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Abstract: Convergence of a stochastic process is an intrinsic property quite relevant for its successful
practical for example for the function optimization problem. Lyapunov functions are widely used as
tools to prove convergence of optimization procedures. However, identifying a Lyapunov function
for a specific stochastic process is a difficult and creative task. This work aims to provide a geometric
explanation to convergence results and to state and identify conditions for the convergence of not
exclusively optimization methods but any stochastic process. Basically, we relate the expected
directions set of a stochastic process with the half-space of a conservative vector field, concepts
defined along the text. After some reasonable conditions, it is possible to assure convergence when
the expected direction resembles enough to some vector field. We translate two existent and useful
convergence results into convergence of processes that resemble to particular conservative vector
fields. This geometric point of view could make it easier to identify Lyapunov functions for new
stochastic processes which we would like to prove its convergence.

Keywords: stochastic process; optimization functions; stochastic gradient descent; convergence;
lyapunov functions

1. Introduction

Along most practical research branches, the solution to a given problem is often
entrusted to a function optimization problem, where the effectiveness of a solution is
measured by a function to be optimized. Machine learning challenges are great examples
of this situation. Therefore, optimization algorithms become crucial to solve such problems.
Iterative optimization methods start at an initial point and move through parameter space
towards trying to minimize the objective function. Its performance may dramatically vary
depending on the initial point. This dependence is somewhat diminished if the algorithm
is guaranteed to converge in the long term to a minimum. Furthermore, in stochastic
optimization algorithms, the quality achieved varies randomly and sometimes there are
chances that the algorithm fails to converge. As an example, the stochastic natural gradient
descent (SNGD) of Amari [1] and its variants often show instability depending on the
starting point and learning rate tuning. Even some experiments are proved to diverge with
SNGD [2]. Clearly such issue weights considerably against its practical use.

Convergent algorithms are more stable with respect to both learning rate parameters
and initial point estimations. For instance, in [3], the optimization method named con-
vergent stochastic natural gradient descent (CSNGD) is proposed. CSNGD is designed to
mimic SNGD but it is proven to be convergent. Sánchez-López and Cerquides show that,
unlike SNGD, CSNDG shows stability in the experiments run.

As a consequence, we are interested in understanding better the conditions that make
an algorithm convergent. Convergence proofs abound in the literature. In this work we
concentrate on two apparently disconnected and well known convergence results. In [4]
seminal work, Bottou proved the convergence of stochastic gradient descent (SGD). Later
on in [5], Sunehag provided an extended result for variable metric modified SGD. The
connection between the proofs of both results are not evident. It is not clear what they have
in common, and, therefore, further generalizations seem not to be within reach.
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To understand the convergence results (Both theorems are added in Appendix A.
However, we alleviate the conditions of Theorem A2 in [5]. The alleviated conditions turn
Theorem A2 into Theorem A3 found in the same appendix), it is helpful to take a look at
their proofs. Bottou’s proof relies on the construction of a Lyapunov function [6]. On the
other hand, Sunehag’s proof uses the Robbins–Siegmundtheorem [7] instead. It can be
seen that the latter is proving that the function to optimize serves already as a Lyapunov
function, similar to latter chapters in [4]. Therefore, both proofs share some similarity but
it is not evident how to raise a connection. Establishing the connection and pointing out its
relevance is the main contribution of this paper and results in a generalization from which
both results can be easily proved as corollaries.

Stochastic optimization algorithms rely on observations extracted from some possibly
unknown probability space. Algorithms subjected to random phenomena are stochastic
process [8–11]. The generalized convergence result for stochastic processes in this article is
obtained after 2 main concepts. Precisely, the first one is resemblance between a stochastic
process and a vector field. The second one is the locally bounded property of a stochastic
process by a function. These two ingredients are enough to state and prove our convergence
theorem; a stochastic process Z converges if it is locally bounded by a convex real valued,
twice differentiable function φ with bounded Hessian and Z resembles to ∇φ.

Two corollaries are extracted from this result, which we prove to be equivalent to
Bottou’s and Sunehag’s convergence theorems. Moreover, we observe that convergence
proof in [12] of the algorithm called discrete DSNGD can be addressed by our main theorem,
since original convergence theorem of Sunehag is not general enough.

Resemblance concept involves the expected directions set of a stochastic process, that
we define in Section 2, and the half-space of a vector field, a concept introduced in Section 3.
Then, in Section 4 we state and prove our general result, which highlights the common-
alities between Bottou and Sunehag theorems, proving convergence of a wider variety
of algorithms.

2. Main Result. Director Process and the Expected Direction Set

Let (Ω,F , P) be a probability space and (S, Σ) be a measurable space. A discrete
stochastic process on (Ω,F , P) indexed byN is a sequence of random variables Z = {Zt}t∈N
such that Zt : Ω→ S. In this work, S = Rk and Σ is the corresponding Borel σ-algebra. As
random variables are used to describe general random phenomena, stochastic processes
indexed by N are usually used to model random sequences.

2.1. Locally Bounded Stochastic Processes and Objective of the Work

The difference between two random variables of a stochastic process is a random
variable known as increment. We say that random variable Zt+s − Zt with 1 ≥ s ∈ N is an
s-increment at time t. For example, the 1-increments of a stochastic process Z are

Z∗t = Zt+1 − Zt . (1)

We focus our attention to a decomposition of Z∗t into Z∗t = −γ(t) · Xt, such that
γ : N→ R+ is a positive real valued function and X = {Xt}t∈N is a stochastic process on
(Ω,F , P).

Definition 1. Let Z and X be stochastic processes and γ : N→ R+ a function. Then (X, γ) is a
decomposition of 1-increments of Z if

Zt+1 = Zt − γ(t) · Xt . (2)

Name X the director process of Z and γ the learning rate, and note it by Z = (X, γ).
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This way of expressing a process allows to define Zt+1 with respect to Zt, which gives
us control of the difference between both values by means of γ(t)X(t), as Figure 1 shows.
This is very useful if we intend to analyse the convergence of a stochastic process.

As represented in Figure 1, we can think of Zt as the value of the process at time
t, while −γ(t)Xt is the vector going from Zt to Zt+1. For the article, it is important to
remember this, since we are constantly referring to Zt as points in Rk while Xt are managed
as direction vectors in Rk. This distinction is only practical for our purposes.

Z0

Z1

−γ(0)X0

Z2

−γ(1)X1

Z3

−γ(2)X2
Z4

−γ(3)X3

Figure 1. Path of stochastic process Z with director process X and learning rate γ.

The trajectories of stochastic approximation algorithms, such as stochastic gradient
descent (SGD), are indeed samples of stochastic processes. Furthermore, they are usu-
ally expressed by means of their decomposition of 1-increments, as can be seen in the
following examples.

Example 1. SGD [4] is the cornerstone of machine learning to solve the function optimization
problem. The objective of SGD is to minimize an objective function L(η) = Ez∼P∗ l(η; z) for some
unknown probability distribution P∗ and random variable l(η) defined on (Ω∗,F ∗, P∗). This
function l is known as loss function, and it is usually differentiable with respect to η, allowing the
definition of SGD as

Zt+1 =Zt − γ(t)∇η l(Zt) ,

γ(t) >0 t ∈ N
(3)

where Zt are estimates of η. We can see Z = {Zt}t∈N, and, therefore, SGD, as a stochastic process.
Indeed, let

(Ω = ∏
t∈N

Ω∗,F = ∏
t∈N
F ∗, P = ∏

t∈N
P∗) (4)

be the product probability space (This space is guaranteed to exist according to Kolmogorov extension
theorem (see for example Theorem 2.4.4 and following examples in [13])) over infinite sequences.
Hence we can define the stochastic process X on (Ω,F , P) such that Xt = ∇η l(Zt) where for every
ω = {ωt}t∈N ∈ Ω it is Xt(ω) = ∇η l(Zt; ωt). This implies that (X, γ) is a decomposition of
1-increments of SGD.

In addition, we observe that Zt+1 depends only on last observation Zt and t, which is known
as a non-stationary Markov chain.

Example 2. This example is worked in [5]. Again, we focus on the function optimization problem,
using the same notation as in previous example. In this case, the estimation update of the minimum
η is defined as

Zt+1 =Zt − γ(t)Bt ·Yt ,

γ(t) >0 t ∈ N
(5)
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where Bt is a matrix in Rk×k known after information Z0, . . ., Zt available at time t and Yt = Y(Zt),
where Y is a function mapping each η ∈ Rk to a random variable on the same probability space
(Ω∗,F ∗, P∗).

Similarly as in previous example, Y can be thought as a random variable in the product
probability space (Equation (4)) that depends on previous Zt, such that for every ω ∈ Ω it is
Yt(ω) = Y(Zt; ω) = Y(Zt; ωt). If we define Xt = Bt ·Y(Zt), then Z = (X, γ) is a decomposition
of 1-increments of Z with X = {Xt}t∈N.

Here, Z is not a (non-stationary) Markov chain, since Bt may depend on Zi for all i < t.

The naming of γ as learning rate is commonly used in the machine learning research
branch [4,14–16]. The director process X determines the direction Xt at time t of the update
Equation (1) with Zt as reference point, while γ(t) specifies a certain distance to travel
along that direction Xt. Moreover we demand some constraints to both factors. Condition
imposed to γ is usually found in the literature [3–5]. A learning rate γ holds the standard
constraint if;

∑
t

γ(t)2 < ∞, ∑
t

γ(t) = ∞ . (6)

Before we show the condition for the director process X, we fix some notation used
throughout the article. Consider the natural filtration FZ = {Ft}t∈N generated by stochas-
tic process Z, that is, Ft = σ(Z−1

i (A) | i ≤ t, A ∈ Σ) for all t ∈ N. Then FZ is a filtration
and by definition Z is adapted to FZ.

Intuitively, every Ft of a filtration is a σ-algebra that classifies the elements of Ω. For
example, if Ω is the set of colours, Ft can gather warm and cold colours into separate
and complementary sets. The fact that a random variable Zt is Ft-measurable implies
that Zt sends all warm colours to the same value and all cold colours also to the same
value. Somehow Zt is then not providing any additional information about elements
of Ω beyond the classification of Ft. The sequence Ft is increasing, in the sense that
Ft ⊂ Ft+1 for all t. Therefore, a filtration characterizes space Ω with sequentially higher
levels of information or classification. Denote Et = E[· | Ft] the conditional expectation
given Ft [10]. Recall that if Y is a random variable in (Ω,F , P) then Et[Y] is in turn a
Ft-measurable random variable.

Hence, if Z = (X, γ) then X is locally and linearly bounded by function φ : Rk → R if

(∃A, B)(∀t) Et‖Xt‖2 ≤ A + B · φ(Zt) . (7)

These two constraints are finally combined to present the kind of stochastic processes
we are interested in.

Definition 2. Let Z be a stochastic process and φ : Rk → R be a function. We say that Z
is locally bounded by φ if there is a decomposition of 1-increments (X, γ) with γ holding the
standard constraint and X locally and linearly bounded by φ.

Furthermore, if Z0 = η0 a.s. we say η0 is the initial point of Z.

For instance, Examples 1 and 2 observed in this section define Z as a locally bounded
process. We see it below.

Example 3. Recall Example 1. In the same reference [4], the optimization algorithm is asked to
hold additional conditions in order to prove its convergence. We added the convergence theorem in
Appendix A. Some of the conditions are

∑
t

γ(t)2 < ∞, ∑
t

γ(t) = ∞ ,

Z0 = η0 ∈ Rk ,

(∃A, B)(∀t) Et‖Xt‖2 ≤ A + B‖Zt − η‖2

(8)
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where η ∈ Rk is the optimal point of L. Standard constraint to γ is clearly asked. Moreover η0
is a starting point. It remains to be seen if X is locally and linearly bounded by some function
φ : Rk → R. Indeed, if we define φ(η) = ‖η− η‖2, then the property is easily checked. Hence Z is
locally bounded by φ with initial point η0

Example 4. Recall Example 2. Convergence theorem in [5], which is added in the Appendix A,
demands below conditions;

∑
t

γ(t)2 < ∞, ∑
t

γ(t) = ∞ ,

Z0 = η0 ∈ Rk ,

(∃A, B)(∀t) Et‖Xt‖2 ≤ A + BL(Zt)

(9)

where L is a function to optimize. For this example, Z is then locally bounded by φ = L with initial
point η0. Just as an observation, property of Bt being determined after information available at time
t, is the same as seeing Bt as a Ft-measurable random variable over the product probability space.

We are interested on studying the almost sure convergence of Z to a point η ∈ Rk. A
stochastic process Z almost surely (a.s.) converges to a point η ∈ Rk if

P
[

ω ∈ Ω : lim
t→∞

Zt(ω) = η

]
= 1 . (10)

Examples 3 and 4 show us that we can understand the results in [4,5] as the almost
sure convergence of some locally bounded processes. In this paper, we are interested in
characterizing the almost sure convergence of locally bounded processes. The objective of
this work is to create a theory that allows to prove the a.s. convergence of locally bounded
processes that covers Examples 3 and 4 and whose applicability generalizes to a wider set
of processes, such as the one described below:

Example 5. Assume the function f (η) = ‖η‖2 defined in Rk, and the optimization method
Z defined by its director process Xt = G1 · G2 · Zt where G1 and G2 are positive definite and
symmetric matrices. For simplicity, this example shows a stochastic process with no random
phenomena associated. We wonder about the convergence of process Z, and if so, whether it
converges to the point of Rk that optimizes function f . From Theorems A1 and A2 found in the
literature (included in Appendix A) it is not possible to prove a.s. convergence of Z, since conditions
Bottou resemblance and C.3, respectively, are not satisfied. That is, because Zt ·ᵀ G1 · G2 · Zt is
possibly negative a.s.

Further on, Z is assumed to be locally bounded by φ where (X, γ) is its corresponding
decomposition of 1-increments, unless otherwise indicated.

2.2. Main Result

The objective of the article is to proof below theorem, that we prove in Section 4.1.

Theorem 1. Let Z be a stochastic process on probability space (Ω,F , P). Then Z almost surely
converges to a point η if there is a twice differentiable convex function φ with unique minimum η
defined in Rk with bounded Hessian norm, such that

• Z is locally bounded by φ;
• Z resembles ∇φ.

There is one concept of the theorem that needs a definition. That is, when a stochastic
process resembles to a vector field. Next sections have that end, with our main definition
that fills the gap appearing at Section 3.2. As we will see in Section 4.4, simple Example 5
finds a solution with our main theorem.
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2.3. Expected Direction Set

We now define one key object of our work named the expected direction set. It focuses
on gathering all directions that the update may take at time t conditioned to Ft. Before the
definition we provide some concepts and notation.

Random variable Et[Xt] determines all expected directions of Z at time t that the
stochastic process may follow assuming Ft. For example, if ω ∈ Ω is an observation, then
Et[Xt](ω) ∈ Rk is a vector pointing to the expected update direction departing from point
Zt(ω) given Ft. Denote the expected direction of Z at ω ∈ Ω and time t as

DZ(ω, t) = Et[Xt](ω) . (11)

The expected direction from point η = Zt(ω) of Equation (11) depends on ω. That is,
the path followed until reaching η = Zt(ω) ∈ Rk matters. For instance, if ω1, ω2 ∈ Ω are
different observations, such that η = Zt(ω1) = Zt(ω2), then possibly DZ(ω1, t) 6= DZ(ω2, t).
We collect all expected directions at η = Zt(ω) and time t in the vector set below;

SZ(η, t) = {DZ(ω, t) | ω ∈ Ω, Zt(ω) = η} . (12)

The tools to define the expected direction set at η ∈ Rk after time T ∈ N are given, so
we proceed to its formal definition.

Definition 3. Let Z = (X, γ). Define the expected directions set of Z at η ∈ Rk after time
T ∈ N as

EDSZ(η, T) :=
⋃

t≥T
SZ(η, t) . (13)

With a few words, EDSZ(η, T) is a vector set containing all expected directions (pro-
vided by the director process X) conditioned toFt for every outcome ω such that Zt(ω) = η
where t ≥ T. In Definition 3, EDS depends on T. That is because to assess the convergence
of an algorithm it is not important to consider all expected directions throughout all the
process. For example, if an algorithm converges we can modify randomly all directions of
the director process for just a particular time T ∈ N, and the resulting algorithm still con-
verges. Roughly speaking, only the tail of a process matters to determine the convergence
property. This concept is better addressed with Definition 4 in next section.

Example 6. Recall Example 1. Assume that Z is then SGD. Then EDSZ(η, T) is a singleton.
Indeed, DZ(ω, t) is the same vector for all t ∈ N and all ω with Zt(ω) = η and hence SZ(η, t) =
{DZ(ω, t)} with any ω ∈ Ω with Zt(ω) = η. Finally

EDSZ(η, T) = {Et[Xt](ω)} for any ω ∈ Ω and t ≥ T with Zt(ω) = η . (14)

This is the case of any non-stationary Markov chain.

2.4. Essential Expected Direction Set

Convergence property of an algorithm relates closely to directions followed after time
T ∈ N as T tends to infinity. Equivalently, the direction set appearing repeatedly through
the whole optimization process matters, while directions set only contemplated for a finite
amount of iterations changes nothing, in terms of convergence guarantee. This direction
set is named the essential expected directions set in this article.

To define properly the essential expected directions set, we will use the convex vector
subspace of a given vector set. Given a vector set U in Rk, let C(U) be the smallest convex
vector subspace containing U. See Figure 2 as an illustrative example. Observe that C(U)
is always closed, but it may be unbounded.
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C(U)

U

Figure 2. Set of vectors U and its convex vector subspace C(U) in R2.

Definition 4. Let Z = (X, γ). Define the essential expected directions set of Z at η as

EEDSZ(η) := ∩TC(EDSZ(η, T)) . (15)

Example 7. Assume Z is any non-stationary Markov chain, such that SGD in Example 1. Then
EEDSZ(η) = EDSZ(η, T) for any T. Indeed, we have seen in Example 6 that EDSZ(η, T) =
{Et[Xt](ω)} for any ω ∈ Ω and t ≥ T where Zt(ω) = η. Hence

EEDSZ(η) = ∩TC(EDSZ(η, T)) = C({Et[Xt](ω)}) = {Et[Xt](ω)} = EDSZ(η, T) , (16)

for any ω ∈ Ω with ZT(ω) = η.

Definition of EEDSZ(η) delimits the smallest subspace where all directions at η tend
to. Clearly, EEDSZ(η) is also convex and closed (possibly empty). Deeper properties of
this set lead to identify divergence symptoms. For example, if it is empty or unbounded,
we face instability of the process at η. To see this, observe below result. The proof can be
found in the Appendix B.

Corollary 1. Let η ∈ Rk. Then EEDSZ(η) is a non-empty bounded set if, and only if, there exists
T ∈ N, such that C(EDSZ(η, T)) is bounded.

This result relates EEDSZ(η) with instability properties of Z. If EEDSZ(η) is empty or
unbounded, then the algorithm is unstable at η, since expected directions with arbitrarily
large norms exist after enough iterations. Clearly, if this situation is found for all points
near the optimum, the algorithm can not converge to the solution. It is desirable instead
that C(EDSZ(η, T)) is compact (bounded) for some T for every η ∈ Rk, or equivalently,
that EEDSZ(η) is compact (bounded) and not empty.

In fact, since we are interested in the case where Z is locally bounded by φ (recall
Definition 2), we can assume that EEDSZ(η) is a non empty compact set, by virtue of
below results.

Proposition 1. Let stochastic process Z be locally bounded by φ. Then C(EDSZ(η, 0)) is a
non-empty compact set.

Proof. We know that X is locally and linearly bounded. Hence, applying Jensen’s inequality

‖Et[Xt]‖2 ≤ Et‖Xt‖2 ≤ A + B · φ(Zt) . (17)

Let η ∈ Rk and ω ∈ Ω, such that Zt(ω) = η for some t ≥ 0. Therefore, every
v = Et[Xt](w) ∈ EDSZ(η, 0) has bounded norm by A+ B ·φ(η), implying that C(EDSZ(η, 0))
is a non-empty compact set.

Below corollary is a consequence of Proposition 1 and Corollary 1.

Corollary 2. Let stochastic process Z be locally bounded by φ. Then EEDSZ(η) is a non-empty
compact set for all η ∈ Rk.
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3. Vector Field Half-Spaces and Stochastic Processes. Resemblance.

This section defines the main concept of this work; the property of resemblance between
a stochastic process and a vector field. The definition highlight some commonalities
between Theorems A1 and A3. Both of them prove the convergence of stochastic processes
that resemble to particular vector fields. A geometric interpretation and explanation of
convergence theorems conditions is established in next Section 4.

Some previous definitions are needed and stated before introducing the main concepts
of the article, such as ε-acute vector pair sets and the half-space of a vector field. The
section starts with some basic concepts about vectors.

Definition 5. Let u, v ∈ Rk be two vectors. The pair (u, v) is acute if u and v form an acute angle,
that is, if uᵀ · v > 0. Furthermore, if uᵀ · v ≥ ε > 0 then (u, v) is ε-acute.

Proposition 2. Let u, v ∈ Rk be two vectors. Then the pair (u, v) is ε-acute if, and only if, there
exists a symmetric positive-definite matrix B, such that B · u = v and uᵀ · B · u ≥ ε.

A vector pair set V is a set of vector pairs V = {(ui, vi) ∈
(
Rk
)2
| i ∈ I} where I is an

index set.

Definition 6. Let V be a vector pair set. V is ε-acute if every vector pair (u, v) ∈ V is ε-acute.

Next result is a direct consequence.

Proposition 3. Let V be a vector pair set, indexed by I. Then, V is ε-acute for some ε > 0 if, and
only if;

inf
i∈I

(ui ,vi)∈V

uᵀ
i vi > 0 . (18)

Proposition 4. Let V be a vector pair set, indexed by I. Then, V is ε-acute for some ε > 0 if, and
only if, there exist a set of symmetric positive-definite matrices B = {Bi | i ∈ I} such that

inf
i∈I

(ui ,vi)∈V

uᵀ
i Biui > 0 ,

Biui = vi .
(19)

Proof. Prove, first, that if there exist a set of matrices B = {Bi | i ∈ I} holding Equation (19)
then V is ε-acute for some ε > 0. Observe that after Equation (19);

inf
i∈I

uᵀ
i vi = inf

i∈I
uᵀ

i Biui > 0 . (20)

Then, Proposition 3 implies that V is ε-acute and finishes this part of the proof.
Now assume that V is ε-acute, prove then that there exist a set of matrices B = {Bi | i ∈ I}

holding Equation (19). Since V is ε-acute, in particular, the pair (ui, vi) ∈ V is ε-acute for
every i ∈ I. Apply Proposition 2: for every i ∈ I there exists a symmetric positive-definite
matrix Bi, such that Biui = vi and uᵀ

i · Bi · ui ≥ ε. This finishes the proof.

3.1. The Half-Space of a Vector Field

The half-space determined by a vector u is the set of vectors that conform an acute
angle with u. This region clearly occupies half of the total space. Additionally, the ε-half-
space of u with ε > 0 is the set of vectors v, such that the vector pair (u, v) is ε-acute. This
object is needed for afterwards defining the half-space of a vector field. We define these
concepts below and illustrate the ε-half-space of a vector u in Figure 3.
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u

Hε(u)

ε
‖u‖

Figure 3. Shaded area representing Hε(u).

Definition 7. Let u be a vector of Rk. The half-space of u is the set

H(u) = {v ∈ Rk | uᵀ · v > 0} . (21)

Similarly, the ε-half-space of u with ε > 0 is the set

Hε(u) = {v ∈ Rk | uᵀ · v ≥ ε}. (22)

A vector field X over Rk is a function assigning to every η ∈ Rk a vector of Rk, that is
X : Rk → Rk. For example, if l : Rk → R is a twice differentiable function, we can consider
the vector field consisting of the gradient vectors at each point η. Precisely, denote the
gradient vector field (GVF) as X∇l , where X∇l(η) = ∇l(η).

We are ready to define the half-space of a vector field.

Definition 8. Let X be a vector field over Rk. The half-space of X is a function H(X) mapping
every η to H(X)(η) = H(X(η)). Similarly, the ε-half-space of X with ε > 0 is a function Hε(X)
mapping every η to Hε(X)(η) = Hε(X(η)).

3.2. Resemblance between a Stochastic Process and a Vector Field

The convergence of any locally bounded process can be proved comparing the ex-
pected directions set of the algorithm with some vector fields. When the expected directions
resemble the vector field we compare it to, then we can ensure the almost sure convergence
to a point of the stochastic process, after some reasonable conditions. By resemblance, we
mean that the expected directions set after some time T is a subset of the ε-half-space of X,
among other things explained later. Therefore, resemblance asks for every η ∈ Rk that every
vector DZ(ω, t) with t ≥ T and every ω ∈ Ω with η = Zt(ω) form an acute angle with the
vector field at X(η).

However, if the vector field sends a specific point η to 0 ∈ Rk, then no direction
can be set by the DZ(ω, t) to form an acute vector pair. Therefore, resemblance property
is evaluated outside the neighborhood of these annulled points. That is why we must
consider now the set of annulled points of a vector field and the neighborhoods around the
points of this set.

Formally, let X be a vector field defined in Rk. The set KX is the set of points of Rk

annulled by X, that is, KX := {η ∈ Rk | X(η) = 0}. Moreover, consider the closed ball
centered on KX of radius δ as Bδ(KX) := ∪η∈KXBδ(η) where Bδ(η) is the closed ball of
radius δ centered on η.

We also use the notation A′ = Rk \ A for the compliment set of subset A ⊂ Rk. We say
that Z ε-resembles to X at η from T on if EDSZ(η, T) ⊂ Hε(X)(η). Observe an illustrative
example in Figure 4.

This intuition is naturally extended to ε-resemblance at sets, when the property is
satisfied for every η in the set. With this in mind we can define the key concept of
this article.
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η

X(η)

Hε(X)(η)

EDS(η, T)

Figure 4. A stochastic process Z that ε-resembles to X at η from T on, since vector set EDSZ(η, T) of
all expected directions of Z at η after time T belongs to Hε(X)(η).

Definition 9. Let Z = (X, γ) be a stochastic process and X be a vector field over Rk. We say that
Z resembles to X from T ∈ N on, if;

(∀δ > 0)(∃ε > 0) Z ε-resembles to X at Bδ(KX)
′ from T on (23)

We say that Z resembles to X if there is T ∈ N such that it resembles to X from T on.

Everything is set up to accomplish the goal of this paper. We refresh the main theorem
of this article in next section and show its proof.

4. Proof of Main Result. Reinterpretation of Convergence Theorems

The objective of the article is within reach now. That is, proving main Theorem 1.
Moreover, this section addresses afterwards the task of proving that Theorems A1 and A3 are
particular examples of our main Theorem 1.

4.1. Resemblance to Conservative Vector Fields and Convergence

Recall main Theorem 1 and observe that it asks the stochastic process Z to be locally
bounded by some function φ and Z to resemble to ∇φ. Therefore, ∇φ is a particular type
of vector field called conservative vector field. That is, a vector field that appears from
derivation of a function. That is why we understand our main theorem as a convergence
result of locally bounded processes of resemblance to conservative vector field.

In the theorem statement, it says that φ has bounded Hessian norm. Similarly to
Theorem A3, it means that:

(∃K)(∀η) ‖∇2
ηφ(η)‖ ≤ K′ .

We are ready to prove the main result of the paper.

Proof of main Theorem 1. Observe that φ is bounded from below. Indeed, η is a minimum
and φ is convex with X(η) = 0 where X = ∇φ. Therefore, there exists a constant m ≥ 0
such that φ(η) + m ≥ 0 for all η. Define ψ(η) = φ(η) + m. Clearly, ∇ψ = ∇φ = X, and,
therefore, Z resembles to ∇ψ. Moreover, Z is locally bounded by ψ and ψ clearly satisfies
the Hessian norm bound.

From here, the prove follows the steps of Theorem A2’s proof. Taylor inequality and
Hessian norm bound;

ψ(Zt+1) = ψ(Zt − γtXt)

≤ ψ(Zt)− γtX(Zt)
ᵀXt + γ2

t K‖Xt‖2 (24)
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where K = K′
2 . Apply expectation conditioned to information until time t and then use that

Z is locally bounded by ψ;

Etψ(Zt+1) ≤ ψ(Zt)− γtX(Zt)
ᵀEt[Xt] + γ2

t KEt

[
‖Xt‖2

]
≤ ψ(Zt)− γtX(Zt)

ᵀEt[Xt] + γ2
t K(A + Bψ(Zt))

≤ (1 + γ2
t KB)ψ(Zt)− γtX(Zt)

ᵀEt[Xt] + γ2
t KA .

(25)

Use now that Z resembles to X. Then, there exists T such that for every t ≥ T, the term
−γtX(Zt)ᵀEt[Xt] is negative. All other conditions of Robbins–Siegmund theorem (in [7],
added in Appendix A) also hold for the algorithm after time T, thanks to learning rate
constraints. Apply it and deduce that random variables ψ(Zt) converge almost surely to a
random variable (and so does φ(Zt)) and that;

∑
t

γtX(Zt)
ᵀEt[Xt] < ∞ a.s. (26)

Prove now that stochastic process φ(Zt) converges almost surely to value φ(η). Pro-
ceed by contradiction. Assume that for δ1 > 0

P
[

ω ∈ Ω | lim
t

φ(Zt(w)) ∈ Bδ1(φ(η))
′
]
> 0 (27)

this implies, by continuity and convexity of function φ, that there exists δ

P
[

A = {ω ∈ Ω | lim
t

Zt(w) ∈ Bδ(η)
′}
]
> 0 . (28)

By resemblance and definition of the limit, there exists T and ε such that EDSZ(η, T) ⊂
Hε(X)(η) for every η ∈ Bδ(η)

′. This leads to a contradiction, since using learning rate
standard constraint we have

∑
t≥T

γtX(Zt(ω))ᵀEt[Xt](ω) > ∑
t≥T

γt · ε = ∞ (29)

for every ω ∈ A, which has measure different to 0 by Equation (28). This clearly contradicts
Equation (26).

Hence, φ(Zt) converges almost surely to φ(η) and Zt converges almost surely to η
as wanted.

4.2. Reinterpretation of Bottou’s Convergence Theorem

The goal now is to deduce Theorem A1 as a direct consequence of main Theorem 1.
Consider a particular case of main Theorem 1 where φ(η) = ‖η− η‖2, that reads as follows.

Corollary 3. Let φ(η) = ‖η − η‖2 and Z be a stochastic process on probability space (Ω,F , P).
Then Z almost surely converges to η if

• Z is locally bounded by φ;
• Z resembles ∇φ.

Additional conditions to φ, such as Hessian bound or twice differentiability, are not
specified in the corollary since with the particular definition of φ all those conditions are
already satisfied.

To see that Corollary 3 proves Theorem A1 statement, we need to prove that Theorem A1
is assuming that Z is locally bounded by φ and that Z resembles ∇φ. Example 3 already
proves that Bottou is assuming that Z is locally bounded by φ. Therefore, it remains to check
that Z resembles to∇φ. To that end, see below proposition proved in Appendix C.
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Proposition 5. Let Z = (X, γ) be a stochastic process and X be a vector field over Rk. Then Z
resembles to X if, and only if,

(∃T ∈ N)(∀δ > 0) inf
η∈Rk\Bδ(KX)
v∈EDSZ(η,T)

X(η)ᵀ · v > 0 . (30)

Observe condition Bottou resemblance of Theorem A1 and Proposition 5. Deduce
from it, that the algorithm Z of the theorem resembles to vector field ∇φ.

Corollary 4. Let Z = (X, γ) be a stochastic process and η ∈ Rk. Then Z resembles to ∇φ with
φ(η) = ‖η − η‖2 if, and only if, Bottou resemblance holds.

4.3. Reinterpretation of Sunehag’s Convergence Theorem

Theorem A3 is deduced from main Theorem 1. Similarly to previous section, we
provide a version of our main theorem for the case where φ = l is a function that we aim
to minimize.

Corollary 5. Let l : Rk → R be a twice differentiable cost function with a unique minimum η and
bounded Hessian norm, and let Z be a stochastic process on probability space (Ω,F , P). Then Z
converges to the minimum η of l almost surely if

• Z is locally bounded by l;
• Z resembles ∇l.

The stochastic process described in Theorem A3 has some more properties, such as
Xt = Bt ·Yt. However, if we prove that Z of that theorem is locally bounded by l and that
Z resembles ∇l, then it is clear that Corollary 5 deduces Theorem A3. Recall Example 4 and
notice that we already proved that Z is locally bounded by l. The remaining property is
acquired after below proposition that we prove in Appendix D.

Proposition 6. Let Z = (X, γ) be a stochastic process and X be a vector field over Rk. Then Z
resembles to X if, and only if, there exists T, such that for every t ≥ T there are random vectors Yt
to Rk and symmetric and positive-definite Ft-measurable random matrices Bt such that

Bt ·Yt = Xt , (31)

Et[Yt] = X(Zt) Zt(ω) /∈ KX , (32)

(∀δ > 0) inf
η∈Rk\Bδ(KX)

t≥T
ω∈Ω,Zt(ω)=η

X(η)ᵀ · Bt(ω) ·X(η) > 0 . (33)

It is only necessary to put together Proposition 6 and condition C.1 and Sunehag
resemblance to finish our objective with the following corollary

Corollary 6. Let l be a differentiable function and Z = (X, γ) be a stochastic process. Then Z
resembles to∇l if, and only if, there exist T such that for every t ≥ T there are random vectors Yt to
Rk and symmetric and positive-definite Ft-measurable random matrices Bt such that Bt ·Yt = Xt
and conditions C.1 and Sunehag resemblance hold.

Corollaries 4 and 6 nicely show the value of Theorem 1 for proving convergence. To
reinforce this, we notice that the convergence of algorithm DSNGD in [12] is easily proved
by means of Corollary 5, by combining both Theorem A3 and Corollary 6. This shows that
Theorem 1 allows to prove convergence of a wider set of stochastic processes and function
optimization methods.
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4.4. Convergence of Process in Example 5

Our theorem solves question proposed by Example 5. To see it, just define

φ(η) =
1
2

ηᵀ · G2 · η . (34)

Twice differentiable and convex function φ has bounded Hessian norm, since its
Hessian is the constant matrix G2. Moreover, Z is clearly locally bounded by φ. Indeed,
recall Equation (7) and observe;

‖G1 · G2 · Zt‖2 ≤ B · φ(Zt) (35)

where B =
2λ2

1·λ
2
2

µ2
such that λi is the greatest eigenvalue of Gi and µi is the least eigenvalue

of Gi.
Finally, check that Z resembles to ∇φ(η) = G2η. Observe that EDSZ(η, T) = {G1G2η}

is a singleton for every T. Then for all δ > 0 and all η ∈ Bδ(K∇φ) it is

∇φ(η)ᵀ · G1G2η = ηᵀG2 · G1G2η ≥ ε , (36)

where ε = µ1 · µ2
2 · δ2. Hence Z resembles to ∇φ and by virtue of our main Theorem 1

process Z converges a.s. to 0, and, therefore, minimizes function f as wanted.

5. Conclusions

We have presented a result that allows us to prove the convergence of stochastic
processes. We have proven that two useful convergence results in the literature are a
consequence of our theorem. This is made after a new theory that compares the expected
directions of the algorithm to conservative vector fields. If the expected directions at a
point η resemble enough to vector X(η) with ∇φ = X a conservative vector field, then the
process is stable at that point. If this happens for every η ∈ Rk, and in addition the process
is locally bounded by φ, then the process is globally stable and converges.

Some inspiring paths remain unexplored after this work. For example, finding φ
function is the key to prove convergence, and it is asked to be a convex twice differentiable
function. It is interesting to study how function φ can be obtained, for instance as a sum of
other convex twice differentiable functions φi.

Another promising research line is a deeper analysis of EDS and EEDS objects, which
may guarantee the existence of a function φ without the need of finding it. If sufficient
conditions are established for a stochastic process to ensure resemblance to some unknown
conservative vector field, then φ searching can be dodged. Even proving the non-existence
of such function after a wider study of EDS and EEDS is useful, forbidding the use of
our theorem.

It is also interesting to study the converse implication. Specifically, investigating the
conditions that lead to divergent instances after ground theory explained in the article. In
this sense, Lyapunov characterization of convergent processes becomes a helpful and key
theory, since great similarities arise between these two techniques.

Furthermore, in many occasions the function φ to optimize can be established before-
hand (convex and twice differentiable). Therefore, the opposite process can be considered,
that is, generating a set of stochastic processes that resemble to∇φ, assuring in consequence
the convergence of such candidates.

In [17], one finds another relevant convergence result. It assures the convergence
in probability of a stochastic process, instead of almost sure convergence worked in this
article. We wonder about the existing commonalities with our theorem, and the possibility
to relax the conditions our theorem imposes, yet ensuring convergence in probability of
a process.
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We are currently working on two weaker resemblance properties, that we name weak
and essential resemblance. The intention is to deduce almost sure convergence of a process
by only studying its essential expected direction set (EEDS).
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Appendix A. Convergence Theorems

We state below Bottou’s convergence theorem appearing in [4] and Sunehag et al.
convergence theorem in [5]. We provide a generalization of such theorems, whose proofs
carry no complications from their original proofs. Moreover, we adapt the notation to our
text and replace algorithm concepts by the corresponding terms appearing in the more
generic stochastic process theory branch. We name every condition described by the result
to refer to them in the article.

Theorem A1 (Bottou’s in [4]). Let l : Rk → R be a function with a unique minimum η and
Zt+1 = Zt − γ(t)Xt be a stochastic process. Then Z converges to η almost surely if the following
conditions hold;

Bottou resemblance (∀δ > 0) inf
‖Zt−η‖>δ

(Zt − η)ᵀ ·Et[Xt] > 0

Bottou algorithm bound (∃A, B)(∀t) E‖Xt‖2 ≤ A + B‖Zt − η‖2

Learning rate constraint ∑
t

γ(t)2 < ∞, ∑
t

γ(t) = ∞

Theorem A2 (Theorem 3.2 in [5]). Let l : Rk → R be a twice differentiable cost function with a
unique minimum η and let Zt+1 = Zt − γtBtY(Zt) be a stochastic process where Bt is symmetric
and only depends on information available at time t and. Then Z converges to the η almost surely if
the following conditions hold;

C.1 (∀t) EtY(Zt) = ∇l(Zt)

C.2 (∃K)(∀η) ‖∇2
η l(η)‖ ≤ 2K

C.3 (∀δ > 0) inf
l(Zt)−l(η)>δ

‖∇l(Zt)‖ > 0

C.4 (∃A, B)(∀t) E‖Y(Zt)‖2 ≤ A + Bl(Zt)

C.5 (∃a, b : 0 < a < b < ∞)(∀t) spec(Bt) ⊂ [a, b]

C.6 ∑
t

γ(t)2 < ∞, ∑
t

γ(t) = ∞

where spec(B) are the eigenvalues of matrix B.
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Now, we provide a generalization of theorem of sunehag in [5]. Specifically, we
deleted condition C.5 and modified (and relaxed) conditions C.3 and C.4 of the original
statement. The proof is trivial after the original theorem’s proof, so the modifications
present no complications.

Theorem A3 (Generalization of Theorem A2). Let l : Rk → R be a twice differentiable cost
function with a unique minimum η and let Zt+1 = Zt − γtBtYt a stochastic process where Bt is
Ft-measurable. Then Z converges to the η almost surely if the following conditions hold;

C.1 (∀t) EtYt = ∇l(Zt) ηt 6= η

Hessian bound (∃K)(∀η) ‖∇2
η l(η)‖ ≤ 2K

Sunehag resembance (∀δ > 0) inf
l(Zt)−l(η)>δ

∇l(Zt)
ᵀBt∇l(Zt) > 0

Sunehag algorithm bound (∃A, B)(∀t) E‖BtYt‖2 ≤ A + Bl(Zt)

Learning rate constraint ∑
t

γ(t)2 < ∞, ∑
t

γ(t) = ∞

Robbins–Siegmund theorem is the key result to prove almost sure convergence on
previous theorems, as well as on our generalization result.

Theorem A4 (Robbins-Siegmund). Let (Ω,F , P) be a probability space and F1 ⊆ F2 ⊆ · · ·
a sequence of sub-σ-fields of F . Let Ut, βt, εt and ζt, t = 1, 2, . . . be non-negative Ft-measurable
random variables, such that

E(Ut+1 | Ft) ≤ (1 + βt)Ut + εt − ζt, t = 1, 2, . . . (A1)

Then on the set {∑t βt < ∞, ∑t εt < ∞}, Ut converges almost surely to a random variable,
and ∑t ζt < ∞ almost surely.

Appendix B. Proof of Corollary 1

To prove the corollary, it is enough to prove the generic proposition below.

Proposition A1. Let Ut ⊂ Rk be non empty, closed and connected sets where Ut+1 ⊂ Ut for
t ∈ N and let V = ∩tUt. Then V is a non empty bounded set if, and only if, UT is bounded for
some T ∈ N.

Proof. Prove first that if UT is bounded for some T ∈ N, then V = ∩tUt is a non-empty
bounded set. Clearly, V ⊂ UT and, therefore, V is bounded, possibly empty. Observe
that Ut for all t ≥ T is compact and closed. Then V is not empty, by the Cantor’s
intersection theorem.

Conversely, prove now that if V is a non empty bounded set, then there exists T such
that UT is bounded. Assume V is non-empty bounded set, then there exists r > 0, such
that V ⊂ Br(0) where Br(0) is the ball centered at 0 with radius r. Define

U∗t = Ut \ (B2t(0)
′ ∪ Br(0)) , (A2)

where B2t(0) is the closed ball of radius 2t and center 0 and A′ = Rk \ A. The sequence U∗t is
of compact and closed subsets, where U∗t+1 ⊂ U∗t and ∩tU∗t is empty. Therefore, by Cantor’s

intersection theorem, there exists T such that U∗T is empty. Then UT ⊂ B2t(0)
′ ∪ Br(0)).

Since V ⊂ UT and UT is connected, then V ⊂ UT ⊂ Br(0) and hence it is bounded as
wanted to prove.
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Appendix C. Bottou’s Resemblance

Proposition 5 is a direct consequence of Proposition A2, that we state and prove below,
and Proposition 3.

Proposition A2. Let Z = (X, γ) be a stochastic process and X be a vector field over Rk. For
δ > 0 and T ∈ N, define the vector pair set

Vδ,T(X, Z) = {(X(η), v) | η ∈ Rk \ Bδ(KX), v ∈ EDSZ(η, T)} . (A3)

Then Z resembles to X if, and only if,

(∃T ∈ N)(∀δ > 0)(∃ε > 0) Vδ,T(X, Z) is ε-acute . (A4)

Proof. By definition, Vδ,T(X, X) is ε-acute if, and only if, every vector pair (u, v) in
Vδ,T(X, X) is ε-acute. By definition, such vector pairs (X(η), v) with v ∈ EDSX(η, T)
are ε-acute if, and only if,

(∀η ∈ Rk \ Bδ(KX)) X(η)ᵀ · v ≥ ε > 0, v ∈ EDSX(η, T) . (A5)

Previous equation holds if, and only if, EDSX(η, T) ⊂ Hε(X)(η), η ∈ Rk \ Bδ(KX) as
wanted to prove.

Appendix D. Sunehag’s Resemblance

The result that translates Theorem A3 with resemblance concepts is Proposition 6, that
we prove below.

Proof. After Proposition A2 and 4 deduce that Z belongs to the half-space of X if, and
only if, there exists T ∈ N such that for every δ > 0 and every t ≥ T there exist symmetric
positive-definite Ft-measurable random matrices Bt, such that

inf
η∈Rk\Bδ(KX)

t≥T
ω∈Ω,Zt(ω)=η

X(η)ᵀ · Bt(ω) ·X(η) > 0 ,

Bt ·X(Zt) = Et[Xt] Zt(ω) /∈ KX .

(A6)

This matches with Equation (33). Matrix Bt is correctly and uniquely defined for
all t ≥ T and all ω ∈ Ω, such that Zt(ω) /∈ KX. Define Bt = Id the identity matrix if
Z(ω) ∈ KX and also define

Yt := B−1
t · Xt . (A7)

Observe that Bt ·Yt = Xt and that Equation (32) is then met too finishing the proof.
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