Proposition 1). Having such a cal-
culus allows one to reason about the composition of norma-
tive systems.

Relationship with Deontic Logic: The two main differ-
ences between the language ofNTL and the language of
conventional deontic logic (henceforth “deontic logic”) are,
first, contextualdeontic operators allowing a formula to refer
to several different normative systems, and, second,tempo-
ral operators.All deontic expressions inNTL refer to time:
Pη

gϕ (“it is permissible in the context ofη thatϕ is true at
the next time point”);Oη ϕ (“it is obligatory in the context
of η thatϕ always will be true”); etc. Deontic logic contains
no notion of time. In order to compare our temporal deon-
tic statements with those of deontic logic we must take the
temporal dimension to be implicit in the latter. Two of the
perhaps most natural ways of doing that is to take “obliga-
tory” (Oϕ) to mean “alwaysobligatory” (Oη ϕ), or “oblig-
atory at thenext point in time” (Oη

gϕ), respectively, and
similarly for permission. In either case, all the principles
of Standard Deontic Logic(SDL) hold also forNDL, viz.,
O(ϕ → ψ) → (Oϕ → Oψ) (K); ¬O⊥ (D); and fromϕ
infer Oϕ (N). The two mentioned temporal interpretations of
the (crucial) deontic axiomD are (bothNTL validities):

¬Oη ⊥ and¬Oη
g⊥

With these translations, all of the most commonly discussed
so-called paradoxes of deontic logic also holds inNTL. How-
ever, it has been argued (cf., e.g.,[Meyer and Wieringa,
1993]) that one of the causes behind some of the instances of
the paradoxes (particularly those involving contrary-to-duty
obligations) is that the language of conventional deontic logic
is too weak, and that by incorporating temporal operators
some instances of the paradoxes can be avoided.

3 Symbolic Representations
In practice, explicit state representations of Kripke structures
are rarely if ever used when reasoning about systems, be-
cause of thestate explosion problem: given a system with
n Boolean variables, the system will typically have2n states.
Instead, practical reasoning tools providesuccinct, symbolic
representation languages for defining Kripke structures. We
present such a language for defining models, and also intro-
duce an associated symbolic language for defining normative
systems.

A Symbolic Language for Models: We present theSIM-
PLE REACTIVE MODULES LANGUAGE (SRML), a “stripped
down” version of Alur and Henzinger’sREACTIVE MODULES

LANGUAGE (RML) [Alur and Henzinger, 1999], which was
introduced in[Hoeket al., 2006]. SRML represents the core
of RML, with some “syntactic sugar” removed to simplify the
presentation and semantics. The basic idea is to present a
Kripke structureK by means of a number of symbolically
represented agents, where the choices available to every agent
are defined by a number of rules, defining which actions are
available to the agent in every state; a transition(s, s′) in K
corresponds to atuple of actions, one for each agent in the
system. Here is an example of an agent definition inSRML
(agents are referred to as “modules” in (S)RML):

module togglecontrols x
init
ℓ1 : ⊤ ; x′ := ⊤
ℓ2 : ⊤ ; x′ := ⊥
update
ℓ3 : x ; x′ := ⊥
ℓ4 : (¬x) ; x′ := ⊤

This module, namedtoggle, controls a single Boolean vari-
able, x. The choices available to the agent are defined by
the init andupdate rules2. Theinit rules define the
choices available to the agent with respect to the initialisation
of its variables, while theupdate rules define the agent’s
choices subsequently. In this example, there are twoinit
rules and twoupdate rules. Theinit rules define two
choices for the initialisation of variablex: assign it the value
⊤ or the value⊥. Both of these rules can fire initially, as
their conditions (⊤) are always satisfied; in fact, only one
of the available rules will everactually fire, corresponding
to the “choice made” by the agent on that decision round.
The effect of firing a rule is to execute the assignment state-
ments on the r.h.s. of the rule, which modify the agent’s con-
trolled variables. (The “prime” notation for variables, e.g.,
x′, means “the value ofx afterwards”.) Rules are identified
by labels (ℓi); these labels do not form part of the original
RML language, and in fact play no part in the semantics of
SRML – they are used to identify rules in normative systems,
as we shall see below. We assume a distinguished label “[]”
for rules, which is used to identify rules that should never
be made illegal by any normative system. With respect to
update rules, the first rule says that ifx has the value⊤,
then the corresponding action is to assign it the value⊥, while
the second rule says that ifx has the value⊥, then it can sub-
sequently be assigned the value⊤. In sum, the module non-
deterministically chooses a value forx initially, and then on
subsequent rounds toggles this value. In this example, the
init rules are non-deterministic, while theupdate rules
are deterministic. AnSRML system, ρ, is a set of such mod-
ules, where the controlled variables of modules are mutually
disjoint.

The Kripke structureKρ = 〈Sρ,S0
ρ
,Rρ,Vρ〉 corresponding

to SRML systemρ is given as follows: the state setSρ and val-
uation functionVρ corresponds to states (valuations of vari-
ables) that could be reached byρ, with initial statesS0

ρ
being

states that could be generated byinit rules; the transition
relationRρ is defined by(s, s′) ∈ Rρ iff there exists a tuple of
update rules, one for each module in the system, such that

2To be more precise, the rules areguarded commands.

each rule is enabled insands′ is obtained from executing this
collection of rules ons.

A Symbolic Language for Normative Systems: We now
introduce theSRML Norm Language(SNL) for representing
normative systems, which corresponds to theSRML language
for models. The general form of anSNL normative system
definition is:

normative-system id
χ1 disables ℓ11

, . . . , ℓ1k

· · ·
χm disables ℓm1

, . . . , ℓmk

Here, id ∈ Ση is the name of the normative system; these
names will be used to refer to normative systems in formulae
of NTL. The body of the normative system is defined by a set
of constraint rules. A constraint rule

χ disables ℓ1, . . . , ℓk

consists of a condition partχ, which is a propositional logic
formula over the variables of the system, and a set of rule
labels{ℓ1, . . . , ℓk} (we require[] 6∈ {ℓ1, . . . , ℓk}). If χi is
satisfied in a particular state, thenanySRML rule with a label
that appears on the r.h.s. of the constraint rule will be illegal
in that state, according to this normative system. An SNL
interpretationis then simply a set ofSNL normative systems,
each with a distinct name.

Given SNL normative systemsη1 andη2, for someSRML
systemρ, we say:η1 is at least as liberalasη2 in systemρ if
for every states∈ Sρ, every rule that is legal according toη2
is legal according toη1; and they areequivalentif for every
states ∈ Sρ, the set of rules legal according toη1 andη2 are
the same.

Theorem 2 The problem of testing whetherSNL normative
systemη1 is at least as liberal asSNL normative systemη2 is
PSPACE-complete, as is the problem of testing equivalence of
such systems.

Proof: We do the proof for checking equivalence; the lib-
erality case is similar. For membership ofPSPACE, consider
the complement problem: guess a states, check thats ∈ Sρ,
(reachability of states inRML is in PSPACE[Alur and Hen-
zinger,]) and check that there is some rule legal insaccording
to η2 is not legal insaccording toη1, or vice versa. Hence the
complement problem is inNPSPACE, and so the problem is
in PSPACE. For PSPACE-hardness, we reduce the problem of
propositional invariant checking over (S)RML modules[Alur
and Henzinger,]. Given anSRML systemρ and propositional
formulaϕ, define normative systemsη1 and η2 as follows
(whereℓ does not occur inρ):

normative-system η1 normative-system η2
¬ϕ disables ℓ ⊥ disables ℓ

According toη2, ℓ is always enabled; thusη1 will be equiva-
lent toη2 iff ϕ holds across all reachable states of the system.
2

4 Model Checking

Model checking is an important computational problem for
any modal or temporal logic[Clarkeet al., 2000]. We con-
sider two versions of the model checking problem forNTL,
depending on whether the model is presented explicitly or
symbolically. For each of these cases, there are two fur-
ther possibilities, depending on whether we are given an in-
terpretationI for normative systems named in formulae or
not. If we are given an interpretation for the normative sys-
tems named in the formula, thenNTL model checking essen-
tially amounts to a conventional verification problem: show-
ing that, under the given interpretation, the model and asso-
ciated normative systems have certain properties. However,
theuninterpretedmodel checking problem corresponds to the
synthesisof normative systems: we ask whetherthere exist
normative systems that would have the desired properties.

Explicit State Model Checking: The interpreted explicit
state model checking problemfor NTL is as follows.

Given a Kripke structureK = 〈S,S0,R,V〉, interpreta-
tion I : Ση → N(R) and formulaϕ of NTL, is it the case
thatK |=I ϕ?

The CTL model checking problem isP-complete[Schnoebe-
len, 2003]. The standard dynamic programmingalgorithm for
CTL model checking may be easily adapted for interpreted ex-
plicit stateNTL model checking, and has the same worst case
time complexity. More interesting is the case where we are
not given an interpretation. Theuninterpreted explicit state
model checking problemfor NTL is as follows.

Given a Kripke structureK = 〈S,S0,R,V〉 and formula
ϕ of NTL, does there exist an interpretationI : Ση →
N(R) such thatK |=I ϕ?

Theorem 3 The uninterpreted explicit state model checking
problem forNTL is NP-complete.

Proof: For membership inNP, simply guess an interpre-
tation I and verify thatK |=I ϕ. Since interpretations are
polynomial in the size of the Kripke structure and formula,
guessing can be done in (nondeterministic) polynomial time,
and checking is the interpreted explicit state model checking
problem. Hence the problem is inNP. For NP-hardness, we
reduceSAT. GivenSAT instanceϕ over variablesx1, . . . , xk,
for each variablexi , create two variablest(xi) andf (xi), and
define a Kripke structure with3k + 1 states, as illustrated in
Figure 2; states0 is the initial state, and states3k is a final
state. Letϕ∗ denote theNTL formula obtained fromϕ by
systematically replacing every variablexi with (Pη♦t(xi)).
Define the formula to be model checked as:

ϕ∗ ∧
V

1≤i≤k(Pη♦(t(xi) ∨ f (xi))) ∧
V

1≤i≤k(Pη♦t(xi) → ¬Pη♦f (xi))(Pη♦f (xi) → ¬Pη♦t(xi))

This formula is satisfied in the structure by some interpreta-
tion iff ϕ is satisfiable. 2

s(3k)

...

s0
t(x1)

f(x1)

t(x2)

f(x2)

t(xk)

f(xk)

s1

s2

s3

s4

s5

s6

Figure 2: Reduction for Theorem 3.

Symbolic Model Checking: As we noted above, explicit
state model checking problems are perhaps of limited inter-
est, since such representations are exponentially large inthe
number of propositional variables. Thus we now consider the
SRML model checking problem forNTL. Again, we have two
versions, depending on whether we are given an interpreta-
tion or not.

Theorem 4 The interpretedSRML model checking problem
for NTL is PSPACE-complete.

Proof: PSPACE-hardness is by a reduction from the prob-
lem of propositional invariant verification forSRML [Alur
and Henzinger,]3. Given a propositional formulaϕ and an
(S)RML systemρ, let I = {η∅}, and simply check whether
Kρ |=I Oη∅

ϕ. Membership ofPSPACEis by adapting the
CTL symbolic model checking algorithm of[Cheng, 1995]. 2

Theorem 5 The uninterpretedSRML model checking prob-
lem forNTL is EXPTIME-hard.

Proof: By reduction from the problem of determin-
ing whether a given player has a winning strategy in the
two-player gamePEEK-G4 [Stockmeyer and Chandra, 1979,
p.158]. An instance ofPEEK-G4 is a quad〈X1,X2,X3, ϕ〉
where:X1 andX2 are disjoint, finite sets of Boolean variables
– variablesX1 are under the control of agent 1, andX2 are
under the control of agent 2;X3 ⊆ (X1∪X2) are the variables
true in the initial state of the game; andϕ is a propositional
formula overX1 ∪ X2, representing the winning condition.
The agents take try to makeϕ true, by taking it in turns to
alter the value of at most one of their variables. The deci-
sion problem is to determine whether agent 2 has a winning
strategy in a given game. The idea of the proof is to define an
SRML system that such that the runs of the system correspond
to plays of the given game instance, and then to define an
NTL formula to be model checked, which names a normative
systemη, such that the transitions legal according toη corre-
spond to a winning strategy for player 2. The construction of
the SRML system follows that of theEXPTIME-completeness
proof of ATL model checking in[Hoek et al., 2006], with
the difference that player 2’s update rules are given labels(so
that they may be disabled). The formula to model check then
defines three properties: (i) if it is agent2’s turn, then accord-
ing to η at most one of its possible moves is legal; (ii) all of
agent 1’s moves are legal according toη (i.e, agent 2 must
win against all of these); and (iii) the legal paths according to
η must represent wins for agent2. 2

3In fact, the result of[Alur and Henzinger, 1999] is stated for
RML, but the proof only makes use of features fromSRML.

5 Example: Traffic Norms
Consider a circular road, with two parallel lanes. Vehiclescir-
culate on the two lanes clockwise. We consider two types of
vehicles: cars, and ambulances. The road is discretised in afi-
nite number of positions, each one represented as an instance
of a propositionat(lane-number, lane-position, vehicle-id).
Thusat(2, 5, car23) means agentcar23 is on lane 2 at po-
sition 5 (lane 1 is the outer lane, lane 2 is the inner lane). We
also refer to lane 1 as the left lane and to lane 2 as the right
lane. At each time step, cars can either remain still or change
their position by one unit, moving either straight or changing
lane. Ambulances can remain still or change their position
by one or two units, either straight or changing lanes at will.
We are interested in normative systems that prevent crashes,
and that permit ambulances take priority over private cars.So
consider the following normative systems:

• η1: Ambulances have priority over all other vehicles
(i.e., cars stop to allow ambulances overtake them);

• η2: Cars cannot use the rightmost (priority) lane;

• η3: Vehicles have “right” priority (i.e., left lane has to
give way to any car running in parallel on the right lane).

We modelled this scenario using anRML-based model check-
ing system forATL [Alur et al., 2002]. Each vehicle is mod-
elled as a module containing the rules that determine their
physically legal movements, and global traffic control is mod-
elled as a set of norms that constrain the application of certain
rules. For example, here is the (somewhat simplified) defini-
tion of a car (we abuse notation to facilitate comprehension:
for example addition and subtraction here are modulo-n op-
erations, wheren is the number of road positions, and the
at(. . .) predicates are implemented as propositions):

module car-23 controls at(l,p,car-23)
init

[] // initialise ...
update
car-23-straight:
at(l,p,car-23) & not(at(l,p+1,car-1)) &
... & not(at(l,p+1,vehicle-n)) ->
at(l,p+1,car-23)’ := T, at(l,p,car-23)’ := F;

car-23-right:
at(1,p,car-23) & not(at(2,p+1,car-1)) &
... & not(at(2,p+1,vehicle-n)) ->
at(2,p+1,car-23)’ := T, at(1,p,car-23)’ := F;

car-23-left:
at(2,p,car-23) & not(at(1,p+1,car-1)) &
... & not(at(1,p+1,vehicle-n)) ->
at(1,p+1,car-23)’ := T, at(2,p,car-23)’ := F;

car-23-still:
T -> skip;

We can then define the norms described above using
SNL; (again, we abuse notation somewhat in the interests of
brevity; variables must be expanded out for each car and po-
sition, in the obvious way):

normative-system N1
at(1,p,car-i) and at(1,p-1,amb-j) disables
car-i-straight, car-i-left, car-i-right;

normative-system N2

at(2,p,car-i) disables
car-i-straight, car-i-still;
at(1,p,car-i) disables car-i-right;

normative-system N3
at(1,p,car-i) and at(2,p,car-j) disables

car-i-straight, car-i-right;

Using a model checker, we can then evaluate properties of
the system; e.g., if there is only one ambulance then we have
Oη1∪η2∪η3

¬crash.

6 Conclusions & Acknowledgments
Several issues present themselves for future work: tight
bounds for complexity of uninterpreted symbolic model
checking, the complexity of satisfiability, and a full imple-
mentation of a model checker encompassing the variations
discussed in section 4 are the most obvious.

We gratefully acknowledge support from the Spanish research
project Web(I)-2, TIC2003-08763-c02-00), the EU funded project
OpenKnowledge, FP6-027253), and the UK EPSRC project “Vir-
tual Organisations for E-Science”.

References
[Alur and Henzinger,] R. Alur and T. A. Henzinger.Com-

puter aided verification. In press.
[Alur and Henzinger, 1999] R. Alur and T. A. Henzinger.

Reactive modules.Form. Meth. Sys. Des., 15(11), 1999.
[Alur et al., 2002] R. Alur, T. A. Henzinger, and O. Kupfer-

man. Alternating-time temporal logic.JACM, 49(5):672–
713, 2002.

[Cheng, 1995] A. Cheng. Complexity results for model
checking. Tech. Rep. RS-95-18, Uni. Aarhus, 1995.

[Clarkeet al., 2000] E. M. Clarke, O. Grumberg, and D. A.
Peled.Model Checking. MIT Press 2000.

[Emerson, 1990] E. A. Emerson. Temporal and modal logic.
In J. van Leeuwen, editor,Hand. of Theor. Comp. Sci. Vol.
B, pages 996–1072. Elsevier, 1990.

[Hoeket al., 2006] W. van der Hoek, A. Lomuscio, and
M. Wooldridge. On the complexity of practical ATL model
checking. InProc. AAMAS-2006, 2006.

[Meyer and Wieringa, 1993] J.-J. Ch. Meyer and R. J.
Wieringa, eds.Deontic Logic in Comp. Sci.. Wiley, 1993.

[Schnoebelen, 2003] P. Schnoebelen. The complexity of
temporal logic model checking. InAdvances in Modal
Logic Vol 4, 2003.

[Shoham and Tennenholtz, 1996] Y. Shoham and M. Ten-
nenholtz. On social laws for artificial agent societies: Off-
line design. InComputational Theories of Interaction and
Agency. MIT Press, 1996.

[Stockmeyer and Chandra, 1979] L. J. Stockmeyer and A. K.
Chandra. Provably difficult combinatorial games.SIAM
Jnl of Comp., 8(2):151–174, 1979.

[Wooldridge and van der Hoek, 2005] M. Wooldridge and
W. van der Hoek. On obligations and normative ability.
Jnl Appl. Logic, 4(3-4):396–420, 2005.

