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ABSTRACT
In this paper we propose a novel message-passing algorithm, the
so-called Action-GDL, as an extension to the Generalized Distribu-
tive Law algorithm (GDL) [1] to efficiently solve DCOPs. We show
the generality of Action-GDL by proving that it has DPOP, one of
the low-complexity, state-of-the-art algorithm to solve DCOPs, as a
particular case. Finally, we provide empirical evidences to illustrate
how Action-GDL can outperform DPOP in terms of computation,
communication and parallelism needed to solve the problem.

1. INTRODUCTION
Multi-agent Coordination Problems (MCPs), also called distributed

multi-agent decision making problems, are a class of problems in
MAS focusing on how to coordinate agents’ actions in order to
yield a global desired behaviour for the MAS. Distributed Con-
straint Optimization Problems (DCOPs) are an extension of Con-
straint Optimization Problems (COPs) that can model a large class
of MCPs [9].

State-of-the-art complete algorithms to solve DCOPs adopt two
main approaches: search and dynamic programming. Search algo-
rithms, like ADOPT [7], require linear-size messages, but an expo-
nential number of messages. Dynamic programming algorithms,
represented by the DPOP algorithm and its extensions [10], only
require a linear number of messages, but their complexity lies on
the message size, which may be very large.

In this paper, we formulate a new algorithm, the so-called Action-
GDL, that takes inspiration from the GDL algorithm [1], extending
and applying it to DCOPs. GDL is a general message-passing algo-
rithm that exploits the way a global function factors into a combi-
nation of local functions generalizing a large family of well-known
algorithms (e.g. Viterbi’s, Pearl’s belief propagation, or Shafer-
Shenoy algorithms). Therefore, GDL has a wide range of applica-
bility. In our case, the rationale to apply (and extend) GDL is that
a DCOP requires the maximization of a global function resulting
from the combination of local functions. In order to ensure opti-
mality and convergence GDL must arrange the global function to
optimise into a junction tree structure (JT) [5].
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There are several works that have applied JTs (join trees or tree-
decompositions) to the constraint optimization problem [3, 4, 6].
Indeed the cluster-tree elimination algorithm [6] is an instance of
GDL algorithm applied over a tree decomposition (junction tree).
However, to the best of our knowledge, all these approaches con-
struct a JT using triangulation methods [5], which are not suitable
when applied to problems that are distributed by nature because
they produce JTs disreading the structure of the problem.

Therefore, one of our contributions in this paper is the Action-
GDL algorithm that extends GDL by: (1) supporting the distribu-
tion of the problem using distributed junction tree structure (DJT)
that maps cliques to agents; and (2) modifying the original GDL
algorithm to create two phases which allows to reduce the size of
one half of the messages.

To generate DJTs, we introduce the Distributed Junction Tree
Generator (DJTG) algorithm at the pre-processing phase of Action-
GDL. DJTG is a message-passing algorithm, based on the one for-
mulated in [8], that allows agents to distributedly compile a DJT
keeping any distribution of relations among agents. Therefore,
DJTG creates a DJT that adapts to the underlying distributed na-
ture of the problem. We will show how although finding the best
junction tree has been shown to be NP-hard [5], this algorithm is
general enough to exploit existing distributed heuristics in the liter-
ature [9, 2] to produce a DJTG to fed into Action-GDL.

Thereafter, we show that Action-GDL generalises DPOP, one of
the low complexity, state-of-the-art algorithm to solve DCOPs. To
do so, we: (1) prove that DPOP is a particular case of Action-
GDL; and (2) show how Action-GDL can exploit DJTs as a more
general structure to generate executions that cannot be achieved
by DPOP via pseudotrees. Therefore, Action-GDL can efficiently
solve DCOPs. To the best of our knowledge, we are the first in
comparing and providing a mapping between the space of DJTs
and the space of pseudotree arrangements. Finally we provide em-
pirical evidence to show that the generality of Action-GDL can be
exploited to outperform DPOP in terms of amount of computation,
communication, and parallelism.

This paper is structured as follows. Firstly, we provide a defini-
tion of DCOP (section 2) and the notation we will use through out
this paper (section 3). Section 4 introduces Action-GDL, as well
as its connection with GDL and the DJTG algorithm that allow
agents to compile the DCOP problem into a DJT. Then, in section
5 we show how Action-GDL extends DPOP, one of the state-of-
the-art algorithms to solve DCOPs. Next, section 6 provides some
evidences of how to exploit the generality of Action-GDL by show-
ing how it can outperform DPOP when solving the same DCOPs.
Finally, section 7 draws some conclusions and outlines paths for
future research.



2. OVERVIEW OF DCOPS
Distributed Constraint Optimization Problem (DCOP) are an ex-

tension to the Constraint Optimization Problem (COP) that can
model a large class of MCPs [9]. These problems consist of a set
of variables, each one taking on a value out of a finite discrete do-
main. Each constraint in this context has a set of variables as input
specifying a cost, namely a relation. The goal of a COP algorithm
is to assign values to these variables so that the total utility is max-
imized. A DCOP [10, 7] is an extension to a COP where variables
are distributed among agents.

LetX = {x1, . . . , xn} be a set of variables over domainsD1, . . . ,
Dn. Let r : Dr → <+, where Dr is the projection of the joint do-
main space D = D1 × . . . × Dn over variables in the domain of
r, be a utility relation that assigns a utility value to each combina-
tion of values of its domain variables. Formally, a DCOP is a tuple
〈A,X ,D,R, α〉where: A is a set of agents; X is a set of variables;
Dn is the joint domain space for all variables; R = {r1, . . . , rp}
is a set of utility relations; and α : X → A maps each variable to
some agent.

The objective function f is described as an aggregation (typically
addition) over the set of relations. Formally:

f(d) =

pX
i=1

ri(dri) (1)

where d is an element of the joint domain space D and dri is an
element of Dri . Solving a DCOP amounts to choosing values for
the variables in X such that the objective function is maximized
(minimized).

In a DCOP each agent receives knowledge about all relations
that involve its variable(s) in addition to their domains. In general,
DCOP algorithms do not impose any restriction regarding the num-
ber of variables that can be assigned to each agent or the arity of
the relations. However, although all algorithms we refer to in this
paper can deal with n-ary relations, for the sake of simplicity we
mainly restrict them to unary and binary relations. Therefore, we
will refer to unary relations involving variable xi ∈ X as ri, and to
binary relations involving variables xi, xj ∈ X as rij .

A DCOP with binary relations is typically represented with its
primal-constraint graph, whose vertices stand for variables and whose
edges stand for binary relations, as shown by the example depicted
in figure 1 (a). DCOPs can also be represented with its dual-constraint
graph, whose vertices stand for relations and whose edges link re-
lations that share some variable in their domains, as shown by the
example depicted in figure 1 (b).
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Figure 1: Different representations for the same DCOP

3. NOTATION

Next we provide the definitions of a collection of functions and
operators that we shall employ throughout the rest of this paper.
Henceforth, given some variable set X ⊆ X , DX will stand for the
joint domain space of variables in X. Furthermore, for exemplary
purposes we assume that each domain Di contains constant values
c1i , . . . , c

ni
i .

DEFINITION 1 (DV ). The domain variable function DV re-
turns the domain variables of a given set of relations.
Ex: DV ({r31}) = {x3, x1}, DV ({r31, r34}) = {x1, x3, x4}.

DEFINITION 2 (COMPLEMENTARY VARIABLES). Given a set
of variables X and a relation r, we define the complementary vari-
ables of X by r as the set of variables in r that are not in X .
Formally, X̄r = DV (r) \X.

DEFINITION 3 (UTILITY MESSAGE). A message from agent
ai to agent aj is a utility message over X ⊆ X , if the information
sent is a utility relation over DX . Henceforth, we shall denote that
utility relation as µij .

DEFINITION 4 (ASSIGNMENT). Given a set of agents X ∈
X , an assignment σ over X sets a value to each variable xk ∈
X and sets free the remaining variables. Given Y ⊂ X, we note by
σ[Y ] the projection of σ to Y , that is, the assignment that sets the
same value as σ for the variables in Y .
Ex: X = {x1, x2, x3}, σ an assignment over X , σ(x1) = c21, σ(x3) =

c53, x2 is free in σ
Y = {x1} , σ[Y ](x1) = c21, x2 and x3 are free in σ[Y ]

DEFINITION 5 (VALUE MESSAGE). A message from agent ai
to agent aj is a value message over X ⊆ X if the information
sent is an assignment over X. Henceforth, we shall denote such
assignment by σij .

The joint operator is a combination operator that joins the knowl-
edge represented by two relations into a single one by adding their
values.

DEFINITION 6 (JOINT). Let r, s be two relations andDr⊗s =

×xk∈DV ({r,s}) Dk be their joint domain space. The combination
of r and s (noted r ⊗ s) is a utility relation over Dr⊗s such that
(r ⊗ s)(d) = r(dr) + s(ds) for all d ∈ Dr⊗s, where dr ∈ Dr and
ds ∈ Ds are the projections of d over the domains of relations r
and s respectively.
Ex: (r13 ⊗ r14)(c21, c

5
3, c

1
4) = r13(c21, c

5
3) + r14(c21, c

1
4).

We can readily generalize the joint operator over a finite set of re-
lations:

N
{r1,...,rm}

= r1 ⊗ (r2 ⊗ . . . (rm−1 ⊗ rm) . . .).

The projection operator sums up the utility that a relation contains
over a set of variables. Thus, the projection operator over a relation
r and a set of variables Xassesses the r maximum utility for the
variables in X.

DEFINITION 7 (PROJECTION). The projection operator of re-
lation r over a set of variables X is a summarization operator that
returns a utility relation over DX such that
(
M
X

r)(dX) = max
dX̄r∈DX̄r

r(dX , dX̄r ).

Ex: (
M
{x3}

r13)(c23) = max
k∈D1

r13(k, c23).

Notice that we can employ the projection operator by specifying the
variables to eliminate from a relation as follows

M
\X

r =
M
X̄r

r =M
DV (r)\X

r.



DEFINITION 8 (SLICE). The slice of a relation r by an as-
signment σ overX is a utility relation overDX̄r such that (5

σ
r)(dX̄r ) =

r(dX , dX̄r ) where dX ∈ DX contains the values set by σ to the
variables in X.
Ex: X = {x3}, σ(x3) = c23, (5

σ
r13)(c11) = r13(c11, c

2
3).

4. THE ACTION-GDL ALGORITHM
In this section we introduce the Action-GDL, a novel complete

algorithm to efficiently solve DCOP’s, an extension to GDL [1]
to efficiently apply it to MAS decision making. We start by in-
troducing GDL in the following section to subsequently propose
Action-GDL in section 4.2. Since Action-GDL is executed over a
distributed junction tree structure, for completeness, we proposed
it to be combined with what we called the DJTG algorithm, an
algorithm that allow agents to distributedly compile JTs initially
proposed in [8] in the context of sensor networks. DJTG algorithm
(section 4.3) allows agents to distributedly compile the DCOP into
a DJT to which Action-GDL is executed over and drawbacks that
other traditional methods to compile DJTs have been reported to
have in distributed environments.

4.1 The GDL Algorithm
GDL [1] is a general message-passing algorithm that exploits the

way a global function factors into a combination of local functions
to compute the objective function in an efficient manner. GDL is
defined over two binary operations [1] that in our case, since we are
concerned with the problem of maximizing an utility function, cor-
respond to the addition and the maximization (the max-sum GDL).
In order to ensure optimality and convergence, GDL arranges the
objective function to assess in a junction tree structure (JT)[5].

DEFINITION 9. A junction tree (JT) is a tree of cliques that can
be represented as a tuple 〈X , C,S,Ψ〉 where: X = {x1, . . . , xn} is
a set of variables; C = {C1, . . . , Cm} is a set of cliques such that
each clique Ci ⊆ X ; S is a set of separators, where each separator
is an edge between two cliques containing the intersection of the
cliques1; and Ψ = {ψ1, . . . , ψm} is a set of potentials, where po-
tential ψi is a function assigned to clique Ci with domain ∆i ⊆ X .
Furthermore, the following properties must hold:
• Single-connectedness. Separators create exactly one path be-
tween each pair of cliques.
• Covering. Each potential domain is a subset of the clique to
which it is assigned, namely ∆i ⊆ Ci.
• Running intersection. If a variable xi is in two cliques Ci and
Cj , then it must also be in all cliques on the (unique) path between
Ci and Cj .

Likewise variables in DCOP, we assume that the variables in a junc-
tion tree are defined over domains D1, . . . ,Dn. Moreover, DCi
stands for clique Ci domain space, namely the joint domain space
of the variables in clique Ci.

Figure 2 shows a JT where circles stand for cliques, labelled with
the variables each one contains, and edges between cliques stand
for separators. Thus, for example, C1 contains variables x2, x4;
C3 contains variables x2, x3, x4; and their separator is composed
of their intersection x2, x4. Each clique Ci is associated with a
potential ψi, a function whose domain is a subset of Ci.

GDL defines a message-passing phase for cliques to exchange
information about their variables. Once the message-passing phase
is over, each clique can compute its state, namely its variables
states. To illustrate the way the max-sum GDL operates, con-
1Formally, a separator sij between clique Ci and Cj is defined as
sij = Ci ∩ Cj .
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Figure 3: DJT

# Message/local knowledge ( bK)
1. µ21(x2, x4) = max{x1}ψ2(x1, x2, x4)
2. µ31(x2, x4) = max{x3}ψ3(x2, x3, x4)

3. bK1(x2, x4) = ψ1(x2) + µ21(x2, x4) + µ31(x2, x4)
4. µ12(x2, x4) = ψ1(x2) + µ31(x2, x4)
5. µ13(x2, x4) = ψ1(x2) + µ21(x2, x4)

6. bK2(x1, x2, x4) = ψ2(x1, x2, x4) + µ12(x2, x4)

7. bK3(x2, x3, x4) = ψ3(x2, x3, x4) + µ13(x2, x4)

Table 1: Trace of GDL over the JT of Fig. 2

sider the following example. Say that our goal is to distributedly
maximize some objective function f(x1, x2, x3, x4) = ψ1(x2) +

ψ2(x1, x2, x4) + ψ3(x2, x3, x4), whose factors (ψ1, ψ2 and ψ3) are
arranged in the directed JT of figure 2. Since the JT is directed,
messages are sent in two different message-passing phases: (i) one
up the tree in which each clique sends a message to its clique par-
ent when, for the first time, it has received messages from all of its
children; (ii) one down the tree so that each clique sends a message
to its children when it receives a message from its parent.

At round 1, clique C2 = {x1, x2, x4} sends a message µ21 to
clique C1 = {x2, x4} with the values of its local function, ψ2, after
’filtering out’ dependence on all variables but those common to
C2 and C1 (namely variables which are not in their separator). At
round 3, after clique C1 receives the values of its children’s local
functions for its variables x2, x4, it combines those values into bK1.bK1 is a function that stands for C1 knowledge over its variables,
namely x2, x4. At that point, since C1 has received messages from
all its neighbors, bK1 contains all the information related to x2, x4.
At rounds 4 and 5, clique C1 sends messages to its children that
contain the combination (joint operation) of its local function, ψ1,
with other children messages. Thus, C2 receives a message from
C1 that contains the potential ψ1 combined with µ31. Then it can
compute bK2(round 6).

4.2 Extending GDL to solve DCOPs
Recall that our goal is to solve MCPs represented as

DCOPs. Therefore, the capability of computing any objective func-
tion, as provided by GDL, is not enough. We need to go one step
beyond GDL to allow a group of agents make a joint decision (re-
garding their variables’ values) that maximizes any objective func-
tion. For this purpose, Action-GDL extends GDL by: (1) inferring
decision variables; and (2) supporting the distribution of the prob-
lem through the use of a distributed junction tree structure.

Inferring decision variables Consider a DCOP setting. As ex-
plained above in GDL, when a clique has received messages from
all its neighbors, it has all information related to its variables and it
can compute its objective function. In DCOPs, clique variables are
decision variables and computing a clique objective function stands



Algorithm 1 Action-GDL(〈A,X , C,S,Ψ, β〉)
Each agent a ∈ A for each one of its cliques Ci
starts with 〈 bP (Ci), cCh(Ci), Ci, ψi, bS(Ci), βi〉 and runs:

1: Phase I: UTILITY Propagation
2: bKi = ψi
3: for all Cj ∈ cCh(Ci) do
4: Wait for utility message µji from Cj ’s agent (that is βi(Cj))
5: bKi = bKi ⊗ µji
6: end for
7: if Ci is not the tree’s root, let Cp = bP (Ci) then
8: Let sip ∈ bS(Ci) be the separator between i and its parent
9: Send µip =

M
sip

bKi to Cp’s agent (that is βi(Cp))

10: end if
11: Phase II: VALUE propagation
12: if Ci is not the tree’s root, let Cp = bP (Ci) then
13: Wait for a value message σpi from Cp’s agent (that is βi(Cp))
14: bKi = 5

σpi

bKi; /*Slice bKi with the value message*/

15: end if
16: d∗ = arg max

d∈D
DV ( bKi)

bKi; /*Fix the values for the free variables*/

17: d∗Ci = d
∗ ∪ σpi; /*Put together the assesed values and the value message

received. Assume the root gets an empty value message*/
18: for all Cj ∈ cCh(Ci) do
19: Let σij = d∗Ci [sij ]; /*Project into the separator*/
20: Send σij to Cj ’s agent (that is βi(Cj))
21: end for
22: return d∗Ci

;

for assigning values to these decisions. Therefore, when a clique
infers their state, there is no need to propagate more information
related to its variables since we can propagate directly the deci-
sions taken. In other words, there is no need to propagate messages
containing relations down the tree because all a child requires to
make a decision is its father’s decisions (variables’ assignments).
It implies that in a DCOP, when the first message-passing phase
of GDL, up to the tree, is over, the second message-passing phase
of GDL, down the tree, is no longer necessary. Thus, we require
a second message-passing phase for cliques to exchange decisions
down the tree, which is precisely the extension that Action-GDL
introduces. Henceforth, we shall refer to the first message-passing
phase as utility propagation, and to the second one as value prop-
agation. It is relevant to notice that the value propagation phase
ensures that whenever multiple optimal joint decisions are feasible,
cliques converge to the very same joint decision, namely to the very
same solution of a DCOP.

Table 2 displays a trace of Action-GDL over the JT in figure 2.
Notice that by making Ψ = {ψ1 = r2, ψ2 = r12 ⊗ r14 ⊗ r24, ψ3 =

r23 ⊗ r34} the function encoded in the JT (f(x1, x2, x3, x4) = ψ1(x2)+

ψ2(x1, x2, x4) + ψ3(x2, x3, x4)) of is the same as the constraint
graph of figure 1(a), so we are maximizing a DCOP function.

Steps 1-4 are equivalent to steps 1-3 in GDL. However, at step 5
the root clique assesses the optimal value for x2, x4 (x∗2 = c∗2, x

∗
4 =

c∗4) and propagates these values down the tree through value mes-
sages to cliques C2 and C3 (steps 6 and 7). At steps 8-9 and 10-11,
C2 and C3 assess the values of x1 and x3, respectively, using its
parent decision values (c∗2, c

∗
4).

Supporting the distribution of the problem. Another major
difference between Action-GDL and GDL has to do with the way
they solve a problem. GDL runs over a JT as formalised by defini-
tion 9. Hence, all cliques are considered to be located in a single
agent, which is in charge of running GDL. Action-GDL solves a

#. Messages/local knowledge bK #. Messages/local knowledge bK
1. µ21(x2, x4)=max{x1} ψ2(x1, x2, x4) 7. σ13(x2, x4)=(c∗2 , c

∗
4)

2. bK1(x2, x4)=ψ1(x2) + µ21 8. bK2(x1)=ψ2(x1;σ12)

3. µ31(x2, x4)=max{x3} ψ3(x2, x3, x4) 9. c∗1=arg max{x1}
bK2

4. bK1(x2, x4)= bK1(x2, x4) + µ31 10. bK3(x3)=ψ3(σ13; x3)

5. (c∗2 , c
∗
4)=arg max{x2,x4}

bK1 11.c∗3=arg max{x3}
bK3

6. σ12(x2, x4)=(c∗2 , c
∗
4)

Table 2: Trace of Action-GDL over the JT of Fig. 2

DCOP where variables and relations are distributed over agents that
cooperatively solve the problem. Therefore, Action-GDL extends
GDL to deal with cliques that are distributed to different agents
and control that agents have knowledge about the local information
(potential) related to its cliques. This is accomplished by running
Action-GDL over a distributed junction tree (DJT). Formally:

DEFINITION 10. A distributed junction tree (DJT) is a tuple
〈A,X , C,S,Ψ, β〉 where 〈X , C,S,Ψ〉 is a JT; A = {a1, . . . , am} is
a set of agents; and β : C → A maps each clique to one agent.
We define bN(Ci) = {Cj |sij ∈ S} as a function that returns the
cliques connected by a separator to clique Ci, namely its neighbor-
ing cliques. Since a DJT is a tree of cliques it can also be defined
as a directed tree. In a directed DJT we define two additional re-
lationships among cliques: bP (Ci), which returns the parent of Ci;
and cCh(Ci), which returns the children of Ci.

An example of DJT is given in figure 3. Likewise JTs, circles
stand for cliques, and edges for separators, both labelled with their
variables’ indices. This DJT has 4 cliques, one for each agent of the
DCOP of figure 1(a) (clique Ci is assigned to agent ai). The set of
potentials contains the set of relations of the DCOP distributed as
follows: ψ1 = r12 ⊗ r14,ψ3 = r23 ⊗ r34,ψ2 = r24,ψ4 = {},ψ5 = r15.
Notice that this DJT has the property that agents are assigned a
clique whose potential contains relations that this agent knows (in
DCOP relations that contains some agent’s variable). Thus, agent 1
is assigned clique 1 whose potential contains relations that include
variable x1, namely r12, r14. That is not true in the JT of figure 2
since in that case there is not a single agent who knows all relations
assigned to potential ψ2, namely r12, r14, r24.

Algorithm 1 outlines Action-GDL. Given a DJT 〈A,X , C,S,Ψ, β〉 ,
each agent a ∈ A involved in Action-GDL, only needs to know
the subset of the DJT that involves the cliques it has assigned.
Hence, every agent is assumed to start knowing a tuple 〈 bP (Ci),cCh(Ci),ψi, bS(Ci),βi〉 for each one of its cliques Ci, where bS returns
a clique’s separators ( bS(Ci) = {sik|sik ∈ S}), and βi returns the
agents assigned to clique Ci’s parent or children.

During the utility propagation phase (lines 1-10), agents exchange
utility messages. The initial knowledge for each clique is its poten-
tial (line 2). For each clique, its agent waits until receiving a utility
message from each of its children cliques (lines 3-4). These mes-
sages contain a utility relation over the variables shared by both
cliques (their separator) and are sent by agents assigned to the chil-
dren cliques. Every time that the agent receives a new utility mes-
sage, it incorporates it (by using the combination operator) to its
local knowledge (line 5). After combining utility messages from
all the children of a clique, if that clique has a parent (line 7), its
agent summarizes that part of its local knowledge (using the pro-
jection operator) that is of interest to the clique’s parent (by means
of a utility relation over its separator) and sends it to the agent as-
sociated to the parent’s clique (line 9).

During the value propagation phase (lines 11-21), agents com-
pute the optimal values for their variables and exchange value mes-
sages, namely decisions. Given a clique, its agent waits until re-
ceiving a value message (containing value assignments) for all vari-
ables in common (in the separator) with its clique parent (line 12-



13). At that point, the agent has received all the knowledge, in
form of utility (from children) and value (from the parent) mes-
sages, required for computing the objective function related to its
clique variables. The agent slices its knowledge by incorporating
the already inferred decisions (line 14) and computes the optimal
values for the rest of its clique variables (line 16). Once an agent
knows the variables’ values for one of its cliques, it can propagate
them down the tree (lines 18-21). Notice however that it only prop-
agates variable assignments that are required by its children cliques,
namely assignments for variables in their separator.

Since Action-GDL runs over a DJT, we can readily assess its
computation and communication complexity from cliques’ and sep-
arators’ sizes after [1, 8]. Action-GDL requires a number of mes-
sages linear to the number of edges in the DJT (exchanging one
value message and one utility message per separator). The com-
munication complexity lies in the size of utility messages, which
is exponential to separators’ sizes, because the size of value mes-
sages is linear. Regarding the computation required by each agent
to build messages and assess variables’ values, it also scales with
its cliques’ sizes.

4.3 The DJTG algorithm
As explained above, Action-GDL runs over a DJT (as given by

definition 10). It has been argued [9] that traditional methods to
compile JTs, that is triangulation methods based on the one pro-
posed in [5], are not suitable when applied to problems that are
distributed by nature because they produce JTs disregarding the
structure of the problem. Thus, cliques in such methods are cre-
ated independently of the number of agents and their knowledge
and therefore since the mapping agent-clique is not clear it can ap-
pear a clique that has knowledge about a particular relation/variable
that it’s hosting agent does not know. Therefore, here we propose
to use an alternative algorithm, the so-called Distributed Junction
Tree Generator (DJTG) that distributedly compiles a DJT, by ex-
changing a linear number of messages, that captures the distribu-
tion of relations required by the problem. Such DJT can be readily
fed into, and hence solved by Action-GDL.

The DJTG algorithm receives as input a set of relations dis-
tributed among agents and an spanning tree, ST , defined over them.
Figure 4(a) illustrates an input to DJTG. Observe that relation r12
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Figure 4: DJTG execution

is assigned to agent a1 and it is linked to relations r23 and r14 by
edges in the ST .

DJTG has two phases: 1) a pre-processing phase where agents
create a distributed clique tree that may not satisfy the running in-
tersection property (RIP); followed by 2) a message-passing phase
that calculates the unique set of minimal cliques that satisfy the
RIP.

In the pre-processing phase, each agent a creates a clique Cj for
each one of its relations rj and sets as potential the relation itself,

namely ψj = rj . Cliques are initially set to their potential domain,
namely Ci = ∆i, in order to readily ensure the covering prop-
erty. Moreover, for every two relations ri, rj connected in the ST ,
agents create a separator sij linking their corresponding cliques
Ci and Cj . Figure 4 (b) shows the structure produced by the pre-
processing phase. Boxes stand for cliques containing numbers that
stand for variables’ indices. Cliques are assigned to agents. For in-
stance, clique C1 with variables x1, x4 and clique C2 with x1, x2 are
assigned to a1. The variables correspond to the domains of the
cliques’ potentials, namely the domains of r14 and r12 respectively.
Cliques C1 and C2 are connected as their relations r14 and r12 in the
ST .

The second phase of DJTG is responsible for ensuring the RIP.
In that phase, each agent exchanges for each one of its cliques,
Ci, reachability messages with agents related to Ci’s neighbors that
contain the set of reachable variables from Ci. Figure 4(b) shows
the messages exchanged. Single-directed arrows between boxes
stand for messages exchanged between cliques. Each arrow is la-
belled with some variables’ indices and a circled number standing
for the order of the message in the message-passing execution. The
set of reachable variables from a clique Ci to Cj is calculated as the
union of: (i) Ci’s potential domain; and (ii) the variables reachable
from Ci’s neighbours other than Cj . Thus, agent a1 sends a message
to agent a2 for clique C3 that contains variables (x1, x2, x4), namely
the variables that can be reached from clique C2. These variables
are the result of the union of C2 potential domain, namely (x1, x2),
with the reachable variables from C2, namely (x1, x4). Once an
agent receives, for a given clique, reachability messages from all its
neighbours, it redefines its clique adding variables that are in more
than one reachability message. In figure 4(b) agent a2 receives
two reachability messages for clique C3: one with (x1, x2, x4) from
clique C2 associated to a1, another one with (x2, x3, x4) from clique
C5 associated to a3. Since both messages contain x4, agent a2

knows that its clique C3 must also carry x4 to satisfy the RIP. Af-
ter computing cliques, it is straightforward to assess separators (see
definition 9). Finally, figure 4(c) depicts the DJT as produced by
DJTG from the initial distribution of relations in figure 4(a). Notice
that by creating a clique per relation and by assigning each clique
to the agent associated to that relation, DJTG manages to preserve
the initial distribution of the problem.

This alternative way of building a JT, by directly ensuring the
RIP over a set of relations was initially formulated in [8] in the
context of sensor networks. However, they restricted each agent to
control a single clique whose potential results from the combination
of relations located to the agent. DJTG extends the algorithm in [8]
to: (1) allow each agent to be associated to more than one clique;
and (2) accept as input a spanning tree defined over some set of
relations, without making any assumptions on their composition.

Given a set of n relations, there are nn−2 different spanning trees
that we can define over them, and for each one we can compile the
associated DJT with the DJTG algorithm. It is know from [5] that
finding the optimal JT is NP-hard, so it is reasonably to wonder
what we can do to find good spanning trees to use as input for the
DJTG algorithm. However it turns out that existing heuristics pro-
posed in the literature for DCOP problems and DJT construction
can be expressed, explicitly or implicitly, as a set of relations con-
nected by a spanning tree that we can use as input of the DJTG. On
the one hand, there are heuristics [8] that directly assess an span-
ning tree defined over the dual-constraint graph and we can readily
exploit them. On the other hand, there are heuristics that define
a spanning tree, or a subclass of them like pseudotrees, over the
primal-constraint graph such as those proposed in [9, 2]. These
heuristics associate each relation to the lowest variable of its do-



main in the tree structure. We can combine the relations associated
to the very same variable to create a single relation. Since in these
approaches variables are connected by an spanning tree, so are the
combined relations and we can use this spanning tree as input to
the DJTG.

5. GENERALITY OF ACTION-GDL
Action-GDL has a lot of straightforward similarities with DPOP

[10], one of the state-of-the-art algorithms to solve DCOPs. Indeed
DPOP was inspired by the sum-product algorithm, a GDL iterative
version when applied directly to the original constraint graph and
that is only guarantee convergence and optimality in acyclic graphs.
DPOP ensures optimality and convergence in general graphs by ar-
ranging the DCOP into a pseudotree whereas Action-GDL arranges
the problem in a DJTs.

Both algorithms, Action-GDL and DPOP have two similar phases
when agents exchange same type of messages (UTIL and VALUE
phases) and are based on the same operators: the combination and
the projection operators. Despite of all these similarities, there are
a set of important differences among them 2 namely:

(1) DPOP requires the DCOP to be arranged into a pseudotree
structure with a particular distribution of relations (relations
are associated to the lowest variable of its domain in the pseu-
dotree) whereas Action-GDL is executed over a DJT. Figure
5(a) illustrates a pseudotree for the DCOP of figure 1(a). By
definition of pseudotree[10], variables in different branches
can not have direct dependencies among them. Thus, vari-
ables x1 and x3 are independent (there is no relation r13)
and relations r12,r14 are placed on x1 (agent 1).

(2) In DPOP when agents create an utility message they use
the summarize operator by summarizing out its own vari-
able whereas in Action-GDL agents summarize over vari-
ables in the separator. Thus, during DPOP execution agent
1 (assigned to x1) filters out x1 from its local factor r12,r14

sending a message to agent 2 (assigned to x2) that depends
on the remaining variables, namely x2 and x4.

(3) In DPOP variables are inferred always one by one, in their
position in the pseudotree, whereas in Action-GDL multi-
ple variables can be inferred at once in the first agent that
contains all the information related to these variables. Thus,
during DPOP execution over the pseudotree of figure 5(a),
agent 4 (responsible of x4) infers its variable sending its
value down to the tree. Same applies for the rest of variables.

However, if we want to compare DPOP and Action-GDL when ap-
plied to the same DCOP, we have to use equivalent arrangements
for both algorithms. Thus we need to define a mapping between
pseudotrees and DJTs. We will prove that given a pseudotree we
can always define its equivalent DJT such that the execution of
Action-GDL over such DJT is equal to the execution of DPOP over
the pseudotree arrangement.

For example, the equivalent DJT of the pseudotree depicted in
figure 5(a) is the DJT of figure 3. Notice that in that DJT rela-
tions are placed exactly as in the pseudotree arrangement and when
cliques send messages summarizing over the separator, they filter
out a single variable. Thus, DPOP execution over this pseudotree
arrangement and Action-GDL execution over the DJT are equal.

2Here we list a set of similarities and differences respect to DPOP.
We refer the reader to [10][9] for a detailed description of the DPOP
algorithm
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Figure 5: Example of a pseudotree and DJT with non-
corresponding pseudotree arrangement for the DCOP depicted
in figure 1

However, it turns out that the other way around, that given a
DJT we can always define an equivalent pseudotree arrangement,
is not true. Thus, given an Action-GDL execution over a DJT, the
equivalent pseudotree may not exist. It is because, given a DCOP,
the space of all possible pseudotrees arrangements map with a sub-
space of all possible DJTs. DPOP equations are a particular case
of Action-GDL equations when it is executed over this subclass of
DJTs. We illustrate this with an example. Take the DJT of figure .
By making Ψ = {ψ1 = , ψ2 = r12 ⊗ r24, ψ3 = r23 ⊗ r34, ψ4 = r41}
the function encoded is the same as the constraint graph of figure
1(a). However, this DJT can not have any equivalent pseudotree
because multiple variables are eliminated at once (clique 2 infers
variables x1,x2 and x3) and there are cliques that do not eliminate
any variable when summarizing over the separator, namely C1 and
C4.

In what follows we provide an sketch of the proof of the equiv-
alence between Action-GDL and DPOP (fully detailed in [11] ).
Next, in section 6 we will provide empirical evidence of how we
can exploit DJTs, as a more general structure, to improve the prob-
lem solving cost with respect to DPOP.

5.1 Proving equivalence
In order to prove equivalence between Action-DGL and DPOP,

we first define a mapping, which we shall name γ, that builds a
DJT from each pseudotree. Then we prove (lemma 1) that both
the computation performed and the messages exchanged during the
utility propagation phase are the same. After that, we prove (lemma
2) that the messages exchanged during the value propagation phase
are also the same. Finally, we prove that the algorithm DJTG can
compute this mapping distributedly. Because of lack of space, in
the following we just expose the results and sketching proofs. The
interested reader can find far more detailed proofs in [11].

LEMMA 1. Given a DCOP Φ and a pseudotree PT, the compu-
tation performed and the messages exchanged by each agent during
the utility phase ofDPOP (Φ,PT) and Action-GDL(γ(Φ, PT) ) are
the same.

PROOF. We prove the lemma by induction on the depth of the
agent in the pseudotree. Both in the base and induction cases, we
can prove that: (i) the set of variables handled by agents in both
algorithms are the same; and (ii) the domain of the utility messages
send by agents in DPOP after eliminating its corresponding vari-
able coincides with separators in Action-GDL. By induction the
utility messages received by each agent in both algorithms are the
same. This fact along with (i) and (ii) forces that the computa-



tion performed and messages exchanged during this phase by each
agent must be the same.

LEMMA 2. Given a DCOP Φ and a pseudotree PT the value
assigned by each agent to its variable and the messages exchanged
during the value propagation phase of DPOP (Φ,PT) and Action-
GDL(γ(Φ, PT) ) are the same

PROOF. We prove the lemma by induction on the depth of the
pseudotree. The base case is trivial since there is only one variable
in the pseudotree and both algorithms compute the same value for
it. In the induction case we can split our pseudotree into the root
and a set of pseudotrees of smaller depth. Then: (i) it is easy to see
that the root agent acts equivalently in DPOP and in Action-GDL;
and (ii) we can apply the induction hypothesis to the pseudotrees
of smaller depth. Our result comes from (i) and (ii).
Lemmas 1 and 2 prove the main result of this section:

THEOREM 1. Given a DCOP Φ and a pseudotree PT, the exe-
cution of DPOP(Φ, PT ) is equivalent to Action-GDL(γ(Φ, PT )).

Theorem 1 shows that Action-GDL can be at least as efficient as
DPOP in any DCOP problem. In the next section we introduce the
DJTG algorithm that distributedly computes mapping γ at a cost
that is small with respect to the cost of solving the problem.

THEOREM 2. Given a DCOP Φ and a pseudotree 〈P, PP 〉, the
DJTG algorithm creates the DJT given by γ(Φ, 〈P, PP 〉)

Therefore, DJTG computes the mapping γ at a cost that is small
with respect to the cost of solving the problem. This two results
prove that Action-GDL can be at least as efficient as DPOP (by
mimicking its behavior).

6. EXPLOITING ACTION-GDL
At this point we have learned that Action-GDL generalises DPOP.

It is now reasonable to wonder about the benefits that such gen-
erality delivers. In what follows we argue that Action-GDL can
yield better algorithmic performance than DPOP. Action-GDL can
achieve such improvement because: (i) DJTs allow to explore prob-
lem arrangements that cannot be represented via pseudotrees; and
(ii) it can assess multiple variables’ values at once. To show the
benefits of Action-GDL with respect to DPOP, we empirically com-
pare the computation and communication costs of both algorithms
when solving the same DCOP. Moreover, we also compare the
maximum degree of parallelism each algorithm can achieve.
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Figure 6: Example of experimented rearrangements

Our first experiment is aimed at showing the communication
and computation savings achieved by Action-GDL with respect to

DPOP. Such savings are obtained by adequately transforming the
problem arrangement represented by a pseudotree. Consider the
example depicted in figure 6. Figure 6(a) shows a pseudotree for
a DCOP composed of a single ternary relation r123. Observe that
although variables x1, x2 do not have any relation, since DPOP
can only eliminate variables one by one, its execution would prop-
agate utility messages over these variables. Figure 6(b) depicts
the DJT produced by mapping γ when applied to the pseudotree.
Hence, according to theorem 1 the execution of Action-GDL over
this DJT and the execution of DPOP over the pseudotree are equiv-
alent. However, we can further transform the DJT in figure 6(b)
to obtain savings. Notice that to make Action-GDL and DPOP ex-
ecutions equivalent,the definition of mapping γ (from pseudotree
to DJT) forces that each clique in the equivalent DJT contains its
variable although it is not part of its potential domain. If we do not
enforce such constraint, the DJTG algorithm generates the DJT of
figure 6(c), which can be regarded as a rearrangement of the one in
figure 6(b). When running over the DJT in figure 6(c), Action-GDL
does not need to exchange any utility messages, reducing the com-
putation required to solve the problem. Hence there is a rationale
for the rearrangement that we propose. Notice that when running
Action-GDL, a variable’ value is assessed at the clique that con-
centrates all its information. In figure 6(c), the values of x2, x3

are assessed at the clique containing x1, x2, x3. That clique is
in charge of propagating its decisions. Hence, there is no need to
propagate utility messages involving x1 and x2 up the tree.

Next we compare the size of the messages exchanged and the
amount of computation required by Action-GDL and DPOP when
solving the same DCOP as the number of variables grows. Given
a number of variables n ∈ {10, 30, 50, 70, 90}, we generate 2000
DCOPs, each one with 1.5 · n constraints whose arity is randomly
picked from 2 to 4. We create pseudotrees for DPOP using the
DFS-MCN heuristic [9] and DJTs for Action-GDL considering the
rearrangement of the DJT produced by mapping γ as explained
above. Figure 7 (upper) shows the average savings (in percentage)
in communication and computation of Action-GDL with respect to
DPOP3. Observe that a simple rearrangement of the DJT leads to
significant savings in communication and computation costs, which
increase as the number of variables grows.

In our second experiment we show that we can help Action-
GDL to reduce the maximum degree of parallelism with respect
to DPOP. We propose to found such improvement on another re-
arrangement of the DJT produced by mapping γ. This time we
propose to change the root of the DJT. Figure 6(d) illustrates such
rearrangement for the DJT in figure 6(b). Observe that chang-
ing the root of a DJT never changes either the computation or
the communication costs because cliques and separators remain
the same. Notice also that we cannot explore such an arrange-
ment in DPOP because changing the root of a pseudotree can lead
to a non-valid pseudotree. For instance, choosing x2 as a root
in the pseudotree of figure 6(a) makes it an non-valid pseudotree
(because of the dependency between variables x1 and x3). Next
we measure and compare the MPC, formally defined as MPC =

maxPi∈P
P
Cj∈Pi d

|Cj |, where P stands for the set of all paths, a
path Pi contains all cliques from the i-th clique to the root, and d
stands for the variable domain size. To run this experiment we em-
ploy the same pseudotrees generated for our first experiment above
and we set d = 2. We rearrange DJTs for Action-GDL as ex-
plained above to select as clique root the one that reduces the MPC
the most. Figure 7 (lower) shows our empirical results by depict-
ing the average (in percentage) improvement in MPC3 that Action-

3Percentage assessed as (DPOP−ActionGDL)
DPOP

· 100



GDL achieves. Observe that the gain in parallelism can be very
significant (from 25% to 40% of MCP reduction), and it increases
as the number of variables grows.

Figure 7: Experimental results

7. CONCLUSIONS AND FUTURE WORK
We made three main contributions in this paper. Firstly, we pre-

sented a new algorithm, the so-called Action-GDL, as an exten-
sion to GDL [1] to efficiently solve DCOPs. Secondly, we intro-
duced the Distributed Junction Tree Generator (DJTG) algorithm,
which allows agents to distributedly compile a distributed junction
tree over which Action-GDL can operate. Finally, we show that
Action-GDL generalizes DPOP. To do so, we prove that: (1) DPOP
is a particular case of Action-GDL; and (2) Action-GDL can exploit
distributed junction trees as a more general structure to generate ex-
ecutions that cannot be achieved by DPOP via pseudotrees. More-
over, we provide empirical evidence to show how we can computa-
tionally exploit the generality of Action-GDL. Thus, we show that
Action-GDL can outperform DPOP in terms of the amount of com-
putation, communication and parallelism of the algorithm solving
cost. Finally, we argue that there are also analitical reasons to pre-
fer Action-GDL. Since it is based on GDL, we can benefit from a
wealth of theoretical results for GDL over junction trees and other
approximate or more general structures such as single-cycle junc-
tion graphs [1].
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