
Multi-unit Combinatorial Reverse Auctions with Substitutability Relationships among Goods

Andrea Giovannucci
Artificial Intelligence Research Institute, IIIA
Spanish Council for Scientific Research, CSIC

08193 Bellaterra, Barcelona, Spain
andrea@iiia.csic.es

Juan A. Rodŕıguez-Aguilar
Artificial Intelligence Research Institute, IIIA
Spanish Council for Scientific Research, CSIC

08193 Bellaterra, Barcelona, Spain
jar@iiia.csic.es

Jeśus Cerquides
Dept. de Matem̀atica Aplicada i Aǹalisi

Universitat de Barcelona
Gran Via, 585

08007, Barcelona, Spain
cerquide@maia.ub.es

Giuseppe Carilli
Artificial Intelligence Research Institute, IIIA
Spanish Council for Scientific Research, CSIC

08193 Bellaterra, Barcelona, Spain
giuseppe@iiia.csic.es

July 11, 2005

Abstract

In this paper we extend the notion of multi-unit combinatorial reverse auc-
tion by adding a new dimension to the goods at auction. In such a new type
of combinatorial auction a buyer can express substitutability relationships
among goods: some goods can be substituted with others at a substitution
cost. Substitutability relationships allow a buyer to introduce his information
as to whether it is more convenient to buy some goods or others. We intro-
duce such information in the winner determination problem (WDP) so that
not only does the auction help allocate the optimal set of offers —taking into
account substitutability relationships—, but also assess the substitutability re-
lationships that apply. In this way, the buyer finds out what goods to buy, to
whom, and whatoperations(substitutions) to apply to the acquired goods in
order to obtain the initially required ones.

1 Introduction

Since many auctions involve the selling or buying1 of a variety of different
assets, combinatorial auctions [3, 7] (CA) have recently deserved much at-
tention in the literature. In particular, a significant amount of work has been
devoted to the problem of selecting the winning set of bids [12, 2, 13, 4].
Nonetheless, to the best of our knowledge, while the literature has considered
the possibility to express relationships among goods on the bidder side -such
as complementarity and substitutability (e.g. [4],[13])—, the impact of the
eventual relationships among the different assets to sell/buy on the bid-taker
side has not been conveniently addressed so far.

Consider that a company devoted to the assembly and repairing of personal
computers (PCs) requires to assembly new PCs in order to fulfil his demand.
Say that its warehouse contains most of the components composing each PC.

1Depending on whether the auction is direct or reverse respectively.

1



However, there are no components to assemble motherboards2. Therefore, the
company would have to start a sourcing [5] process to acquire such compo-
nents. For this purpose, it may opt for running a combinatorial reverse auction
[13] with qualified providers. But before that, a professional buyer may re-
alise that he faces a decision problem: shall he buy the required components to
assemble them in house into motherboards, or buy already-assembled moth-
erboards, or opt for amixed purchaseand buy some components to assemble
them and some already-assembled motherboards? This concern is reasonable
since the cost of components plus transformation (assembly) costs may even-
tually be higher than the cost of already-assembled motherboards. To tackle
this issue, the buyer could think of running separate auctions for motherboards
and their components, and after that decide whether to buy the whole or the
parts. Notice though that besides impractical and costly (in general, the more
transformation relationships among goods we consider, the larger number of
auctions would be required) this method would be missing the opportunity
represented by mixed purchases. Hence, the buyer requires a combinatorial
reverse auction mechanism that provides: (a) a language to express required
goods along with the relationships that hold among them; and (b) a winner de-
termination solver that not only assesses what goods to buy and to whom, but
also the transformations to apply to such goods in order to obtain the initially
required ones.

In this paper we try to provide solutions to both issues. Firstly, notice that
we can resort to a more general semantics when referring to relationships
among goods: the semantics ofsubstitutability. In the example above, if a
buyer requires a motherboard, we can say that it can besubstitutedwith 1
CPU, 4 RAM units, and 3 USB connectors at a certainsubstitution(transfor-
mation in our example) cost. Notice though that this notion of substitutability
among goods is different from the classic notion of substitutability on the bid-
der side that we find in the CA literature [13]. Since commercial e-sourcing
tools [11] only allow buyers to express fixed number of units per required
good as part of the so-calledRequest for Quotation(RFQ), we have extended
this notion to allow for the definition of substitutability relationships among
goods. Thus, we introduce a formal definition of aSubstitutability Network
Structure(SNS) that largely borrows from Place/Transition Nets [6], where
transitions stand for substitution relationships and places stand for required

2In this particular case, we consider that a motherboard is composed of 1 CPU, 4 RAM units,
and 3 USB connectors.

goods.
Secondly, we extend the formalisation of multi-unit combinatorial reverse

auction (MUCRA), departing from the model in [12], to introduce substi-
tutability by applying the expressiveness power of multi-set theory. Comple-
mentarity, we provide a mapping of our formal model to integer programming
that takes into account substitutability relationships to asses the winning set of
bids along with the substitutions to apply in order to obtain the buyer’s initial
requirements. Notice that although our example above depicts a very simple
scenario where only a substitution applies (from components to motherboard),
much more complex scenarios where a larger number of substitutability rela-
tionships are defined (see for instance the example in section 2) do require that
the winner determination solver does find the substitutions to apply as well as
the winning bids. Finally, we empirically analyse how the introduction of
substitutability relationships helps increase competitiveness among bidders,
and thus obtain better deals, with respect to a classical multi-unit combina-
torial reverse auction. We believe that this is an important issue because the
introduction of relationships among goods has the effect of putting together to
compete bidders that otherwise would not be competing (e.g. CPU, memory,
and USB manufactures compete with motherboard manufacturers).

The paper is organised as follows. In section 2 we introduce an extended
version of the above-described example that founds our definition of RFQ
with substitutability relationships. In section 3 we provide some background
knowledge on multi-sets and Place/Transition Nets. In section 4 we present a
formal model of multi-unit combinatorial reverse auctions with substitutabil-
ity relationships among goods, along with its winner determination problem
and its mapping to integer programming. Section 5 is devoted to illustrate
some experimental results. Finally, section 6 draws some conclusions and
outlines directions for future research.

2 Example

In this section we provide an extended version of the example introduced
in section 1 to illustrate the type of substitutability relationships that we are
interested in representing. Figure 1 graphically represents the way a PC is
assembled. Our graphical description largely borrows from the representation
of Place/Transition Nets (PTN) [6], a particular type of Petri Net. Each circle
(corresponding to a PTNplace) represents a good to negotiate upon. Assem-

2



bly/splitting operations are represented as horizontal bars connecting goods,
likewisetransitionsin a PTN. The assembling and splitting operations are la-
belled with an indexed capital T, and shall be referred to assubstitutability
relationships. In particularT1 andT2 represent the effects of splitting op-
erations whereasT3 andT4 stand for assembling operations. The values in
parentheses, labelling good transformations, stand for the cost of each trans-
formation every time it isfired (carried out). The arcs connecting a set of
goodsG1 to a transformationT1 indicates that the goods inG1 are anin-
put to transformationT1. The arcs connecting a transformationT1 to a set
of goodsG2 indicates that goods inG2 are anoutput from transformation
T1. In the example in figure 1, theT2 transformation, representing the way a
motherboard is taken into pieces, has a motherboard asinput goodand CPUs,
RAM memories, USBs and empty motherboards asoutput goods. We call
input weightsthe labels on the arcs connectinginput goodsto transitions, and
output weightsthe labels on the arcs connectingoutput goodsto transitions.
They indicate the units required of eachinput goodto perform a transforma-
tion and the units generated peroutput goodrespectively. For instance, the
labels on the arcs connected toT3 in figure 1 indicate that 1 motherboard is
composed of 1 CPU, 4 RAM units, 3 USBs and 1 empty motherboard at a
cost of 8 EUR.

3 Background

3.1 Multi-sets

Multi-sets are a very powerful mathematical modelling tool, since they allow
to represent, at the same time, the elements of a set and their multiplicity.
We introduce multi-sets in order to formally represent bothmulti-unit offers
and requirements, as well as substitutability relationships. Multiplicities of
elements shall help us model the multi-unit nature of our problem.

A multi-setis an extension to the notion of set, considering the possibility
of multiple appearancesof the same element. Amulti-setMX over a setX
is a functionMX : X → N mappingX to the cardinal numbers. For any
x ∈ X, MX(x) ∈ N is called themultiplicity of x. We formally represent a
multi-setMX by a sum as follows:∑

x∈X

MX(x) x̀

���������	��
��������
	������������������������� �!��"$#&%'�����������()��
�*����!�,+������-��./�10�2�����*

Figure 1: Graphical representation of an RFQ with substitutability relation-
ships.

An elementx ∈ X belongsto the multi-setMX if MX(x) 6= 0 and we write
x ∈MX . We denote the set of multi-sets overX by XMS .

Given the multi-setsMS ,M′
S ∈ SMS , their union is defined as:

MS ∪M′
S =

∑
s∈S

(MS(s) +M′
S(s)) s̀

Operations over multi-sets (addition, multiplication, subtraction,...etc.)
amount to the standard operations on their mapping functions.

3



3.2 Place/Transition Nets

In what follows we recall some definitions forPlace/Transition Nets(PTN)
[6]:

Definition 3.1 (Place/Transition Net). A Place/Transition Net(PTN) is a
tuplePTN = (G, T, A,E,M0) satisfying the requirements below:

1. G is a set ofplaces.

2. T is a finite set oftransitionssuch thatP ∩ T = ∅.

3. A ⊆ (G× T ) ∪ (T ×G) is a set ofarcs.

4. E : A → N
+ is anarc expressionfunction.

5. M0 ∈ GMS is theinitial marking.

Definition 3.2 (Place/Transition Net Structure). A Place/Transition Net
Structure N = (G, T, A,E) does not specify any initial marking. A
Place/Transition Net with a given initial markingM0 is denoted byPTN =
(N,M0).

The graphical representation of a PTN structure is composed of the fol-
lowing graphical elements: places are represented as circles, transitions are
represented as bars, arcs connect places to transitions or transitions to places,
andE labels arcs with values.

Definition 3.3 (Marking). A markingis a multi-set overG. Theinitial mark-
ing M0 ∈ GMS denotes the initial distribution of tokens.

Definition 3.4 (Step, Enabling of a step).A stepis a non-empty and finite
multi-set overT .

A stepS ∈ TMS is enabledin a markingM ∈ GMS if the following
property is satisfied:∀g ∈ G

∑
t∈S E(g, t)S(t) ≤M(g).

Definition 3.5 (Occurrence, Direct Reachability). Let stepS be enabled in
a markingM1. Then,S may occur, changing theM1 marking to another
markingM2 ∈ GMS , defined as follows:

∀g ∈ GM2(g) = M1(g) +
∑

t∈S Z(g, t)S(t)

whereZ(g, t) = E(g, t) − E(t, g). Moreover, we say that theM2 marking
is directly reachablefrom theM1 marking by the occurrence of stepS, and
we denote it byM1[S > M2.

Definition 3.6 (Finite Occurrence Sequence).A finite occurrence sequence
is a finite sequence of steps and markings:

M1[S1 > M2...Mn[Sn > Mn+1 (1)

such thatn ∈ N andMi[Si > Mi+1 ∀i ∈ {1, .., n}. M1 is called thestart
marking, whileMn+1 is called theend marking.

We also define thefiring count multi-setK ∈ TMS , associated to the finite
occurrence sequence, as the union of all its steps:K =

⋃
i∈{1,2,..,n} Si.

Definition 3.7 (Reachability). A markingM′′ is reachablefrom a marking
M′ iff there exists a finite occurrence sequence havingM′ as start marking
andM′′ as end marking. In this case we say thatM′′ is reachablefromM′

in n steps and we denote it asM′[S1S2...Sn > M′′, where
⋃

i=1..n Si = K.
Furthermore the start and end markings are related by the following equation:

∀g ∈ GM′′(g) = M′(g) +
∑
t∈K

Z(g, t)K(t) (2)

The set of all possible markings reachable from a markingM is called its
reachability set, and is denoted as[M >.

Murata in [10] shows that a necessary an sufficient condition for reachabil-
ity in an acyclic Petri net (with no directed circuits) is that the state equation
admits an integer solution. In fact there are various classes of Petri nets for
which such condition holds. Anyway in this paper we limit our scope to the
most restrictive of such classes: theacyclic or circuit-free Petri nets. This
condition maps to the following proposition:

Proposition 3.8. In an acyclic Petri Net a markingM′′ is reachable from a
markingM′ iff there exists a multi-setK ∈ TMS such that expression 2 holds.

As a consequence, when a petri net is acyclic, the reachability set[M0 > is
represented by:

[M0 >= {M | ∃K ∈ TMS : ∀g ∈ G M(g) = M0(g) +
∑
t∈K

Z(g, t)K(t)}

(3)

4



4 Multi-Unit Combinatorial Reverse Auctions
with Substitutability Relationships

4.1 Substitutability network structures

A Substitutability Network Structure describes the different ways in which
our business is allowed to transform goods and at which cost. More formally,
we define it as follows:

Definition 4.1 (Substitutability network structure). A Substitutability net-
work structure(SNS) is a pairS = (N,C), where:

• N is a Place-Transition Net StructureN = (G, T, A,E) such that:

1. Theplacesin G represent a set of goods to negotiate upon.

2. Thetransitionsin T represent a set of possiblesubstitutability re-
lationshipsamong goods.

3. Thedirected arcsin A connect goods to substitutability relation-
ships.

4. The weights assigned by thearc expressionfunctionE indicate the
number of units of each good that are either consumed or produced
by a substitution. The values ofE are the arc labels in figures 1 and
2.

• C : T → R
+ ∪ {0} is a cost function that associates asubstitution cost

to eachsubstitutability relationship. The values ofC are enclosed in
parenthesis next to each transition in figures 1 and 2.

Notice thatT represents the set of possible substitutions among subsets ofG.
The arcs inA relate either goods to substitutions or substitutions to goods.
The goods connected to a substitutability relationship by incoming arcs (input
goods) can substitute the goods connected to the very same substitutability
relationship by outgoing arcs (output goods). The weights on the arcs con-
nected to a substitutability relationship indicate the number of units of input
and output goods consumed and produced respectively by the substitution.

Given a Place/Transition netPTN = (N,M0), if we considerM0 as a
good configuration,PTN defines the space of good configurationsreachable
by means of applying substitutions toM0. The application of substitutions

is obtained by firing transitions on thePTN . Henceforth, we define the con-
cepts ofsubstitution step, enabling of a substitution step, occurrence of a sub-
stitution stepandsubstitution sequenceas the counterparts to, respectively,
step, enabling of a step, occurrence of a step, andfinite occurrence sequence
on aPTN .

We also need to define the concept of substitution cost, taking into account
the cost of transforming good configurationM0 into another good configu-
rationM1 ∈ [M0 > by means of some substitution sequence. TheK =⋃

i=1,...,n Si multi-set associated to substitution sequenceJ = (S1,S2, ..,Sn)
accounts for the number of times a transition is fired. Thus, the cost of trans-
forming theM0 good configuration into theM1 good configuration amounts
to adding the substitution cost of each transition in theK substitution se-
quence, namely:

Definition 4.2 (Substitution Cost). Given a substitution sequenceJ =
(S1,S2, ..,Sn) and its associated firing count multi-setK =

⋃
i=1,...,n Si ,

we define the substitution cost associated to it as:

Csub(J) =
∑
S∈J

∑
t∈S

c(t)S(t) =
∑
t∈K

c(t)K(t) = Csub(K) (4)

Thus, the substitution cost only depends on the firing count multi-set.
In the following example we formally specify a Substitutability Network

StructureS = (N,C), graphically represented in figure 2:

• G = {g1, g2, g3, g4};

• T = {T1}

• A = {(g1, T1), (g2, T1), (T1, g3), (T1, g4)}

• E(g1, t1)=3, E(g2, t1)=4, E(t1, g3)=2, E(t1, g4)=1

• C(T1) = 200 EUR.

It describes a buyer’s capacity of transforming a pair of goods(g1, g2) into
a pair(g3, g4) by means of substitutiont1. The arc labels indicate that 3 units
of goodg1 and 4 units of itemg2 can be transformed into (substituted with) 2
units of goodg3 and one unit of goodg4. C sets the substitution cost ofT1 to
200 EUR.

5



���������	��
��������
	������������������������� �!��"$#&%'�����������()��
�*����!�,+������-��./�1032�����*

Figure 2: Graphical representation of a substitutability relationship

Say that we assign an initial markingM0 toS: M0(g1) = 6,M0(g2) = 8,
M0(g3) = 0, M0(g4) = 0. The underlyingPTN allows to transform it via
substitutability relationshipt1 into a new good configurationM1: M1(g1) =
0, M1(g2) = 0, M1(g3) = 4, M1(g4) = 2. In such a case, the firing count
multi-set would beK = {t1, t1} (t1 is fired twice), and the substitution cost
would amount toC(K) = 2 ∗ 200 EUR= 400 EUR.

4.2 Winner Determination Problem for MUCRASGs

In a classic multi-unit combinatorial reverse auction scenario, a Request For
Quotation (RFQ), a buyer’s requirement, can be expressed as a multi-setU ∈
GMS whose multiplicity indicates the number of units required per good. In
the example of figure 2, ifU(g1) = 2,U(g2) = 2,U(g3) = 2,U(g4) = 1, U
would be representing a buyer’s need for 2 units ofg1, g2, andg3, and 1 unit
of g4. Nonetheless, since substitutability relationships hold among goods, the
buyer may have different alternatives depending on the bids he receives:

1. M0 = {g1, g1, g2, g2, g3, g3, g4}. Buy all items as requested.

2. M1 = {g1, g1, g1, g1, g1, g2, g2, g2, g2, g2, g2}. Buy 5 units of itemg1

and 6 units of itemg2 and then to transform 2 units ofg1 and 4 units
of g2 into 2 units ofg3 and 1 unit ofg4 at costc = 200 EUR. The
overall cost results from the cost of the acquired units plus an additional
transformation costc.

Notice that both possibilities allow the buyer to obtain his initial requirement,
namely 2 units ofg1, 2 units ofg2, 2 units ofg3, and 1 unit ofg4, each one
at a different cost. Notice also that a bid can be represented as a multi-set
B ∈ GMS , whose multiplicity indicates the number of units offered per good.

Definition 4.3 (Winner Determination Problem). Given a set of bidsB,
their costsp : B → R

+ ∪ {0}, an RFQU ∈ GMS , and a substitutability
network structureS = (N,C), the winner determination problem amounts to
selecting a subset of bids (W ⊆ B) and to assessing a substitution sequence
to apply to them in order to fulfil the requirements inU while minimising the
total cost of the substitution sequence plusW .

We begin by defining the set of possible auction outcomes. A possible auc-
tion outcome is a pair(W,J), whereW ⊆ B contains a set of bids, and
J = (S1,S∈, ...,Sn) is an ordered set of substitution steps composing a sub-
stitution sequence. The application ofJ to thePTN = (N,∪B∈BB) allows
a buyer to obtain a good configuration that fulfils its requirementU . More
formally, the set of possible auction outcomes is defined as3:

Ω = {(W,J),W ⊆ B, J = (S1,S2, ...,Sn), n ∈ N |

∃X ∈ GMS (
⋃
B∈W

B)[S1S2...Sn > X ,X ⊇ U}. (5)

To each outcome(W,J) we associate an auctionoutcome costas follows:

c(W,J) =
∑
B∈W

p(B) +
∑
S∈J

∑
t∈S

c(t)S(t) (6)

Given a set of auction outcomes, the aim of the WDP for a MUCRASG is
to find the optimal outcome(W opt, Jopt) ∈ Ω that minimises the outcome
costc(W,J). Formally,

(W opt, Jopt) = arg min
(W,J)∈Ω

c(W,J) (7)

3Assuming free disposal.

6



We mentioned above that proposition 3.8 holds in the case of acyclic Petri
nets. Thus, if we restrict to the case of acyclic SNS, the firing count vector
K completely specifies the finite occurrence sequenceJ . We can then rewrite
expressions 5 and 6 as follows:

Ω = {(W,K),W ⊆ B,K ∈ TMS |

∃X ∈ GMS (
⋃
B∈W

B)[K > X ,X ⊇ U}. (8)

and

c(W,K) =
∑
B∈W

p(B) + C(K) (9)

4.3 Mapping to Integer Programming

We model the problem of assessing(W opt, Jopt) as an Integer Programming
problem. Our problem, in the case of acyclic SNSs, amounts to finding:

(W opt,Kopt) = arg min
(W,K)∈Ω

c(W,K) (10)

For this purpose, we need to express as integer variables:

• a generic subset of bids (W ⊆ B).

• a generic firing vector multi-set (K) associated to a substitution sequence.

In order to representW we assign a binary decision variablexB to each bid
B ∈ B, standing for whetherB is being included (xB = 1) or not (xB = 0) in
W . A multi-set is uniquely determined by its mapping functionK : T → N.
Hence, we represent a multi-setK ∈ TMS by considering an integer bounded
decision variableqt for eacht ∈ T . Eachqt represents the multiplicity of
elementt in theK multi-set. Thus, the translation into integer programming
of expression (10) becomes:

min[
∑
B∈B

xBp(B) +
∑
t∈T

qtc(t)]

subject toxB ∈ {0, 1}, qt ∈ {0, 1, ...,maxt}

Now we have to capture the side constraints enforcing that the selected
bids, along with the transformations applied to them, fulfilU , the initial
buyer’s requirement. For this purpose we translate expression 8 into linear
programming. We consider a set of PTNs such thatPTN = (N,L), where
L = ∪B∈WB.

Moreover. we must consider all the finite occurrence sequences ofPTN =
(N,L) that transformL into a configuration that at least fulfilsU . Under the
hypothesis ofN being acyclic we explicit the reachability set ofL as follows:

∀g ∈ G M(g) = L(g) +
∑
t∈K

Z(g, t)K(t). (11)

Next, we select the elements in the reachability set[L > that at least fulfilU :

∀g ∈ G L(g) +
∑
t∈K

Z(g, t)K(t) ≥ U(g) (12)

Hence, expressingL as
∑

B∈B xBB(g) we finally obtain the side con-
straints:

∀g ∈ G
∑
B∈B

xBB(g) +
∑
t∈T

Z(g, t)qt ≥ U(g).

5 Experiments

The main purpose of our experiments is to empirically compare MUCRASG
with respect to MUCRA. In other words, our aim is to compare the bene-
fits and drawbacks of introducing substitutability relationships. Our analysis
runs along two lines. On the one hand, we compare the differences in cost of
the optimal solutions assessed by the two mechanisms when solving the very
same problems. On the other hand, we compare the differences in compu-
tational time required by the winner determination solvers employed by both
mechanisms. In this way, we can empirically quantify the savings that we may
achieve by introducing substitutability relationships and whether such savings
come at an extra computational cost.

5.1 Winner Determination Solver

The solvers for the MUCRASG WDP and MUCRA WDP have been de-
veloped with the aid of ILOG’s[1] OPL Studio and CPLEX 9.0. The test

7



benchmark has been generated with the aid of MATLAB 7.0 [9]. The solver
for MUCRA’s WDP uses a state-of-the-art Integer Programming formulation,
that exploits the analogy of a multi-unit combinatorial auction WDP with a
well known optimisation problem: the Multi Dimensional Knapsack Problem
(MDKP). For a complete explanation refer to [3].

5.2 Experimental Settings

Our experiments were performed over four types of artificially-generated
problem instances. Each problem instance is composed of an RFQ and a SNS
along with a set of multi-unit bids. In what follows we detail how to generate
different types of problem instances.

5.2.1 Uniform Price Distributions for MUCRAs

A problem instance for a MUCRA is composed of a a multi-unit RFQ and a
set of multi-unit bids. In [8], Leyton-Brown specifies an algorithm to create
MUCA instances whose purpose is to test WDP algorithms. We have adapted
his algorithm to generate MUCRA instances. It is well known from [13] that a
MUCRA is the dual case to a MUCA. Thus, the problem instances generated
by Leyton-Brown’s algorithm can be also used for MUCRAs. In the following
we recall the way this algorithm work. Next, we recall the way this algorithm
works.

On the one hand, an RFQ is artificially generated from a number of
goods (n) and the maximum number of units that can be request per good
(RFQmax units). Then, the algorithm composes an RFQ containingn
goods such that each goodi ∈ {1, . . . , n} is assigned a multiplicitymi ∈
{1, 2, .., RFQmax units} via a uniform discrete distribution.

On the other hand, the algorithm generates a set of bids from the following
input parameters:

1. numbids. Number of bids.

2. unitsmax. Maximum number of units that a bidder can offer for a single
item.

3. µprice andσprice. Each goodi is assigned a pricepi uniformly drawn
from the following interval:

pi ∈ [µupd
price − σupd

price, µ
upd
price + σpriceupd] (13)

4. prob1 and prob2 parametrise two decay probabilities, which are em-
ployed to generate the number of goods per bid and the number of units
offered per bid per item respectively.

5. pricevar. The cost per bid is assessed according to the following for-
mula4:

price =
∑

i∈Bids

(N (1, pricevar) ∗ pi ∗ unitsi)

whereN (1, pricevar) draws random values following a normal distribu-
tion with mean1 and variancepricevar.

We refer to a problem instance for MUCRA generated as explained above
as auniform price distributionsince we employ a uniform distribution to cal-
culate the price of each good (see expression 13 above).

5.2.2 Uniform Price Distributions for MUCRASG

A problem instance for a MUCRASG is composed of a multi-unit RFQ, a
substitutability network structure, and a set of multi-unit bids. Whereas the
RFQ and the set of bids are inherited from section 5.2.1, the substitutability
network structure is added as a new element to problem instances.

In section 4.3 we showed that it is possible to use a linear programming
approach to solve the WPD for MUCRASG when some conditions hold. The
most restrictive condition is that the PTN to which a substitutability network
structure belongs isacyclic(and thus the substitutability network structure it-
self). Thus, in our experiments we have only considered acyclic substitutabil-
ity network structures. The easiest way to construct such type of structures is
to generate tree-like structures based on a special type of substitutability rela-
tionship: a single parent good is connected to several children goods. Figure 3
depicts the type of substitutability relationship used for constructing tree-like
substitutability network structures. Notice that all transitions in these struc-
tures represent eitherdecomposition(the parent good is substitutable with its
children goods) orcomposition(children goods can be substituted with their

4The way we calculate prices is slightly different from [8]. In fact, in this work prices are
obtained as follows:

price = U(1− pricevar, 1 + pricevar) ∗
X

i∈Bids

(pi ∗ unitsi)

8



Figure 3: Graphical representation of a decomposition/composition transition

parent good). Otherwise, mixing decomposing transitions with composing
transitions may easily lead to cycles.

Figure 4 shows an example of the tree-like substitutability network struc-
tures employed in our experiments. Notice that no weight is assigned to the
arc connecting parent nodes to transitions because we set them all to 1. The
following input parameters are employed to generate a tree-like substitutabil-
ity network structure like the one in 4:

1. nT : number of transitions.

2. cT : maximum number of children per transition (the minimum is 1).

3. wT : The maximum child weight (the minimum is 1). The weight of the
arc connecting a parent node to a transition is always set to 1.

4. dT : depth factor controlling the a structure’s shape: lower values make
the structure wider whereas higher values make it deeper.

5. scT : maximumsubstitution cost. It represents the maximum cost we can
associate to each transition (c1, c2, c3 in figure 4). Eachc is set according
to a uniform distribution as follows:

c = U(1, scT ) (14)

5.2.3 Adapted Price Distributions for MUCRASG

A problem instance for a MUCRASG is composed of a multi-unit RFQ, a
SNS, and a set of multi-unit bids. Whereas the RFQ is inherited from section
5.2.2, the SNS is added as a new element to problem instances. As to bids,
they result from adapting the bids in section 5.2.2. Recall that we employed
expression 13 in order to calculate a good’s average price in section 5.2.2 . We
realised though that defining some substitutability relationships among goods
without also introducing relationships among their prices generated paradoxi-
cal results. Consider, for instance, the example depicted in figure 2: a uniform
price distribution can generate problem instances in which a PC price is lower
than its USB’s prices. It is highly unlikely (though not impossible) to ac-
quire a PC at a lower price than a USB. To overcome this issue we employ an
adapted price distributionto generate goods’ average prices. Relationships
among goods’ prices are built based on substitutability relationships and their
associated transformation costs. For this purpose, we employ the following
recursive algorithm to compute each good average price5:

Algorithm 1 functioncomputeprice ((good))
1: if g = top good then
2: price(g) = rand(min top good price,max top good price):
3: for i ∈ g.childrendo
4: computeprice(i);
5: end for
6: else
7: price(g) = g.parent.price±g.parent.transition cost

g.parent.children number·g.weight

8: for i ∈ g.childrendo
9: computeprice(i);

10: end for
11: end if

The way prices are calculated in a SNS like the one in figure
8 is straightforward. We choose the price for the top good (the
good at the top of the structure) from a uniform distribution over
[min top good price,max top good price]. Given a parent good, we set

5The± sign at step 7 means that the operation to apply depends on the type of transitions in
the SNS:+ when transitions stand for decompositions and− when they stand for compositions.

9



the price of each one of its children taking into account the number of units
the parent good can generate (from the weights of its children), their parent’s
price, and the cost of the transition relating parent to children. This operation
is recursively repeated along the SNS.

To summarise, we shall generate the bid prices to compose a problem in-
stance for a MUCRASG likewise we explained in section 5.2.2, the only dif-
ference being that the average, unitary price per good is assessed using algo-
rithm 1.

5.2.4 Adapted Price Distribution for MUCRAs

A problem instance for a MUCRA using an adapted price distribution results
from merging problem instances produced in sections 5.2.2 and 5.2.3. Thus,
a problem instance contains an RFQ along with a set of bids generated as
described in section 5.2.3. In this way, we can compare more realistically the
benefits of MUCRASG (using substitutability relationships) with respect to
MUCRA (not using substitutability relationships).

5.3 Experiment Results

We have run some early tests to compare MUCRA and MUCRASG in terms
of solving times and auction outcome costs. More precisely, we have com-
pared MUCRA and MUCRASG along two scenarios: (1) over uniform price
distributions; and (2) over adapted price distributions.

In order to generate problem instances for both MUCRA and MUCRASG
considering the uniform and adapted price distributions, we have followed the
directions established in section 5.2 using the following parameters:

[RFQ] – n=10.

– RFQmax units = 15

[Bids] – unitsmax = 20

– µprice = 25 andσprice = 10

– prob1 = 0.90 andprob2 = 0.85

– pricevar = 0.3

[SNS] – nT = 3

– cT = 4
– wT = 4
– dT = 70
– scT = 15

Notice that we did not run tests for different values of the parameters above.
However, we did compare MUCRA and MUCRASG when varying the num-
ber of bids in their problem instances. Notice too that given a number of bids,
we constructed 20 problem instances for both MUCRA and MUCRASG and
for each type of price distribution. Hence, the result in 5.3.1 and 5.3.2 come
from averaging the solving time and auction cost for both MUCRA and MU-
CRASG over the 20 problem instances each one’s solver had to handle.

Finally, figure 4 illustrates the SNS along with the RFQ that we have used
for our experiments.

5.3.1 Solving time

Figures 5 and 6 graphically compare the solving times for MUCRA and MU-
CRASG over uniform and adapted price distributions respectively. Observe
that using different price distributions affects the relationship between the two
curves.

Some interesting results arise from the analysis of these results. Although
we expected the solving of the WDP for MUCRASG to be higher than the one
for MUCRA, we observe that MUCRASG outperforms MUCRA for problem
instances created with uniform price distributions (see figure 5). We cannot
state the same as to problem instances created with adapted price distribu-
tions, since MUCRA slightly outperforms MUCRASG. We explain these re-
sults considering that a MUCRASG WDP integer programming formulation
creates some more decision variables (the number of substitutability relation-
ships: 3 in the example of figure 4), but the same number of constraints with
respect to the MUCRA case. Thus, we conjecture that the branch and cut
algorithm used by the optimiser can prune more efficiently unsuitable config-
urations. Consider, for instance, the problem presented in section 5.2.3. An
unbalanced price distribution may generate an easily prunable search space.
This explains also why the solving time difference is reduced for the APD
case (see figure 6). In this case the possibility of finding very convenient
transformations that prune effectively the search space is much more difficult
because the prices are always balanced.

10



Figure 4: Representation of the Substitutability Network Structure employed
during the experiments along with the RFQ

Notice though that we leave a thorough analysis of these hypothesis for
future research.

0 500 1000 1500 2000 2500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

No. of bids

S
ol

vi
ng

 T
im

e 
(S

ec
.)

MUCRA
MUCRASG

Figure 5: Comparison of solving times over uniform price distributions.

5.3.2 Optimal Outcome cost

Figures 7 and 8 compare the optimal outcome costs for problem instances
created with adapted price distributions. The former figure compares the op-
timal outcome costs, whereas the latter depicts the relative margin differences
obtained using an MUCRASG instead of an MUCRA. Such margins are com-
puted according to the following expression:

%margin =
optimal cost(MUCRA) - optimalcost(MUCRASG)

optimal cost(MUCRA)

Notice that the differences in the figures are variable, although always
present. We measured differences ranging from around 2 to 32 %. Nonethe-
less, differences are larger for small-medium negotiation scenarios. Notice
that for scenarios with less than 100 bids we obtain differences ranging from
15% to 30%.

11



0 500 1000 1500 2000 2500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

No. of bids

S
ol

vi
ng

 T
im

e 
(S

ec
.)

MUCRASG
MUCRA

Figure 6: Comparison of solving times over adapted price distributions.

Notice also that the distribution that we are considering (APD) corresponds
to quite pessimistic a case. In fact, the way we built APD implicitly implies
that bidders have in average the same transformation costs than the bid-takers.
This is indeed a strong assumption.

6 Conclusions and Future Work

In this paper we have presented a formalisation and an integer programming
solution to the winner determination problem of a new type of multi-unit com-
binatorial reverse auction that allows for expressing substitutability relation-
ships on the buyer side. Several advantages derive from such a new type of
auction. On the one hand, it allows a buyer to incorporate his uncertainty
as to whether it is better to buy a required bundle of goods, or alternatively
buy some goods to transform them into the former ones, or even opt for a

0 500 1000 1500 2000 2500
400

600

800

1000

1200

1400

1600

1800

No. of bids

O
pt

im
al

 O
ut

co
m

e 
C

os
t

MUCRASG
MUCRA

Figure 7: Comparing optimal outcome costs for adapted price distributions.

mixed purchase and buy some goods as required and some others to be trans-
formed. This is achieved by introducing substitutability relationships among
goods into the winner determination problem. Therefore, not only does the
winner determination solver assess what goods to buy and to whom, but also
the transformations to apply to such goods in order to obtain the initially re-
quired ones. To the best of our knowledge, this is the first type of auction
aimed at also handling buyers’ uncertainty. As a side effect, the introduction
of substitutability relationships is expected to increase competitiveness among
bidders, and thus obtain better deals since bidders that otherwise would not
be competing are put together to compete. Finally, our integer programming
solution can be readily implemented with the aid of linear programming li-
braries.

We also performed some preliminary experiments comparing our solver for
the WDP for MUCRASG with a state-of-the-art MUCRA solver. We com-
pared the differences in terms of solving time and auction outcome cost. The

12



0 500 1000 1500 2000 2500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

No. of bids

O
pt

im
al

 O
ut

co
m

e 
C

os
ts

 R
at

io

Figure 8: Relative difference in optimal outcome costs for adapted price dis-
tributions.

results showed two main issues: (1) there is no significant, computational
overload when solving a MUCRASG WDP with respect to solving a MU-
CRA WDP; and (2) there are always savings in terms of costs when running
a MUCRASG, being outstanding for small-medium auction scenarios (less
than 100 bids). Nonetheless, notice that the preliminary experiments we have
run deserve further elaboration in order to thoroughly validate our early hy-
pothesis.

As future work, it is our aim to further elaborate along several directions.
Firstly, we aim at theoretically analysing the benefits in terms of savings that
our mechanism provides with respect to multi-unit combinatorial reverse auc-
tions. Secondly, we believe that it is important to research on the theoretical
properties of our mechanism from a mechanism design point of view. And fi-
nally, the complexity of bidding in MUCRASGs along with decision support
mechanisms for bidders shall be studied.

Acknowledgements

This work has been supported by project Web-i(2) (TIC-2003-08763-C02-
01).

Andrea Giovannucci enjoys the BEC.09.01.04/05-164 CSIC scholarship.

References

[1] Ilog. http://www.ilog.com.

[2] A. Andersson, M. Tenhunen, and F. Ygge. Integer programming
for combinatorial auction winner determination. InProceedings of
the Fourth International Conference on Multi-Agent Systems (ICMAS),
pages 39–46, Boston, MA, 2000.

[3] Sven de Vries and Rakesh Vohra. Combinatorial auctions: A survey.
INFORMS Journal of Computing, 15(3):284–309, 2003.

[4] Y. Fujishima, K. Leyton-Brown, and Y. Shoham. Taming the computa-
tional complexity of combinatorial auctions: Optimal and approximate
approaches. InProceeding of the Sixteenth International Joint Confer-
ence on Artificial Intelligence (IJCAI’99), pages 548–553, August.

[5] Aberdeen Group. Making e-sourcing strategic: from tactical technology
to core business strategy. Technical report, Aberdeen Group, 2002.

[6] Kurt Jensen. Coloured Petri Nets, Basic Concepts, Analysis Methods
and Practical Use, volume 1, chapter 2, pages 78–80. Springer, 1997.

[7] Jayant Kalagnanam and David C. Parkes.Supply Chain Analysis in the
eBusiness Era, chapter Auctions, Bidding and Exchange Design. 2003.

[8] K. Leyton-Brown, Y. Shoham, and M. Tennenholtz. An algorithm for
multi-unit combinatorial auctions. InAmerican Association for Artificial
Intelligence (AAAI), 2000.

[9] MATLAB. http://www.mathworks.com.

[10] T. Murata. Petri nets: Properties, analysis and applications. InIEEE,
volume 77, pages 541–580, 1989.

13



[11] Antonio Reyes-Moro, Juan Antonio Rodrı́guez-Aguilar, Maite Ĺopez-
Sánchez, Jeśus Cerquides, and David Gutiérrez-Magallanes. Embed-
ding decision support in e-sourcing tools: Quotes, a case study.Group
Decision and Negotiation, 12:347–355, 2003.

[12] Michael H. Rothkopf, Aleksandar Pekec, and Ronald M. Harstad. Com-
putationally manageable combinational auctions.Management Science,
44(8):1131–1147, 1998.

[13] Tuomas Sandholm. Algorithm for optimal winner determination in com-
binatorial auctions.Artificial Intelligence, 135(1-2):1–54, 2002.

14


