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ABSTRACT
Social media generate large amounts of almost real-time data which
can turn out extremely valuable in an emergency situation, espe-
cially for providing information within the first 72 hours after a
disaster event. Despite abundant state-of-the-art machine learning
techniques to automatically classify social media images, the oper-
ational problem in the event of a new disaster remains unsolved.
In this study, we evaluate the adaptability of a machine learning
model when tested with a completely new disaster. The experi-
mental result showed that a single model trained on the data from
different disasters obtained better performance than an ensemble
of models, with one model for each individual disaster.
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1 INTRODUCTION
1.1 Research Background
The first 72 hours after a disaster are extremely critical. During
a short period, the first responders should take prompt action to
save people’s lives 1. The emergency team should also conduct
situational awareness of disaster scenes. Moreover, obtaining fast
and accurate information is challenging due to time limits and
location complexity. Meanwhile, United Nations Member States
have agreed to adopt the Sendai Framework For Disaster Reduction
which embraces the use of social media in disaster risk communi-
cation [14]. To be more precise, the framework stated "strengthen
the utilization of media, including social media, traditional media,
big data, and mobile phone networks, to support national measures
for successful disaster risk communication".

Over the last decade, previous works have demonstrated that
the publicly shared information on social media platforms in dis-
aster events covers important information such as early warnings
and infrastructure damage (i.e. roads, electricity, water leaks, and
ruined buildings [5, 13]). While the curated dataset is provided by
the research communities, analyzing the social information and
maintaining its accuracy in a timely manner still leaves a challenge
even using the latest technologies in machine learning. Further-
more, most of the information on social media is irrelevant or has
a bare minimum informativeness in terms of data quality [8]. Con-
sequently, it can affect the reliability and validity of data [23]. In
the event of a completely new disaster, where a new kind of dis-
aster or similar disaster in a different place happens, we have a
limited time to prepare a machine learning model. Then, adaptive
machine learning becomes inevitable, especially to overcome geo-
graphical complexity [27]. However, the adaptability performance
of the model to analyze unseen types of crisis data coming from
different training data is not yet widely evaluated [15].

This works aim at evaluating the adaptability of the machine
learning model toward a new crisis. To evaluate the adaptability,
we incorporated real world dataset which covers several types of
disasters, including hurricanes, earthquakes, floods, and wildfires.

Our work contributes to the area of machine learning and social
media analysis for disaster. The contributions of this work are
summarized as follows:

1https://www.unocha.org/story/five-essentials-first-72-hours-disaster-response
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(1) Building an understanding of the adaptability of ensemble
model on various unseen disaster images (not only floods
and earthquakes but also covering hurricanes and wildfires)

(2) Introducing a machine learning model training approach
for handling huge amounts of social media images from a
completely new disaster

1.2 Research Questions
With the complexity of understanding visual content on social
media data, the emergency team needs to get a better perception
of the current disaster situation to achieve situational awareness
immediately. Having those challenges in our mind, the relevant
research questions are particularly outlined below:

• How well does a of machine learning model perform in
unseen disasters? (RQ1)

• Is an ensemble model or a single model a better technique
to classify a social media image? (RQ2)

To answer RQ1, we incorporate various pre-trained models and
use an ensemble learning approach. Specifically, we use a deep
learning approach to extract features and classify the images. Pop-
ular performance metrics are used to evaluate model performance.
Furthermore, we answer RQ2 by evaluating our approach using a
confusion matrix.

2 RELATEDWORKS
2.1 Social media data classification for disaster

management
Studies on the use of social media data classification for disaster
management have attracted many researchers. From the point of
view of data pre-processing, Authors in [3] applied a filter to select
relevant images and reduce the number of irrelevant images from
social media data. They also measured the impact of the filtering ap-
proach with precision and recall metrics. The experimental results
demonstrated that filtering produced higher recall and precision
values.

From the perspective of disaster response, artificial intelligence
has proven useful to support emergency responders in getting situ-
ational awareness. The work presented in [16] incorporated several
text vectorization techniques and various traditional machine learn-
ing algorithms to assess damage severity from an earthquake into
four different levels (no damage, slight damage, moderate damage,
and heavy damage) during the response phase. The authors claimed
that the experiment presented the value of social media data as
the source to conduct rapid damage assessment for the earthquake
case.

In terms of methodology, several studies [4, 6] have demon-
strated the use of machine learning techniques such as supervised,
unsupervised learning, and probabilistic framework using various
types of datasets. However, we found that most existing works
have mostly focused on text modality. Some works mentioned the
analysis of social media images. But, the majority did not focus on
the adaptability quantification dimension.

2.2 Ensemble method on image classification
Recent studies on the ensemble method have demonstrated valuable
results in image classification for disaster management. Authors in
[9] explored an ensemble of pre-trained models to classify social
media image informativeness. They addressed the approach of an
ensemble of technology that outperformed a single pre-trained
model. For more details, Table 1 summarizes the previous works
on crisis image classification using the ensemble method and their
limitations. Generally, the previous research used various sources of
data sets such as websites, satellites, and social media. Additionally,
the previous works attempted to improve state-of-the-art technol-
ogy. Despite extensive research on the use of ensemble methods
for classifying images, in this article, we focus on assessing the
adaptability of an ensemble of deep-learning classification models
on unseen social media image disasters.

Table 1: Overview of ensemble method research on image
classification for crisis events

Paper Discussion Topic Limitations
[20] Use deep stacked ensem-

ble model which com-
bined BCDU-Net, Deep-
WaterMap, and U-net to
identify water surface

The experiment adopted
Landsat images collected
from AICrowd site

[11] Develop an ensemble
model by combining
VGG16, ResNet, and
bagging ensemble fusion
strategy

The works used flood re-
lated dataset, not includ-
ing other disaster types
(earthquake, wildfires, and
hurricane)

[26] Implement of bagging
approach to model the
susceptibility of flood in
the Teesta River basin
in Bangladesh, using
geographical information,
climatic data, and satellite
images

Using satellite images as
image source

3 DATASET AND METHODS
3.1 Dataset
To conduct the experiment, we used a real-world disaster dataset
named CrisisMMD [1]. It is the most widely used dataset for disaster
management research, and it includes seven major disaster events
in the world, namely Irma hurricane, Harvey hurricane, Maria hurri-
cane, Iraq Iran earthquake, Mexico earthquake, California Wildfires,
and Srilanka floods. The dataset consists of two different modali-
ties: text and images. The dataset encompasses three different tasks
: (1) Damage severity - Multiclass classification (2) Informative-
ness - Binary classification (3) Humanitarian categories - Multiclass
classification. For this experiment, we considered focusing on in-
formativeness binary classification. The informative tweets cover
all the information that is useful for humanitarian aid, while not
informative tweets do not possess that attribute. Table 2 shows the
distribution of data for each disaster event. In this experiment, we
only focused on the image modality and ignored the text modality.

49



Single or ensemble model ? A study on social media images classification in disaster response MISNC 2023, September 04–06, 2023, Phuket, Thailand

(a)

(b)

Figure 1: The overview of experimental methodology. a) Sin-
gle model approach b) Ensemble model approach

3.2 Methodology
This paper aims at solving the problem of model adaptability quan-
tification. We evaluate the performance of single and ensemble
models tested with a new set of disaster images. We define a new
image as a completely new picture in terms of place and disas-
ter or containing the same disaster but happening in a different
place. Figure 1 illustrates our methodological approach from data
preparation to model evaluation.

Fundamentally, the experiment investigated two different ap-
proaches: single model and ensemble learning. A single model is
simply a model trained on a dataset, while an ensemble model is
a combination of several individual models which was trained on
a different category of disaster (hurricane, wildfires, earthquake,
and floods) respectively. As a comparison, we trained a pre-trained
model using data training from the same distribution. For example
in Irma hurricane, we used the training, validation, and test data
which included images of Irma hurricane. We run the methodology
for both single model and ensemble learning. We used supervised
deep learning algorithms to classify image informativeness with
the three following steps.

• Data preparation. Initially, we partitioned the data into
three different splits: 70 % training, 15 % validation, and 15
% test. To get an unbiased result, we excluded the test data
from the distribution. As an example, in the single model,
we just included Harvey hurricane, Maria hurricane, Mexico
earthquake, Iran Iraq earthquake, California wildfires and

Table 2: Crisis events data distribution. Informative class
means that the image has meaningful information for hu-
manitarian aid, while not informative contains banners, lo-
gos, and cartoons

Disaster Informative Not Informa-
tive

Total

Irma hurricane 2208 2296 4504
Harvey hurricane 2457 1977 4434
Maria hurricane 2231 2325 4556
Iraq Iran earth-
quake

400 197 597

Mexico earthquake 841 539 1380
California wildfires 985 604 1589
Srilanka floods 252 770 1022

Sri lanka floods in the training dataset for testing Irma hur-
ricane. For the ensemble model case, we ignored the tested
disaster, similar to the single model. Next, we conducted a
data augmentation technique. The data augmentation tech-
nique enabled us to generate batches of tensor image data
with real-time data augmentation. As a pre-processing func-
tion, we used torch mode that scaled image pixels within
the range 0 and 1 and normalize each channel with respect
to the ImageNet [7] dataset. Next, we extracted the features
using the initial layer of pre-trained model.

• Model training. We relied on training a last layer of a pre-
trained model for addressing small data training. To find the
best single pre-trained model, we trained and evaluated five
state-of-the-art pre-trained models. For the ensemble model,
we initially trained the base model. Then, we combined a
group of six base models respectively. We used a simple aver-
aging fusion strategy to fusion the models. Simple averaging
fusion incorporates two or more models. The prediction of
the ensemble model calculated the average of the prediction
from all models. Averaging is computed as the product of
the probabilities reported by each of the base models. As an
example, the probability assigned by the ensemble of A and
B to class 𝑐 is computed as equation 1:

𝑝𝐴,𝐵 (𝑐) = 𝑝𝐴 (𝑐) · 𝑝𝐵 (𝑐) (1)

• Model evaluation. The evaluation step has two axes: model
performance evaluation and model adaptability evaluation.
We used accuracy, recall, precision, and F-1 score as the per-
formance metrics. We identified that there are at least two
disasters having imbalanced data, namely Iraq Iran earth-
quake, and the Srilanka floods, we considered using an F-1
score. To evaluate the model’s adaptability, we get rid of the
testing data from the training data. For instance, if we test
the model for Irma Hurricane, we include all the disasters
except Irma Hurricane. Finally, the confusion matrix aims to
show the performance of the classifier in different disaster
and model settings.

3.3 Experimental Settings
3.3.1 Network architecture. The initial step of the work involved
how to choose the appropriate artificial neural network architecture.
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This subsection explains detailed steps of experimental settings. We
trained various pre-trained models in this experiment. We rely on
a transfer learning approach that enabled us to use the model fea-
tures and the parameters from ImageNet [7]. In the experiment, we
conducted an experiment using five different pre-trained models,
namely VGG16 [24], Densenet201 [18], MobilenetV2 [22], Incep-
tionV3 [25] and Resnet50 [12]. The goal of this work was to find
the best pre-trained model which would be determined as the base
classifier with the CrisisMMD dataset.

The pre-trained models use Convolutional Neural Networks
(CNN) as the underlying architecture. Basically, CNN consists of
three different layers: convolutional layer and ReLU, pooling layer,
and fully connected layer. In the fully connected layer, we can find
the softmax layer which has a dimension of 1000 because they were
trained for 1000 classes images. Since we only need two classes:
informative and not-informative, we changed the dimension from
1000 to 2.

3.3.2 Configuration. As a programming environment, we used
Python and Keras application programming interface (API) 2. In
particular, we trained the models using Adam optimizer with sparse
categorical cross entropy as the loss function and learning rate
0.00001. To create an image augmentation, we implemented Im-
ageDataGenerator from Keras. In addition, we set the number of
epochs as 50. Finally, The python code is executed in a Jupyter-
lab development environment on AMD EPYC 16 core using 16
GB RAM and NVidia 3090 24GB graphics card. To facilitate re-
producible research, the code for this experiment is available on
https://github.com/hafizbudi/ensemble_supermodel_crisis

4 EXPERIMENTAL RESULTS
The goal of the experiment is to analyze the adaptability of two
different machine learning models tested with completely a new
disaster. As the first step, we evaluated the best pre-trained model.
Then, we conducted two different experiments separately. Those
two experiments are the single model and the ensemble model. For
each experiment, we run the methodology mentioned in Section
3. The performance of same-disaster, single model, and ensemble
disasters was reported in the following subsection. We defined the
same disaster as amodel which is trained and tested within the same
event and type of disaster. A single model is defined as all disasters
in one dataset using one model, while an ensemble model is an
ensemble of different disasters (hurricanes, earthquakes, wildfires,
and floods).

4.1 Choosing the best pre-trained model
Initially, we run an experiment to evaluate the best pre-trained
model among the state-of-the-art pre-trained models. The justifi-
cation behind this step is that we need to select one pre-trained
model among five state-of-the-art pre-trained models. The selected
pre-trained model is used to implement the experiment. Table 3
describes the performance of each pre-trained model. We observed
that Densenet201 produced the best accuracy. However, the only
exception was for two disaster events namely Iraq Iran earthquake,

2https://keras.io/

and Mexico earthquake. Those disasters demonstrated slightly bet-
ter performance when trained on VGG16. Based on the experiment,
we considered using Densenet201 as the base model since it demon-
strated the best result in five out of seven disasters.

4.2 Develop same-disaster model
After choosing the best pre-trained model, we developed a same-
disaster model using Densenet201 pre-trained model. The same
disaster is a model which is trained and tested with the same event
and disaster. The goal of running the same-disaster was to provide
an ideal case as a comparison.

4.3 Quantify single and ensemble model
performance degradation

As methodology evaluation, we quantified the distance between the
same disaster with single and ensemble model. In general, Figure 2
illustrates the performance of the single model and ensemble model.
The horizontal axis indicates the name of the disaster. Meanwhile,
the vertical axis shows the accuracy of the model. The different
colors represent the different experimental approaches.

It was obvious that the same disaster shows the best performance
compared to the single and ensemble models. The reason is that
the same-disaster testing and training data come from the same
distribution. The second best model was a single model. Finally,
the ensemble model was less adaptive. More explanation about the
performance is detailed below.

For a single model, we trained a Densenet201 with one event to-
gether. The overall performance results show that they were lower
than same-disaster. However, we noticed that the case of the Irma
and Harvey hurricane were the exception. Irma and Harvey hurri-
cane gained slightly better accuracy because they took advantage
of Maria hurricane data for instance the appearance of water and
fallen tree. Maria Hurricanes provided 4556 images which could
considerably also help increase the accuracy.

For the ensemble model, we joined several Densenet201 trained
on various different disasters respectively. Figure 2 illustrates that
the overall performance of the ensemble model was the lowest. The
case of California wildfires had the worst adaptability where the
difference between ensemble and same-disaster was about 2.5 %.
While the smallest gaps were identified for Irma Hurricane and
Maria Hurricane which had a difference of 0.3 % respectively.

Table 4 presents the confusionmatrix of two different approaches
evaluated using various types of disasters. We observed that a single
model mostly excels in the number of true positive or informative
images. While the ensemble model showed a better performance
to indicate the true negative or not-informative images. Table 5
presents the experiment results of classification comparing ensem-
ble and single model approach using accuracy, recall, precision, and
F-1 score as performance measures.

From Table 5, it is obvious that about six out of seven disaster
events showed single model superiority in accuracy and F-1 score
in comparison with the ensemble model. The exceptional result was
Mexico earthquake. For single model accuracy, the improvement for
Irma hurricane was 4.4 in absolute percentages, 6.4 in absolute per-
centage for Harvey hurricane, 2.8 in absolute percentage for Maria
hurricane, 7.4 in absolute percentage for Iraq Iran earthquake, 2.6
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Table 3: Base classifier results using accuracy as a measure in
different disaster datasets (V for VGG16, D for Densenet201,
M for MobilenetV2, I for InceptionV3, R for Resnet50)

Disaster V D M I R
Irma Hurri-
cane

0.722 0.742 0.680 0.698 0.690

Harvey Hurri-
cane

0.764 0.788 0.748 0.733 0.715

Maria Hurri-
cane

0.769 0.782 0.756 0.711 0.720

Iraq Iran Earth-
quake

0.827 0.777 0.765 0.753 0.777

Mexico Earth-
quake

0.792 0.774 0.774 0.686 0.728

California
Wildfires

0.822 0.839 0.796 0.757 0.740

Srilanka
Floods

0.769 0.782 0.756 0.711 0.720

in absolute percentage for California wildfires, 0.7 in absolute per-
centage for Srilanka floods. Similarly for F-1 score measure, single
model outperformed ensemble model with a simple average data
fusion strategy. To conclude, for all disaster events, the ensemble
and same-disaster average distance produced 9.2 %. Furthermore,
the distance between the single model and same-disaster model
was 5.8 % on average. Hence, our single model induced reasonable
results with a difference of no more than 6 % in terms of accuracy.

4.4 Model classification results
This subsection aims at showing the correctly classified and mis-
classified result. We only focus on showing qualitative results for
the single model. Figure 3a shows an example of an image that was
correctly classified as informative by single model approach. This
image depicts the electricity infrastructure damage during the Irma
hurricane which was classified as informative according to [1]. In
Figure 3b, we present an example of an image that was correctly
classified as not informative by the classifier. The image shows
the candle with a sentence written above it. Our classifier has suc-
cessfully recognized that the image is not useful for humanitarian
action.

The image in Figure 4a was wrongly classified as informative,
while the ground truth agreed that the image was not informative.
This classification result could happen because the single model
may detect some relevant objects for instance water and people as
the features that represent an informative image.

An image in Figure 4b was classified as not informative by a
single model. It should be determined as informative since there
was a donation or volunteering effort depicted by some objects
for example the volunteer and donation package. However, we ob-
served that the person in the image was not completely represented
which might confuse the classifier to detect the person.

5 DISCUSSION
The massive quantity of social images might decrease the classifi-
cation performance of existing machine learning models. Hence, it

Figure 2: The comparison of model accuracy using three
different approaches

(a) Classified correctly as informative

(b) Classified correctly as not informative

Figure 3: Example of images correctly classified by single
model

Table 4: Confusion matrix of ensemble and single model
classification performance. The highest results are indicated
with boldface

Disaster Model TP TN FP FN
Irma Hurricane Ensemble 210 290 69 133

Single 258 273 86 85
Harvey Hurricane Ensemble 259 234 48 131

Single 311 225 57 79
Maria Hurricane Ensemble 220 298 55 117

Single 276 261 92 61
Iraq Iran Earth-
quake

Ensemble 28 28 4 21

Single 36 26 6 13
Mexico Earth-
quake

Ensemble 92 71 16 38

Single 95 64 23 35
California Wild-
fires

Ensemble 58 79 11 83

Single 66 77 13 75
Srilanka Floods Ensemble 33 88 26 7

Single 33 89 25 7
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(a) Wrongly classified as informative

(b) Wrongly classified as not informative

Figure 4: Example of images wrongly classified by single
model

Table 5: Performance metrics results

Disaster Model Accuracy Recall Precision F1
Irma Hurri-
cane

Ensemble 0.712 0.612 0.752 0.675

Single 0.756 0.752 0.750 0.751
Harvey
Hurricane

Ensemble 0.733 0.664 0.843 0.743

Single 0.797 0.797 0.845 0.820
Maria Hur-
ricane

Ensemble 0.750 0.652 0.800 0.718

Single 0.778 0.818 0.750 0.782
Iraq Iran
Earth-
quake

Ensemble 0.691 0.571 0.875 0.691

Single 0.765 0.734 0.857 0.791
Mexico
Earth-
quake

Ensemble 0.751 0.707 0.851 0.773

Single 0.732 0.730 0.805 0.766
California
Wildfires

Ensemble 0.593 0.411 0.840 0.552

Single 0.619 0.468 0.835 0.600
Srilanka
Floods

Ensemble 0.785 0.825 0.559 0.666

Single 0.792 0.825 0.568 0.673

is critical to develop an adaptive machine-learning model. In this
study, we tried to address that problem.

5.1 Methodological contribution
Single model has better adaptability compared to ensemble
model with simple averaging data fusion. Previous studies [9,

19] showed that the ensemble model with simple averaging fusion
tested with visual data and textual social media data extracted from
the same distribution improved the accuracy performance. However,
our experiment showed that ensemble model is less beneficial to
improve the accuracy of unseen disasters. Generally, the single
model reached an accuracy near the same-disaster model. We argue
that the reason behind the result is that a single model has a lower
number of parameters. In contrast, ensemble learning consisted
of several base models has a larger number of parameters. Given
that the deep learning model consists of millions of parameters,
an increase in the number of pre-trained models will increase the
model’s complexity.

When tested with unseen information, a single model produces
better performance in comparison with an ensemble with simple
average data fusion. The literature review indicated that ensemble
learning can improve model performance, which is explained in the
Section 2. Despite many works praising ensemble learning since it
excelled in performance improvement compared to a single deep
learning model [11, 20], we found that ensemble learning did not
improve adaptability performance in the case of classifying a com-
pletely new disaster both of place and type of disaster. We observed
that class imbalance and noisy data are suspected as two main fac-
tors why the ensemble model demonstrated low performance in
terms of adaptability [21].

5.2 Practical contributions
This work introduced several contributions for the practitioners,
mainly for the first responders. From a practical perspective, some
practical contributions are introduced to support helping the work
of various stakeholders for instance decision makers and human-
itarian organizations to get an adaptive machine learning model.
The further details of the practical contribution are explained below.

5.2.1 Machine learning model adaptability assessment. We evalu-
ated the adaptability of two machine learning approaches, namely
single and ensemble models. From the experiment, a single model
demonstrated better performance in terms of adaptability tested
with a new disaster image. This knowledge is potentially helpful to
help disaster management technology in developing an automated
machine learning classifier.

5.2.2 Single model deployment could provide a reasonably good
result for classifying a new disaster image. Previous studies [2, 17]
demonstrated that the deep learning approach could accelerate
the disaster response process by analyzing the information, for
instance, social media image filtering and real-time face recognition.
However, training a deep learning model from scratch will burden
the resource during the disaster. The pre-trained models played
a significant role to provide initial weight to the neuron in each
layer in a deep learning architecture. We claimed that using transfer
learning and single model creation would play an important role
in helping the first responders to conduct a classification task with
data collected from social media.

5.3 Future study
This study presents two limitations. Firstly, since only one ensem-
ble learning was implemented, expected improvement could be
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achieved by adopting recent results on advanced fusion mecha-
nisms for instance Bayes optimal classifier and super learner [10].
Secondly, the size of the dataset is dramatically reduced when we
only focus on a single type of disaster that could potentially affect
the performance of the ensemble strategy. Future research will
focus on larger datasets for example incidentsdataset [28].

6 CONCLUSION AND FUTUREWORKS
In the event of a disaster, social media offers advantageous content
to enable a faster response. While automatic classification tech-
niques have been demonstrated to achieve significant accuracy in
filtering non-relevant information and classifying the severity of
the damage, still in the presence of new events and new disasters
the models dramatically reduce their performance.

This study proposes a methodology to assess the issue of adapt-
ability using a well-established social media dataset for disaster
response, called CrisisMMD. The research demonstrated that the
pre-trained model reduces their performance when used in a dis-
aster that was not part of the learning process. Even though the
problem of adapting the pre-trained model to the new event is men-
tioned in the literature, this research quantified the performance
degradation and evaluated two different strategies to mitigate it.

Experimental results show that creating a model including im-
ages from different disasters (e.g. floods, earthquakes, hurricanes,
and wildfires) performed better than individual models which are
trained for each type of disaster, and later combined to classify
unseen images.

As a future work, we see two main directions. First, the imple-
mentation and evaluation of other ensemble learning approaches,
for instance, bagging, boosting, and stacking might be considered
for future research. Second, wewould suggest measuring the impact
of the proposed methodology in the real-world case scenario.
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