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Abstract. It is known that most systems of fuzzy logic trivialise in the
presence of contradictory information of the type {φ,¬φ}, since with the
standard truth-preserving [0, 1]-valued semantics, there is no evaluation
assigning truth-degree 1 to both φ and ¬φ. In this paper we consider
an alternative semantics for some well-known fuzzy logics with an invo-
lutive negation (definable or primitive), where an evaluation validates a
formula as soon as it gets a non-zero truth-value. This is a paraconsistent
semantics, since both φ and ¬φ can simultaneously be evaluated with a
positive truth-degree without trivialising the reasoning, and it has been
called non-falsity preserving semantics by Avron. In this paper we study
the properties of this semantics and axiomatise it for the case of several
systems of fuzzy logic, among them  Lukasiewicz, Nilpotent minimum and
Gödel with involution logics.
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1 Introduction

Non-classical logics aim at providing models of reasoning in a wide variety of
different contexts in which the classical approach might be inadequate or not
sufficiently flexible. This is typically the case when the information to reason
about is incomplete, imprecise or contradictory.

Paraconsistent logics have been introduced, among other approaches, as sys-
tems able to cope with contradictory or inconsistent information and that are
expected to extract from it sensible non-trivial inferences, see e.g. [8, 16, 4]. For-
mally, a logic L is said to be paraconsistent with respect to a negation connective
¬ when it contains a ¬-contradictory but not trivial theory. Assuming that L is
(at least) Tarskian, this is equivalent to say that the ¬-explosion rule

φ ¬φ
ψ



is not valid in L.

On the other hand, fuzzy logics are logics of graded truth that have been
proposed as a suitable tool for reasoning with imprecise information, in par-
ticular for reasoning with propositions containing vague predicates. Their main
feature is that they allow to interpret formulas in a linearly ordered scale of
truth-values, and this is specially suited for representing the gradual aspects of
vagueness. In particular, systems of fuzzy logic have been in-depth developed
within the frame of mathematical fuzzy logic [7] (MFL). In deductive systems
in MFL, mostly with semantics in the real unit interval [0, 1], the usual no-
tion of deduction is defined by requiring the preservation of the truth-value 1
(full truth-preservation), which is understood as representing the absolute truth.
Namely, generalizing the classical notion of consequence, in these systems a for-
mula follows from a set of premises if every algebraic evaluation that interprets
the premises as 1-true also interprets the conclusion as 1-true. This notion of
consequence validate the above mentioned explosive rule, so all the fuzzy log-
ics under the truth-preserving paradigm are explosive, and thus they are not
paraconsistent.

In the last years, there have been several works studying paraconsistent vari-
ants of fuzzy logics (see e.g. [9, 5, 6]), mainly by moving from the (full) truth-
preserving paradigm to the degree-preserving paradigm, in which a conclusion
follows from a set of premises if, for all evaluations, the truth degree of the con-
clusion is greater or equal than those of the premises, see e.g. [3]. Still, another
way of defining paraconsistent variants of a fuzzy logic is put forward in [1],
although for the particular case of  Lukasiewicz fuzzy logic. In this approach, the
notion of consequence at work is the non-falsity preservation, according to which
a conclusion follows from a set of premises whenever if the premises are non-false,
so must be the conclusion. In other words, assuming a [0, 1]-valued semantics,
this is the case when, for any evaluation, if truth degrees of the premises are
above 0, then the truth-degree of the conclusion is so as well. This notion of
consequence is weaker than the one in the truth-preserving logics but stronger
than the one of degree-preserving logics.

In this paper, we further explore this notion of non-falsity preservation for
defining paraconsistent companions of different systems of mathematical fuzzy
logic. In more detail, after this introduction, in Section 2 we gather some prelim-
inaries on various systems of t-norm based fuzzy logics. In Section 3 we present
basic definitions about variants of these systems specified by logical matrices
on MTL-chains with lattice filters as sets of designated values, in particular the
non-falsity preserving companions. Then in Section 4 we focus on and axiomatise
the paraconsistent non-falsity preserving companions of Involutive MTL logics,
while in Section 5 we focus on the companions of SMTL logics with an involutive
negation. We conclude with some final remartks in Section 6.



2 Preliminaries

Most well known and studied system of mathematical fuzzy logic are the so-
called t-norm based fuzzy logics, corresponding to formal many-valued calculi
with truth-values in the real unit interval [0, 1] and with a conjunction and an im-
plication interpreted respectively by a (left-) continuous t-norm and its residuum,
and thus, including e.g. the well-known  Lukasiewicz and Gödel infinitely-valued
logics, corresponding to the calculi defined by  Lukasiewicz and min t-norms re-
spectively. The most basic t-norm based fuzzy logic is the logic MTL (monoidal
t-norm based logic) introduced in [11], whose theorems correspond to the com-
mon tautologies of all many-valued calculi defined by a left-continuous t-norm
and its residuum [15].

The language of MTL consists of denumerably many propositional variables
p1, p2, . . ., binary connectives ∧,&,→, and the truth constant 0. Formulas, which
will be denoted by lower case greek letters φ,ψ, χ, . . ., are recursively defined
from propositional variables, connectives and truth-constant as usual. Further
connectives and constants are definable, in particular: ¬φ stands for φ→ 0 and
1 stands for ¬0. A Hilbert-style calculus for MTL was introduced in [11] with
the following set of axioms:

(A1) (φ→ ψ) → ((ψ → χ) → (φ→ χ))
(A2) φ& ψ → φ
(A3) φ& ψ → ψ & φ
(A4) φ ∧ ψ → φ
(A5) φ ∧ ψ → ψ ∧ φ
(A6) φ& (φ→ ψ) → φ ∧ ψ

(A7a) (φ→ (ψ → χ)) → (φ& ψ → χ)
(A7b) (φ& ψ → χ) → (φ→ (ψ → χ))

(A8) ((φ→ ψ) → χ) → (((ψ → φ) → χ) → χ)
(A9) 0 → φ

and whose unique inference rule is modus ponens: from φ and φ→ ψ derive ψ.
MTL is an algebraizable logic in the sense of Blok and Pigozzi [2] and its

equivalent algebraic semantics is given by the variety of MTL-algebras. MTL-
algebras can be equivalently introduced as commutative, bounded, integral resid-
uated lattices ⟨A,∧,∨, ∗,→, 0, 1⟩ further satisfying the following prelinearity con-
dition: (x→ y) ∨ (y → x) = 1.

In Table 1 we gather some of the main axiomatic extensions of MTL together
with their additional axioms. Of particular interest in this paper is the Involutive
MTL logic (IMTL for short), i.e. the axiomatic extension of MTL with the axiom
(INV) which enforces the negation ¬ to be involutive. IMTL-algebras are just
MTL-algebras whose associated negation satisfies the equation x = ¬¬x. The
well-known  Lukasiewicz logic is the extension of IMTL with the divisibility axiom
(Div), and Gödel logic is the extension of MTL with the contraction axiom
(Con). Algebras of  L are usually called MV-algebras and are IMTL-algebras
further satisfying the equation x ∗ (x → y) = x ∧ y, while Gödel-algebras are
MTL-algebras satisfying the equation x ∗ y = x ∧ y.



Axiom schema Name

¬¬φ→ φ (Inv)

¬φ ∨ ((φ→ φ& ψ) → ψ) (C)

φ→ φ& φ (Con)

φ ∧ ψ → φ& (φ→ ψ) (Div)

¬(φ ∧ ¬φ) (PC)

¬(φ& ψ) ∨ (φ ∧ ψ → φ& ψ) (WNM)

φ ∨ ¬φ (EM)

Logic Additional axioms

Strict MTL (SMTL) (PC)

Involutive MTL (IMTL) (Inv)

Nilpotent Minimum (NM) (Inv) and (WNM)

Basic Logic (BL) (Div)

Strict Basic Logic (SBL) (Div) and (PC)

 Lukasiewicz Logic ( L) (Div) and (Inv)

Product Logic (Π) (Div) and (C)

Gödel Logic (G) (Con)

Classical Logic (CL) (EM)

Table 1. Some axiomatic extensions of MTL obtained by adding the corresponding
additional axiom schemata.

Besides enjoying strong completeness as a consequence of their algebraizabil-
ity, all the logics in Table 1, enjoy completeness with respect to their correspond-
ing classes of algebras on the real-unit interval [0, 1], as proved e.g. in [15] for
MTL and in [10] for IMTL. Furthermore,  Lukasiewicz logic and Gödel logic are
even complete w.r.t. a single algebra over [0, 1], the standard MV-algebra and
the standard Gödel algebra respectively, see e.g. [14].

In the following, given a left-continuous t-norm ∗, we will denote by [0,1]∗ the
standard MTL-algebra determined by ∗, i.e. [0,1]∗ = ([0, 1],min,max, ∗,→, 0, 1),
where → is the residuum of ∗ and the negation ¬ is defined as ¬x = x→ 0.

In this paper we will also consider the expansions of SMTL logics (in partic-
ular Gödel logic G and Product logic Π) with an additional involutive negation.
We will introduce them in Section 5

3 Logics defined by matrices with lattice filters

In the systems of mathematical fuzzy logic considered above, the usual notion
of logical consequence has been defined as preservation of the truth, repre-
sented by the top element of the corresponding algebras. For instance let L
be any of the above logics, which we assume to be complete w.r.t. the family
CL = {[0,1]∗ | [0,1]∗ is a L-algebra} of standard L-algebras. Then the typical
notion of logical consequence is the following for every set of formulas Γ ∪ {φ}:

Γ |=L φ if, for any [0, 1]∗ ∈ C∗ and any [0, 1]∗-evaluation e,
if e(ψ) = 1 for any ψ ∈ Γ , then e(φ) = 1 as well.

This can be generalised by considering logics defined by logical matrices
M = ⟨A, F ⟩, where A is a standard L-chain and F is a non-trivial lattice filter
of A i.e. F is either a closed interval Fa = [a, 1] with a ∈ (0, 1], or a semi-open
interval F(a = (a, 1] with a ∈ [0, 1). Considering the filters as sets of desig-
nated values, then the logics specified by the matrices M∗

a = ⟨[0,1]∗, Fa⟩ and



M∗
(a = ⟨[0,1]∗, F(a⟩ are defined respectively:

Γ |=M∗
a
φ if, for any [0, 1]∗ ∈ C∗ and any [0, 1]∗-evaluation e,

if e(ψ) ≥ a for any ψ ∈ Γ , then e(φ) ≥ a as well.

Γ |=M∗
(a
φ if, for any [0, 1]∗ ∈ C∗ and any [0, 1]∗-evaluation e,

if e(ψ) > a for any ψ ∈ Γ , then e(φ) > a as well.

Now, if [0,1]∗ is a standard IMTL-algebra, with c being the fixpoint of the
involutive negation n(x) = x→ 0, then it is easy to check that

(i) |=M∗
a

is paraconsistent iff a ≤ c
(ii) |=M∗

(a
is paraconsistent iff a < c

The extreme cases are the 1-preserving logic |=M∗
1

= |=L, which is explo-
sive, and the non-falsity preserving logic |=M∗

(0
, which is paraconsistent w.r.t. ¬.

Observe that the finitary versions of both logics are strongly related.

Lemma 1. For every pair of formulas φ,ψ the following relation holds:

φ |=M∗
(0
ψ iff ¬ψ |=M∗

1
¬φ.

Proof. It easily follows by observing that, for any [0, 1]∗-evaluation e, the con-
dition “if e(φ) > 0 then e(ψ) > 0” is equivalent to “if e(ψ) = 0 then e(φ) = 0”,
and hence, to the condition “if e(¬ψ) = 1 then e(¬φ) = 1” as well. □

The same result holds if, instead of an IMTL logic, we consider a SMTL logic
expanded with an involutive negation connective ∼. Then, we have to replace
standard IMTL chains [0,1]∗ by standard SMTL chains with an additional in-
volutive negation function n (interpreting the involutive connective ∼), i.e. with
chains [0,1]n∗ = ([0, 1],min,max, ∗,→, n, 0, 1), and then replace in Lemma 1 the
(definable) residual negation ¬ by the involutive negation ∼.

4 Non-falsity preserving companions of IMTL axiomatic
extensions

In this section we focus on the characterisation of logics defined by (sets of)
matrices of the form ⟨[0, 1]∗, F(0⟩, for ∗ being an IMTL t-norm. We remind that
this means that ∗ is left-continuous and that the residual negation ¬, defined
as ¬x = x → 0 = sup{y ∈ [0, 1] | x ∗ y = 0}, is such that ¬(¬x) = x. Notable
examples of IMTL t-norms are  Lukasiewicz t-norm (which is continuous) and
Nilpotent Minimum t-norm.

Assume L is an axiomatic extension of IMTL, complete with respect to a class
of standard algebras CL, and whose corresponding notion of proof is denoted ⊢L.

Then our aim is to axiomatise the logic defined by the class of matrices
C0
L = {⟨[0, 1]∗, F(0⟩ | ⟨[0, 1]∗, F1⟩ ∈ CL}. Note that the logic (semantically) defined

by the set of matrices C0
L is indeed ¬-paraconsistent.

We syntactically define the system nf-L, the non-falsity preserving companion
of L, as follows.



Definition 1. The logic nf-L is defined by taking as axioms those of L together
with the following inference rules:

– Rule of Adjunction: (Adj)
φ, ψ

φ ∧ ψ
– Reverse Modus Ponens: (MPr)

¬ψ ∨ χ
¬φ ∨ ¬(φ→ ψ) ∨ χ

– Restricted Modus Ponens: (r-MP)
φ, φ→ ψ

ψ
, if ⊢L φ→ ψ

The corresponding notion of proof will be denoted by ⊢nf-L.

The above (MPr) rule captures the following form of reverse of modus ponens:
if ¬ψ is non-false then either ¬φ is non-false or ¬(φ → ψ) is non-false. The
addition of the disjunct χ both in the premise and in the conclusion of the rule
is needed to properly keep track of successive applications of (MPr), as it will
be made clear in Example 1 below.

It is straightforward to check that the logic nf-L is sound w.r.t. the class of
matrices C0

L. Only notice that, on the one hand, if a rule φ/ψ is sound for a
matrix M = ⟨[0,1]∗, {1}⟩ ∈ CL then the rule ¬ψ ∨ χ/¬φ ∨ χ is automatically
sound for the matrix M′ = ⟨[0,1]∗, (0, 1]⟩ ∈ C0

L.
In order to show the logic nf-L is complete, we first prove in the following

proposition a syntactic counterpart of Lemma 1, relating proofs in L and proofs
in nf-L.

Proposition 1. If ψ ⊢L φ then ¬φ ⊢nf-L ¬ψ.

Proof. Suppose ψ ⊢L φ, then there is a proof ⟨Π1, . . . Πr⟩, where Π1 = ψ,
Πr = φ and where each Πi (with 1 < i ≤ r) either:

- is an axiom of L, or
- has been obtained from previous Πk, Πj (k, j < r) by the application of the

Modus ponens rule (MP).

We show next that we can build a proof for ¬ψ from ¬φ in nf-L. We define:
(1) Σ1 = ¬Πr = ¬φ.
(2) For each i = 1, ..., r − 1 we do the following: by the iterative construction

below, Σi will be of the form Σi = Σ∗ ∨ ¬Πr−i+1, for some disjunction of
formulas Σ∗ (in the case i = 1 we take Σ∗ = ⊥). Then we define:
- If Πr−i+1 is an axiom or theorem of L, then Σi+1 = Σi.
- If Πr−i+1 = Ψ has been obtained from previous Πk = Φ,Πj = Φ → Ψ
(with k, j < r) by the application of Modus ponens rule, then Σi+1 = Σ∗ ∨
¬Πk ∨ ¬Πj is obtained from Σi by application of (MPr).

(3) By construction, Σr is of the form ¬Π1 ∨ (
∨

i=1,n ¬Πki), where for each ki,
Πki

is an axiom or theorem of L. Therefore, ¬Π1 ∨ (
∨

i=1,n ¬Πki
) → ¬Π1 is

a theorem of L as well. So we define Σr+1 = Σr → Σ1,1 and thus by using
the restricted Modus Ponens rule (r-MP) on Σr and the theorem Σr+1, we
finally get Σr+2 = ¬Π1 = ¬ψ.

1 Actually, to be formally accurate we should replace the proof step Σr+1 itself by a
whole proof of this theorem in L, but for the sake of simplicity we leave it as it is.



As a consequence, after removing possible duplicates in the sequence

⟨Σ1, ..., Σr, Σr+1, Σr+2⟩,
we get a proof of ¬ψ from ¬φ in nf-L. □

We provide next a small example of translating a proof in a IMTL logic L
into a proof in the logic nf-L, showing the use of the reverse Modus Ponens rule
(MPr).

Example 1. Let L be a axiomatic extension of IMTL, and consider the following
derivation

φ,ψ, φ→ (ψ → χ) ⊢L χ

which clearly holds by applying Modus Ponens rule, so the sequence

– Π1 = φ
– Π2 = φ→ (ψ → χ)
– Π3 = ψ → χ, by application of (MP) to Π1 and Π2

– Π4 = ψ
– Π5 = χ, by application of (MP) to Π4 and Π3

is a proof of χ from {φ,ψ, φ→ (ψ → χ)} in L.
Now let us see how to get a corresponding proof in nf-L for the derivability

¬χ ⊢nf-L ¬φ ∨ ¬ψ ∨ ¬(φ→ (ψ → χ)).

Following the procedure described in the proof of the above proposition, we get
that the following sequence

– Σ1 = ¬χ
– Σ2 = ¬ψ ∨ ¬(ψ → χ), by application of (MPr) to Σ1

– Σ3 = ¬ψ ∨ ¬φ ∨ ¬(φ→ (ψ → χ)), by application of (MPr) to Σ2

is a proof of ¬ψ∨¬φ∨¬(φ→ (ψ → χ)) from ¬χ in nf-L. Note that in the second
application of (MPr) we do need its general form with the additional disjunct
both in the premise and in the conclusion.

Theorem 1. The finitary nf-L is sound and complete w.r.t. to the class of ma-
trices C0

L.

Proof. Soundness is easy and has already been mentioned above. As for com-
pleteness, suppose {ψ1, ..., ψn} |=M φ for every M ∈ C0

L. This is equivalent to
¬φ |=M′ ¬(ψ1 ∧ ... ∧ ψn) for every M′ ∈ CL. By completeness of L, there is a
proof ⟨Π1, . . . Πr⟩, where Π1 = ¬φ, Πr = ¬ψ1 ∨ ... ∨ ¬ψn. Now, by the above
Proposition 1, there is also a proof of ¬¬φ from ¬¬(ψ1 ∧ ...∧ψn) in nf-L. Then,
if Π1, ...,Πr, with Π1 = ¬¬(ψ1∧ ...∧ψn) and Πr = ¬¬φ, is a proof of ¬¬φ from
¬¬(ψ1 ∧ ... ∧ ψn), to get a proof of φ from Γ = {ψ1, ..., ψn} it is enough to add:

- A previous step Π0 = ψ1 ∧ ... ∧ ψn, obtained by n − 1 applications of the
Adjunction rule (Adj) to the premises Γ . Then Π1 is obtained by applying the
(r-MP) rule to Π0 and the theorem ψ1 ∧ ... ∧ ψn → ¬¬(ψ1 ∧ ... ∧ ψn).

- And a final step Πr+1 = φ, obtained by applying the (r-MP) rule to Πr

and the theorem ¬¬φ→ φ. □



As a direct corollary, we have complete axiomatisations of non-falsity preserv-
ing companions of  Lukasiewicz logic and of Nilpotent Minimum logic. Actually,
regarding  Lukasiewicz logic, we have mentioned in the introduction that Avron
introduces in [1] a paraconsistent extension of the logic T of Anderson and Bel-
nap called FT. This logic, which is presented as “a paraconsistent counterpart
of  Lukasiewicz Logic  L∞” that preserves non-falsity ([1, pp. 75] has , in the
sense that it takes the semi-open interval (0, 1] as set of designated values, i.e.,
all values from [0, 1] except the value 0 (falsity). The logic is firstly defined ax-
iomatically over a propositional language with connectives ∧, ∨, ¬ and →FT,
and then it is proved that FT is semantically characterized by the logic matrix
⟨M[0,1], F ⟩, where M[0,1] = ([0, 1],∧,∨,¬,→FT, 0, 1) and the filter of designated
values is F = (0, 1]. In M[0,1], the operations ∧, ∨ and ¬ are as in  Lukasiewicz
logic (i.e. interpreted by min, max and n(x) = 1 − x, respectively), but →FT is
not  Lukasiewicz implication (whose truth-function is x→ y = min(1, 1−x+ y))
since it is interpreted by the following truth-function:

x→FT y =

{
max(1 − x, y), if x ≤ y
0, otherwise.

In fact, →FT captures the order since it satisfies the relation x →FT y > 0
iff x ≤ y. Avron shows nice properties for this logic (semi-relevance, variable-
sharing, modus ponens, etc.), but FT is something else than the non-falsity
companion of  Lukasiewicz logic.

5 The case of expansions of SMTL logic with an
involutive negation

In this section we move from IMTL logics to SMTL logics expanded with an
involutive negation. A first straightforward observation is that if L is an extension
of SMTL, the residual negation ¬φ = φ → 0 is in fact Gödel negation, whose
interpretation in any L-chain is the mapping defined by ¬x = 1 if x = 0 and
¬x = 0 otherwise. Hence x > 0 iff ¬¬x = 1. Also, note that the monoidal
operation ∗ (strong conjunction) in any SMTL-chain has no zero divisors, i.e. if
x ∗ y = 0 then either x = 0 or y = 0.

Let us recall as well that any axiomatic extension L is complete with re-
spect to the class of L-chains, i.e. wrt the set of matrices CL = {⟨A, F1⟩ |
A is a L-chain}. As before we will let C0

L = {⟨A, F(0⟩ | A is a L-chain}. Then,
the following lemma holds.

Lemma 2. For any axiomatic extension L of SMTL, the following hold:
(i) φ |=C0

L
ψ iff ¬¬φ ⊢L ¬¬ψ.

(ii) Modus ponens is a valid rule in |=C0
L
.

Proof. Property (i) follows from the above observation that any SMTL-evaluation
e in a L-chain A is such that e(φ) > 0 iff e(¬¬φ) = 1. As for (ii) note that, by
definition, e(φ → ψ) = sup{a ∈ A | e(φ) ∗ a ≤ e(ψ)}. So if e(φ → ψ) > 0, there



exists a > 0 such that e(φ) ∗ a ≤ e(ψ). Now, if e(φ) > 0 then, since ∗ has no
zero-divisors, necessarily 0 < e(φ) ∗ a ≤ e(ψ). □

These are nice properties, however they imply that the falsity-preserving
companion of a SMTL logic collapses into classical logic.

Lemma 3. Let A be a SMTL-chain and let the matrix M = (A, F(0). Then
φ |=M ψ iff φ ⊢CL ψ.

Proof. Since the matrix of classical propositional logic ⟨2, {1}⟩, where 2 is the
2-element Boolean algebra on {0, 1}, is a submatrix of M = ⟨A, F(0)⟩, then
φ |=M ψ implies φ ⊢CL ψ. Conversely, let the mapping h : A → {0, 1} be
defined as h(0) = 0 and h(x) = 1 if x > 0. Then it is easy to check that h
is a homomorphism of SMTL-algebras. Therefore, if φ ̸|=M ψ, there is a A-
evaluation e such that e(φ) > 0 and e(ψ) = 0. But then, the evaluation e′ = h◦e
is a 2-evaluation such that e′(φ) = 1 and e(ψ) = 0, hence φ ̸⊢CL ψ. □

As an immediate consequence of (i) of Lemma 2 and the previous Lemma 3,
we get the following corollary, that can be seen as Glivenko-like theorem for the
non-falsity preserving companions of SMTL logics.

Corollary 1. (Glivenko theorem for SMTL) Let L be an axiomatic extension of
SMTL. Then φ |=C0

L
ψ iff ¬¬φ ⊢L ¬¬ψ iff φ ⊢CL ψ.

Therefore, in order to get paraconsistent non-falsity preserving companions
of SMTL logics, we turn our attention to expansions of such logics with an
involutive negation ∼. Indeed, having an involutive negation in the logic makes
the corresponding paraconsistent system not collapse into the classical case as
we have seen above it happens with axiomatic extensions of SMTL logic. As it
can be easily observed, the mapping h defined in the proof of Lemma 3, is no
longer an homomorphism in the case the chain A has an involutive negation in
its signature.

For the case of SBL and its extensions Gödel and Product logics, these ex-
pansions were defined in [12], and for the more general setting of axiomatic
extensions of MTL in [13]. Following the latter, if L is an axiomatic extension of
SMTL, then the logic L∼ is obtained from L by adding the connective ∼ to the
language of L, together with the following axioms, where ∆φ := ¬∼φ:

(∼1) φ↔ ∼∼φ
(∼2) ∆(φ→ ψ) → (∼ψ → ∼φ)
(∼3) ¬φ→ ∼φ

and the following inference rule: from φ derive ∆φ.
In [12] it was proved that G∼ is complete with respect to a single matrix

CG∼ = ⟨[0, 1]G∼ , F1⟩ over the standard G∼-chain [0, 1]G∼ = ([0, 1],min,max, ∗G,
→G, n, 0, 1), where ∗G = min, →G is Gödel implication and n(x) = 1 − x, while
Π∼ is complete w.r.t. the set of matrices CΠ∼ = {⟨[0, 1]Π,n, F1⟩ | n is a strong
negation in [0, 1]}, where [0, 1]Π,n = ([0, 1],min,max, ∗Π ,→Π , n, 0, 1). Similarly,



in [13], SMTL∼ was proved to be complete w.r.t. the set of matrices CSMTL∼ =
{⟨[0, 1]∗,n, F1⟩ | ∗ is a SMTL t-norm and n is a strong negation in [0, 1]}.

Now, let L∼ be an axiomatic extension of SMTL expanded with an involutive
negation, which we assume is complete with respect to a set of matrices CL∼ ,
and let us consider its corresponding set of matrices with filters F(0, C0

L∼
=

{⟨[0, 1]∗,n, F(0⟩ | ⟨[0, 1]∗,n, F1⟩ ∈ CL∼}.
Next lemma is the counterpart of Lemma 2 for expansions of SMTL logic

with ∼.

Lemma 4. φ |=C0
L∼

ψ iff ¬¬φ ⊢L∼ ¬¬ψ (iff ⊢L∼ ¬¬φ→ ¬¬ψ)

We define now the non-falsity preserving companion of L∼ by just adding an
inference rule and prove its completeness.

Definition 2. The logic nf-L∼ is obtained by adding to the axioms of L∼ the
following inference rules:

– Adjunction: (Adj)
φ, ψ

φ ∧ ψ
– Restricted Necessitation for ∆: (r-N∆)

φ

∆φ
, if ⊢L∼ φ

– Restricted Modus Ponens: (r-MP)
φ, φ→ ψ

ψ
, if ⊢L∼ φ→ ψ

– Positive Modus Ponens: (Pos-MP)
φ, ¬¬φ→ ¬¬ψ

ψ

**It is worth noticing that an analogous restricted form of the Modus Ponens
rule (r-MP) of the non-falsity preserving companion of a IMTL logic L (see Def.
1) is derivable in nf-L∼ relative to L∼:

– (r-MP)
φ, φ→ ψ

ψ
, if ⊢L∼ φ→ ψ

Indeed, since (φ → ψ) → (¬¬φ → ¬¬ψ) is a theorem in any MTL extension, if
φ → ψ is a theorem of L∼, then so is ¬¬φ → ¬¬ψ. Then, from that theorem
and φ, using (Pos-MP), we derive ψ. **

Finally we show completeness for the non-falsity preserving logic nf-L∼.

Theorem 2. nf-L∼ is sound and complete wrt the set of matrices C0
L∼

.

Proof. Soundness is easy. As for completeness, suppose ψ1, . . . , ψn |=C0
L∼

φ. This

is equivalent to |=CL∼
¬¬(ψ1 ∧ . . . ∧ ψn) → ¬¬φ. By completeness of L∼, there

is a proof ⟨Π1, . . . Πr⟩, where Πr = ¬¬(ψ1∧ . . .∧ψn) → ¬¬φ and where each Πi

is either an axiom of L∼, or has been obtained from previous Πk, Πj (k, j < r)
and the application of Modus ponens rule or the ∆ necessitation rule. Note that
all the Πi’s are theorems of L∼, thus any application of Modus Ponens or ∆-
necessitation is in fact an application of the restricted rules (r−MP ) or (r-N∆)
respectively. Then, in order to get a proof of ψ in nf-L∼, we only need to do the
following:



(i) add a previous step Π0 = ψ1∧ . . .∧ψn that is obtained from the premises
by the Adjunction rule, which is derivable.

(ii) add a final step Πr+1 = φ that is obtained from Π0 and Πr by application
of the (Pos-MP) rule.
Therefore, the sequence Π0, Π1, . . . Πr, Πr+1 is a proof of ψ in the logic nf-L. □

6 Final remarks

In this paper we have explored the definition and axiomatisation of non-falsity
preserving companions of two main families of axiomatic extensions of the Monoidal
t-norm based fuzzy logic MTL, namely logics L that are extensions of Involutive
MTL (IMTL) and of Strict MTL (SMTL). It turns out that if L is an extension
of IMTL then nf-L is directly ¬-paraconsistent. In contrast, if L is an extension
of SMTL then nf-L collapses into classical logic. Therefore, in this latter case
we have then considered their expansions L∼ with an involutive negation ∼, for
which the non-falsity preserving companion nf-L becomes properly paraconsis-
tent, and they are axiomatised by adding a single inference rule to L∼. In future
work we will analyse the expressive power and further properties of these logics
from a paraconsistency point of view.
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an involution: intermediate logics and (ideal) paraconsistency. In O. Arielli and A.
Zamansky (Eds.), Arnon Avron on Semantics and Proof Theory of Non-Classical
Logics. Outstanding Contributions to Logic, vol 21, pp. 107–139), Springer, 2021.
doi: https://doi.org/10.1007/978-3-030-71258-7 6

7. P. Cintula, C. Noguera C. A general framework for mathematical fuzzy logic. In:
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