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Abstract
Sensibly planning the subjects to study during a university degree is one of the most cru-
cial tasks that impact the future professional life of a student. Nonetheless, to the best of 
our knowledge, no automated solution is available for students who want to plan their de-
sired degree path and maximize the skills required by desired or target job(s). In this paper, 
we consider the Degree Planning Problem (DPP), which aims at computing degree plans 
composed of university subjects for students during the completion of an undergraduate 
degree. Specifically, we aim to obtain the best set of skills matching the requirements of 
students’ preferred job(s). To achieve this objective, we propose a flexible and scalable 
approach that solves the DPP in real-time by means of a non-trivial formalization as an 
optimization problem that can be solved with standard solvers. Finally, we employ real 
data from our University’s Bachelor in Information and Communications Technology to 
show, through several use cases, that our approach can be a valuable decision-support tool 
for students and curriculum designers.
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1 Introduction

The United Nations’ 2030 Agenda for Sustainable Development includes quality education 
as a Sustainable Development Goal. This goal calls for the development of technologies and 
tools that make education management and provision more equitable, inclusive, and per-
sonalized (Trescak et al., 2022). Indeed, personalization in education has recently been the 
focus of significant research efforts within the scientific community, mainly from the per-
spective of learning analytics (Siemens and Baker, 2012; Gašević et al., 2015; Tsai and Gas-
evic, 2017). Learning analytics research focuses on measuring, collecting, analyzing, and 
reporting data about learners and their contexts to understand and optimize learning and the 
environments in which it occurs. In this context, one of the most active and relevant areas of 
research concerns Educational Recommender Systems (EdRecSys) (Drachsler et al., 2015). 
One of the main topics of interest for EdRecSys research has been recommending university 
courses since planning the set of courses to study during a university degree is one of the 
most crucial tasks that impact the future professional life of a student. Indeed, in a recent 
survey carried out by the educational platform Forage,1 1000 U.S. university students were 
interviewed about several aspects of education in relation to their professional prospects. 
One of the most important findings of this survey was that 71% of the students evaluated 
as extremely important to “identify the most important skills [needed] to land [their] dream 
job”, but only 39% considered the “tools or information to do this” as adequate. Along these 
lines, developing an automated approach to guide students throughout their educational 
pathway toward the acquisition of the skills required by their preferred job(s) is key.

Of course, the problem of planning a set of activities within a time horizon has also 
been extensively studied in the planning and scheduling literature. However, despite the 
abundance of works in these fields (especially on the Resource-Constraint Project Schedul-
ing Problem (RCPSP) (Pass-Lanneau et al., 2023; Karnebogen and Zimmermann, 2024; 
Etminaniesfahani et al., 2023) and the Balanced Academic Curriculum Problem (BACP) 
(Castro and Manzano, 2001; Hnich et al., 2002; Ceschia et al., 2014), as discussed in detail 
in Sect. 7), to the best of our knowledge, the problem of computing a degree path that allows 
a student to acquire the skills required by their desired job(s) has not been studied yet.

Against this background, in this paper, we propose an automated solution (outlined in 
Fig. 1) able to provide recommendations to students during the completion of an under-
graduate university degree by solving a novel planning problem, a problem that we denote 
as Degree Planning Problem (DPP). Specifically, the goal of the DPP is to compute degree 
plans that achieve the set of skills that best cover the requirements of the job(s) preferred by 
a student, i.e., maximizing the so-called job affinity. More precisely, we make the following 
contributions to the state-of-the-art:

 ● We propose a formal definition of the DPP as an optimization problem. Solving such 
optimization problem yields the degree paths that maximize the “coverage” of the pro-
fessional skills required by a student’s desired job(s). While some aspects of our model 
are based on our real-world test case, it is straightforward to adapt it to other university 
curricula without changing the proposed solution method.

 ● We present a non-trivial linearization of our optimization problem so that we can solve 
it with standard optimization tools.

1  h t t p s :  / / w w w  . t h e f o  r a g e  . c o m /  b l o g /  n e w s / f  o r a g  e - c a r e e r - r e a d i n e s s - s u r v e y, accessed on 23/05/2024.
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 ● We show, through several use cases, that our approach can be a valuable decision-sup-
port tool for (i) students planning their academic pathways (even when they are uncer-
tain about their desired job or they have already initiated their academic career) and (ii) 
curriculum designers assessing how well a university’s degrees satisfy the skill require-
ments of the job market. With this aim, we employ real-world data from the Bachelor 
Degree of Information and Communications Technology of Western Sydney University 
and the Skills Framework for the Information Age (SFIA) dataset (British Computer 
Society, 2021).Organization. In Sect. 2, we discuss the concepts of Mixed-Integer Pro-
gramming (MIP) and p-norms, which provide the basis for our formalization of the DPP 
discussed in Sect. 3. We show how we solve the DPP by casting it as a MIP problem in 
Sect. 4. In Sect. 5, we empirically analyze real-world data considering different potential 
use cases. In Sect. 6, we discuss the real-world applicability of our approach and we 
propose some extensions to other university curricula. Sect. 7 positions our work with 
respect to the existing literature, and Sect. 8 concludes the paper and discusses future 
research directions.

2 Background

In this section, we discuss some background concepts that we employ to formalize the DPP 
and are useful to position our theoretical contributions. Specifically, in Sect. 2.1, we intro-
duce MIP and the subclasses of optimization problems that are interesting in the context of 
our work. Then, in Sect. 2.2, we discuss the concept of p-norms, which we employ in the 
formulation of the objective function of the DPP, and we present different approaches to 
solving p-norm minimization problems.

Fig. 1 Overview of our automated solution approach. We refer the reader to Sects. 3 and 4 for the techni-
cal details

 

1 3



Annals of Operations Research

2.1 MIPs and related sub-classes of optimization problems

An MIP is an optimization problem in the form 

 minimize f0(x)  (1)

 subject to fi(x) ≤ 0, ∀i = 1, . . . , m,  (2)

 fi(x) ∼ 0, ∀i = m + 1, . . . , m + k,  (3)

where x ∈ Zn, and fi : Zn −→ R is any real-valued function. In general, MIP problems are 
NP-Hard (Wolsey, 2020) and are extremely expensive to solve since off-the-shelf solvers 
such as CPLEX or Gurobi cannot tackle them directly. On the other hand, CPLEX and 
Gurobi can tackle some particular sub-classes of optimization problems that, while remain-
ing NP-Hard, can be solved much more efficiently.

Specifically, Mixed-Integer Linear Programming (MILP) is the class of MIP problems 
whose objective and constraints are linear, i.e., 

 minimize cT x,  (4)

 subject to Dx ≤ d,  (5)

 Ax ∼ b,  (6)

where c ∈ Rn, D ∈ Rm×n, d ∈ Rm, A ∈ Rk×n, and b ∈ Rk. Other classes of MIPs are 
Mixed-Integer Quadratic Programming (MIQP) problems, which minimize a quadratic 
objective function, and Mixed-Integer Quadratically Constrained Programming (MIQCP) 
problems, whose solutions are constrained to quadratic functions such that 

 minimize xT Px + cT x,  (7)

 subject to Dx + xT Qx ≤ d, ,  (8)

 Ax ∼ b,  (9)

where Q, P ∈ Rn×n are positive semi-definite matrices.

2.2 Objective functions involving p-norms

A p-norm (Boyd and Vandenberghe, 2004) is defined as

 
∥x∥p =

(∑
i

|xi|p
) 1

p

, (10)
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where p ≥ 1. Norm Minimization Problems (NMPs) are a family of optimization problems 
well-known in the literature (Boyd and Vandenberghe, 2004; Chakrabarty and Swamy, 
2019) defined as 

 minimize ∥Ax − b∥p,  (11)

 subject to x ∈ F ,  (12)

where A ∈ Rm×n, b ∈ Rm, and F  is the set of feasible solutions. For a better understand-
ing of our discussion in Sect. 4, it is particularly important to note that the argument of the 
p-norm must be of linear form. NMPs are particularly interesting because they can be trans-
formed either to a MILP, a MIQPs, or a MIQCP depending on the value of p (see Fig. 2), 
i.e., they are solvable with off-the-shelf solvers for any p.2

The most common p-norms used in the literature are p = {1, 2, ∞}( Boyd and Vanden-
berghe, 2004; Salas-Molina et al., 2023). In the case of minimizing the Manhattan norm 
(p = 1), i.e., ∥Ax − b∥1 = |A1x − b1| + · · · + |Amx − bm|, the problem can be cast as an 
MILP such that 

 minimize 1T t,  (13)

 subject to − t ≤ Ax − b ≤ t,  (14)

 x ∈ F ,  (15)

where t ∈ Rm is a vector of auxiliary variables (Boyd and Vandenberghe, 2004). In the min-
imization of the Maximum norm (p = ∞), i.e., ∥Ax − b∥∞ = maxi=1,...,m

(
|Aix − bi|

)
, 

the problem can be also cast as an MILP such that 

 minimize t,  (16)

 subject to − t1 ≤ Ax − b ≤ t1,  (17)

 x ∈ F ,  (18)

where t ∈ R is an auxiliary variable (Boyd and Vandenberghe, 2004). In addition, in the 
minimization of the Euclidean norm (p = 2), i.e., ∥Ax − b∥2, the problem can be cast as an 
MIQP by squaring the 2-norm such that 

 minimize ∥Ax − b∥2
2 = xT AT Ax − 2bT Ax + bT b,  (19)

 subject to x ∈ F .  (20)

The optimization problems involving the minimization of norms with p ̸∈ {1, 2, ∞} can 
be solved by employing the techniques discussed by Alizadeh and Goldfarb (2001, Sec-

2 The widely used optimization library CVXPY can automatically transform a NMP to the appropriate prob-
lem depending on p.

1 3



Annals of Operations Research

tion 2.3g), who show how to represent inequalities involving p-norms as MIQCP, hence 
enabling the use of off-the-shelf solvers such as CPLEX or Gurobi. Figure 2 summarizes 
the above discussion, showing the resulting optimization problems depending on the choice 
of p-norm.

Having provided the necessary background on the different optimization problems that 
appear in the rest of our paper, we now proceed, in Sect. 3, to formalize the DPP as an MIP. 
Then, in Sect. 4 we show how we transform our MIP formalization to a more manageable 
optimization problem involving a p-norm with a linear argument, as in (11).

3 Formalizing the degree planning problem as a MIP

The objective of the DPP is planning a feasible degree path (i.e., one that complies with the 
rules imposed by a university)3 for a student to maximize the level of skills required by the 
job (or a set of jobs) preferred by the student.

3.1 Basic definitions

First, we consider a sequence of semesters L = ⟨l1, . . . , ln⟩. Each semester is associated 
with a season of the year in the set Γ = {winter, spring, summer, autumn}.4 To represent 
such an association, we define function ρ : L → Γ, which assigns a season to each semester. 
We also consider a set of skills S = {s1, . . . , sw}. Then, we denote a university subject as 
unit, representing the fundamental element used to build a student’s degree plan.

Definition 3.1 (Unit) A unit is a tuple ⟨S, c, σ, γ⟩, where S ⊆ S is the set of skills that a 
student obtains when coursing the unit, c ∈ N is the number of credits rewarded to a student 
completing the unit, σ : S → [1..levmax] is a function that indicates the level for a given 
skill acquired when completing a unit (levmax denotes the maximum skill level that can be 

3 Some aspects of our model (e.g., the major definition, the precedence relations, or the credits specification 
restrictions) are based on our real-world test case. Nonetheless, it is straightforward to adapt it to other 
university curricula without changing the proposed solution method.

4 Notice that universities usually organize courses during two semesters: autumn and spring. However, some 
universities, such as the one considered in our test case, offer shorter semesters during summer vacations. 
Thus, for the sake of generality, we consider all the seasons.

Fig. 2 Subclasses of MIPs and p-norm minimization problems depending on p
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achieved) and γ : L → {⊤, ⊥} is a Boolean function that indicates whether a unit is offered 
during a given semester li( i.e., γ(li) = ⊤) or it is not offered (i.e., γ(li) = ⊥).5

Henceforth, we denote the set of all units as U ,6 We refer to the components of a unit u ∈ U  
by subscripts (e.g., Su and cu denote the skills and number of credits of unit u, while σu and 
γu refer to its skill level and offer functions).

It is common for degrees’ syllabi to have requisites to course some subjects, as students 
may be required to possess some basic knowledge before pursuing a given subject. Hence, 
we introduce precedence relationships that hold between units. Following the structure of 
the real-world syllabi, we consider two types of precedence relationships:

 ● AND: a unit requires that all its prerequisite units have been completed.
 ● OR: a unit can be undertaken by a student if at least one of its prerequisite units has 

been completed.

Formally, we capture these two types of precedence relationships as follows.

Definition 3.2 (AND precedence) The AND precedence graph is a directed acyclic graph 
(U , Eand), where Eand ⊆ U × U . If (u, u′) ∈ Eand, we say that unit u is a prerequisite of 
u′.

Definition 3.3 (OR precedence) The OR precedence between units is a function 
or : 2|U| → U . If or(U) = u′, with U ⊆ U , we say that all units in U are an OR prerequisite 
of u′.

Notice that a unit can have multiple precedence relations of both the previously defined 
types.

In addition, we consider a subset of units Ucore ⊂ U  called core units, which are man-
datory for a student during their degree. Moreover, each student must pursue at least one 
major. A major is a specialization within the degree. We formally define a major as follows.

Definition 3.4 (Major) A major is a set of units M ⊂ U  such that: (i) there is a set of core 
units M core ⊆ M  to be completed; and (ii) there is a set of eligible units Melig ⊂ M  dis-
tributed into subsets of units SMelig ⊆ Melig , such that a student has to choose a certain 
number of units nSMelig  for each SMelig .

We denote the set of all majors by M. Moreover, we introduce the notion of credits speci-
fication as a tuple ⟨cT , d⟩ where cT ∈ N is the total number of credits to complete to obtain 

5 Universities have limited resources. Hence it is reasonable to assume that not all units will be offered during 
all semesters.

6 In this work, we are taking the perspective of a single student, hence we assume that each unit that appears 
in the set U  has the capacity of hosting such a student, i.e., we do not enforce any capacity constraint. With 
minimal changes to our model, one could easily consider the problem of recommending degree plans to 
several students in which capacity constraints could be enforced straightforwardly. Nonetheless, by taking 
such a multi-student perspective, the problem would resemble more of an assignment problem of students to 
units, which is not our purpose here. For this reason, we leave this exercise out of the current paper.
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a bachelor and d ∈ N|L| is a vector containing the number of credits that a student has to 
complete during a semester.

Finally, we define the notion of job.

Definition 3.5 (Job) A job j is a tuple ⟨Sj , σ′
j⟩, where Sj ⊆ S  is the set of skills required 

to take on the job, and σ′
j : Sj → [1..levmax] is a skill requirement function defining the 

minimum level required per skill to undertake the job.

3.2 Objective of the degree planning problem

We now characterize the objective of the DPP. Specifically, the DPP aims at finding the 
degree plan whose units help a student achieve the skills required by the job(s) pursued by 
the student. Formally, we define a target as follows.

Definition 3.6 (Target) Given a set J  of jobs defined according to Definition 3.5, the target 
t ∈ N|S| is a vector such that ts represents the target level required by each skill s required 
by a job j ∈ J . Hence, ts = maxj∈J σ′

j(s). We assume ts = 0 for the skills that are not 
required.

Therefore, given a student who pursues the target t, solving the DPP amounts to finding a 
degree plan as an allocation of units to semesters, such that: (i) the skills acquired by the 
student after completing the degree plan bring them as close as possible to the target, i.e., 
the degree plan maximizes a similarity measure (job affinity) between the achieved skills 
and the skills required by the job(s), and (ii) the student is not penalized for acquiring further 
skills not required by the job(s).7 Therefore, the DPP amounts to solving

 
minimize

( ∑
s∈S

∣∣∣ min
(

max
u,l

(
σu(s) · xu,l

)
− ts, 0

)∣∣∣
p
) 1

p

, (21)

where the binary decision variable xu,l denotes whether the unit u has been scheduled or not 
during semester l, and σu(s) is the level of skill s for the unit corresponding to the variable 
xu,l. The (

∑
| · |p)

1
p  notation represents a p-norm that measures the distance between the 

vector of acquired skills and the target, where p ∈ [1, ∞] is a metric parameter.

3.3 Constraints

After defining the objective of DPP, we now specify a number of feasibility constraints 
that must be included to comply with university rules. We remark that these constraints 
are specific to the degree structure of Western Sydney University. Nonetheless, adapting 
our formalization to other scenarios and implementing additional constraints by adopting a 
similar methodology is easy. 

7 Not penalizing further skills is reasonable because degrees are conceived to provide a wider range of skills 
than those strictly required. Furthermore, from the point of view of a student, acquiring further skills than 
required is an advantage: they make the student more competitive in the market, and they are valuable to 
change or evolve their professional career.
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1. A unit cannot be scheduled more than once in a degree plan. We achieve this by defining 
a matrix B ∈ N|U|×|X| where each row corresponds to a unit u ∈ U  and each column to 
a decision variable xu,l ∈ X  such that 

 
Bu,(u′,l) =

{ 1, if u = u′,
0, otherwise,  (22)

  and by imposing the linear constraint 

 Bx ≤ 1, (23)

 where x ∈ {0, 1}|X| is the vector of decision variables, and 1 ∈ N|U| is a vector with all 
components equal to 1.

2. As mentioned in the basic definitions, some units are not offered during some semes-
ters. We fulfil such constraint by defining a diagonal matrix P ∈ N|X|×|X| where each 
row corresponds to a decision variable xu,l ∈ X  and each column to a decision variable 
xu′,l′ ∈ X  such that 

 
P(u,l),(u′,l′) =

{ 1, if u = u′ and l = l′ and γu(l) = ⊥,
0, otherwise,  (24)

  and by imposing the linear constraint 

 Px = 0, (25)

 where 0 ∈ N|P| is a null vector.
3. The degree plan has to fulfill a total number of credits. We achieve this by defining a 

vector c ∈ N|X| where each position corresponds to the number of credits assigned to 
the unit associated with variable xu,l ∈ X  such that c(u,l) = cu, and by imposing the 
linear constraint 

 cT x = cT , (26)

 where cT  is the total number of credits.
4. In addition, during each semester, we have to assign a certain number of credits. We 

achieve this by defining a matrix D ∈ N|L|×|X| where each row corresponds to a 
semester l ∈ L and each column to a decision variable xu′,l′ ∈ X  such that 

 
Dl,(u′,l′) =

{
c(u′), if l = l′,
0, otherwise,  (27)

  and by imposing the linear constraint 

 Dx = d, (28)
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 where d ∈ N|L| is a vector whose components are the total amount of credits per 
semester.8

5. Now, we introduce the constraints related to the precedence relations between units. 
As mentioned in Sect. 3.1, two types of precedence relations exist: AND and OR. 
However, we can formalize the AND precedence relation as a specific case of OR pre-
cedence, where the set of prerequisites contains one unit for each AND precedence 
relation. Consequently, we denote R as the set of all precedence relations. To formally 
code precedence relations we define matrices R, r ∈ N|R|·|L|×|X| where each row cor-
responds to a precedence relation or(U) ∈ R and a semester l ∈ L and each column to 
a decision variable xu,l ∈ X  such that 

 
R(or(U),l′),(u,l) =

{ 1, if u ∈ U and l′ > l,
0, otherwise,  (29)

 
r(or(U),l′),(u′,l) =

{ 1, if u′ = or(U) and l′ = l,
0, otherwise.  (30)

  Then, we impose 

 Rx ≥ rx. (31)

  Concretely, this linear constraint enforces assigning one or more prerequisites u ∈ U  
of unit u′ = or(U) in previous semesters than when this unit is assigned, in case u′ 
is scheduled. If u′ is not scheduled, the constraint does not enforce assigning any 
prerequisite.

6. All core units (i.e., u ∈ Ucore) must be scheduled. We achieve this by defining a matrix 
E ∈ N|Ucore|×|X| where each row corresponds to a unit u ∈ Ucore and each column to 
a decision variable xu′,l′ ∈ X  such that 

 
Eu,(u′,l′) =

{ 1, if u = u′,
0, otherwise.  (32)

  and by imposing the linear constraint 

 Ex = 1, (33)

 where 1 ∈ N|Ucore| is a vector of 1.
7. Finally, a student has to complete at least one major. To enforce this constraint, we 

define three sub-constraints. First, we guarantee the assignment of at least one major by 
imposing the linear constraint 

 1T v ≥ 1, (34)

8 Notice that (26) is self-contained in (28). However, we impose both constraints in case a user wants to 
impose a lower or upper bound threshold for constraint (28) such that dmin ≤ Dx ≤ dmax, which is a 
common real-world case. In that case, constraint (26) is needed.
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 where the auxiliary variable vM = 1 indicates that the plan will contain the require-
ments to complete major M. Then, we enforce to schedule all core units of the major we 
assign, namely M core. We achieve this by defining a matrix F ∈ N|Ucore

M |×|X|, where 
Ucore

M  denote the set of core units of all majors, and each row corresponds to a core unit 
u ∈ M core for a major M ∈ M and each column to a decision variable xu′,l′ ∈ X  such 
that 

 
Fu,(u′,l′) =

{ 1, if u = u′,
0, otherwise.  (35)

  We then define a matrix f ∈ N|Ucore
M |×|M| where each each row corresponds to a core 

unit u ∈ M core for a major M ∈ M and each column to a decision variable vM  such 
that 

 
fu,vM

=
{ 1, if u ∈ M core,

0, otherwise.  (36)

  Then, we impose the linear constraint 

 Fx ≥ fv. (37)

  Concretely, this constraint enforces scheduling core units of a major when this is 
coursed. Otherwise, the units can be undertaken, but it is not a requirement. Further-
more, we consider that major have different subsets of elective units, namely SMelig . 
By SMelig , we denote the set of elective unit subsets. In order to enforce that at least 
nSMelig  units u ∈ SMelig  are assigned, we define a matrix G ∈ N|SMelig|×|x| where 
each row corresponds to a subset of electives units SMelig ∈ SMelig  and each column 
to a decision variable xu′,l′ ∈ X  such that 

 
GSMelig,(u,l′) =

{
1, if u ∈ SMelig,
0, otherwise.  (38)

  Then, we define a vector g ∈ N|SMelig|×|M| where each row corresponds to a subset 
of electives units SMelig ∈ SMelig  and each column to a decision variable xu′,l′ ∈ X  
such that 

 
gSMelig,vM

=
{

nSMelig , if SMelig is associated with M,
0, otherwise,  (39)

 where nSMelig  is the minimum number of elective units completed per subset SMelig . 
Then, we impose 

 Gx ≥ gv. (40)

1 3
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  Concretely, this linear constraint enforces that the required number of elective units are 
scheduled if a given major M is coursed. Otherwise, elective units can be scheduled, but 
it is not a requirement.

3.4 Completed units

In our formalization discussed so far, we assume that (i) no unit had been completed and 
(ii) there were no changes in the academic curriculum along the degree plan. However, in 
practice, students might have completed some units and want to receive a new plan for the 
remaining part of their bachelor’s degree. The reasons for computing a new plan might be 
multiple: students might want to target a different desired job(s), conditions in the curricu-
lum might change, and students might need to compute a new valid degree plan (some units 
might not be offered anymore, new units might be offered, skill levels acquired by units 
might change, prerequisites of the units have changed, etc.), or the required skills for a given 
job might change. Thus, we must consider the scenario where students are in the middle of 
the degree and have completed some units. To do so, we first formally define the concept of 
a completed unit.

Definition 3.7 (Completed units) A completed unit is a tuple ⟨u, l⟩ where u is the completed 
unit and l is the semester when the unit has been completed. We denote the set of all com-
pleted units by Q.

Then, we define a matrix Q ∈ N |Q|×|X| where each row corresponds to a completed unit 
⟨u, l⟩ ∈ Q and each column to a variable xu′,l′ ∈ X  such that

 
Q(u,l),(u′,l′) =

{ 1, if u = u′ and l = l,
0, otherwise.  (41)

Finally, we consider completed units by imposing the linear constraint

 Qx = 1. (42)

As a conclusion, by combining the objective function in (21) with the collection of con-
straints (23), (25), (26), (28), (31), (33), (34), (37), (40), and (42), we obtain the following 
MIP formalization of the DPP:

 

minimize
( ∑

s∈S

∣∣∣ min
(

max
u,l

(
σu(s) · xu,l

)
− ts, 0

)∣∣∣
p
) 1

p

,

subject to Bx ≤ 1, Px = 0, cT x = cT , Dx = d,

Rx ≥ rx, Ex = 1, 1T v ≥ 1,

Fx ≥ fv, Gx ≥ gv, Qx = 1.

 (43)
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4 Solving DPP by linearizing the argument of the p-norm

We are now ready to detail our approach to solve (43). With that aim, we show how to cast 
the MIP formulation of the DPP as a NMP problem with a linear argument within a p-norm 
objective function. Specifically, our goal is to linearize the argument of the p-norm, i.e., 

min
(

maxu,l

(
σu(s) · xu,l

)
− ts, 0

)
, in the objective function of (43). This will allow us 

to solve the DPP as one of the manageable optimization problems discussed in Sect. 2.2.
In detail, we discuss how we reformulate the DPP in two steps. First, we consider the 

goal of ensuring that the skills acquired by a student are as close as possible to their target 
job(s). Hence we simplify (21) to

 
minimize

( ∑
s∈S

∣∣∣ max
u,l

(
σu(s) · xu,l

)
− ts

∣∣∣
p
) 1

p

, (44)

for the sake of clarity. Second, we consider the goal of not penalizing the acquisition of 
non-compulsory skills for the target job(s), whose objective function is (21). To address 
the first goal, we introduce a new set of auxiliary, binary decision variables ys,lev  with 
s = 1, . . . , |S| and lev = 1, . . . , levmax. Given a degree path (obtained by setting some 
decision variables xu,l to 1), setting ys,lev  to 1 indicates that the degree plan achieves at least 
level lev for skill s. Furthermore, on the one hand, we introduce a matrix of binary values 
A ∈ Nlevmax·|S|×|X| that encodes the skill levels acquired by each unit. Thus, by setting 
A(s,lev),(u,l) to 1, we indicate that if unit u is allocated to semester l, it helps a student achieve 
at least level lev for skill s (this is because σu(s) ≥ lev). Otherwise, we set A(s,lev),(u,l) to 
0. On the other hand, we introduce another matrix of binary values K ∈ N|S|×levmax·|S| to 
encode that decision variables {ys,lev | lev = 1, . . . , levmax} refer to skill s. Thus, we set 
Ks′,(s,level) to 1 when s = s′, and to 0 otherwise.

We are now ready to formulate a version of the DPP that only addresses the goal of 
selecting a degree path as close as possible to the target job(s): 

 minimize ∥Ky − t∥p,  (45)

 subject to Ax ≤ Λ · y,  (46)

 Ax ≥ Λ · (y − 1) + 1.  (47)

and also subject to the side constraints in the DPP defined in the previous section, i.e., con-
straints (23), (25), (26), (28), (31), (33), (34), (37), (40), and (42). Notice that Λ ∈ R is a 
large enough number to ensure the non-violation of constraints (Griva et al., 2009).9 Notice 
also that the introduction of constraints (46) and (47) force to set an auxiliary variable 
ys,lev  to 1 when there is some unit u scheduled during some semester l in the degree plan 
(xu,l = 1) whose completion leads to level lev for skill s (i.e., σu(s) ≥ lev); and to 0 oth-
erwise. Then, the product Ky obtains the maximum level for each skill in the degree plan.

9 To ensure this condition, it is enough to consider Λ = |X|.
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Now, the objective function above is already an p-norm with a linear argument. However, 
this formulation penalizes acquiring skills not required by the target job(s). We will address 
this issue next. We achieve this by reformulating the cost function in (45) as follows:

 minimize ∥ min(Ky − t, 0)∥p. (48)

This new formulation ensures that acquiring skills not required by the target job(s) does 
not contribute to the cost function. However, notice that we have introduced non-linearity 
in the argument of the p-norm of the objective function in (48), which we must eliminate 
to have a convex objective function. We achieve that by introducing a new set of auxiliary 
decision variables zs ∈ Z, with s = 1, . . . , |S|. Decision variable zs takes the value of the 
level shortage for skills s considering the acquired level of s thanks to a degree plan and the 
required level of s for the target job(s). Therefore, we enforce that zs is set to 0 when a given 
degree plan leads to acquiring a greater (or equal) level for skill s than required by the target 
job(s) (Kys ≥ ts). Otherwise, zs is set to difference, shortage, between acquired skills and 
required skills (Kys − ts).

With these new variables, we reformulate the objective in (48) as follows: 

 minimize ∥z∥p,  (49)

 subject to z ≤ Ky − t,  (50)

 z ≤ 0.  (51)

Notice that the argument of the p-norm in the objective function (49) is linear. Therefore, 
we are in the position of formalizing the DPP as an NMP, which considers the objective 
function (49), the constraints required by the original formulation of the DPP, and the new 
constraints added by the reformulation in this section, i.e., (46), (47), (50), (51). Formally:

 

minimize ∥z∥p,

subject to z ≤ 0, z ≤ Ky − t, Ax ≤ Λ · y,

Ax ≥ Λ · (y − 1) + 1, Bx ≤ 1, Px = 0,

cT x = cT , Dx = d, Rx ≥ rx, Ex = 1,

1T v ≥ 1, Fx ≥ fv, Gx ≥ gv, Qx = 1.

 (52)

Although the formulation above uses four different sets of decision variables (x, v, y and 
z), we remark that our primary decision variables are x, which are the ones employed to 
build a degree plan.

Since (52) is an NMP, we can solve it with the solution techniques discussed in Sect. 2.2.

4.1 Equivalence between MIP and NMP

Having presented such a non-trivial linearization of our optimization problem, we now pro-
vide the formal proof of the equivalence of the initial MIP (43) and the final NMP (52). To 
do so, we must prove that: (i) the formalization in (52) does not change the space of feasible 
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solutions of x; and (ii) the ordering of each pair of feasible solutions in both problems is 
the same. The latter statement is necessary to guarantee that our transformation preserves 
optimal solutions.

To prove statement (i), we formally define the space of feasible solutions.

Definition 4.1 (Space of feasible solutions) The space of feasible solutions F  is the set of 
points within the domain of the optimization problem for which all the constraints are satis-
fied (Boyd and Vandenberghe, 2004).

Formally, for the formalization (43) of DPP, we define F  as follows.

 
FC =

{
x ∈ {0, 1}|X| | x satisfies C

}
, (53)

where C is the set of constraints (23), (25), (26), (28), (31), (33), (34), (37), (40), and (42). 
To prove (ii), we demonstrate that both objective functions are equivalent, which is a suf-
ficient condition to guarantee (ii).

For clarity, we proceed in two steps as done in Sect. 4. We first demonstrate that the for-
malization (45) is equivalent to (44). Secondly, we demonstrate that the formalization (49) 
is equivalent to (48).

Step 1. First, we introduce Lemma 4.1.

Lemma 4.1 The space of feasible solutions of problems (44) and (45) are the same.

Proof Notice that the final problem (45) considers the set of constraints in the initial prob-
lem C plus constraints (46) and (47). For the sake of simplicity we use the notation C′ for 
the set of constraints

 C′ = C ∪ {Ax ≤ Λ · y , Ax ≥ Λ · (y − 1) + 1}.

Formally, we define the space of feasible solutions of problem (45) as

 
FC′ =

{
x ∈ {0, 1}|X| | x satisfy C′

}
. (54)

Due to the fact that problem (45) considers two additional constraints, FC′ ⊆ FC  is ensured. 
Now, we evaluate whether constraints (46) and (47) make that FC′  contains less feasible 
solutions than FC . Therefore we examine constraints (46) and (47), which can be expressed 
as

 

∑
u∈Us,lev

∑
l∈L

xu,l ≤ Λ · ys,lev,  (55)

 

∑
u∈Us,lev

∑
l∈L

xu,l ≥ Λ · (ys,lev − 1) + 1,  (56)
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for all s ∈ S; lev = 1, . . . , levmax, where Us,lev ⊆ U  is the set of units u that provides 
skill s such that when u is completed, the student acquires a skill level higher or equal than 
lev, i.e., σu(s) ≥ lev. Thus, 

∑
u∈Us,lev

∑
l∈L xu,l > 0 indicates that after completing the 

considered degree plan, a student has acquired at least level lev for skill s. We remark that 
ys,lev ∈ {0, 1} is a binary auxiliary variable which is set to 1 only when the degree plan has 
scheduled a unit whose completion leads to at least level lev for skill s. Considering that ∑

u∈Us,lev

∑
l∈L xu,l ∈ [0..Λ], we derive (55) and (56) for both possible values of ys,lev  

such that

 

∑
u∈Us,lev

∑
l∈L

xu,l ≤
{ 0, if ys,lev = 0,

Λ, if ys,lev = 1.

∑
u∈Us,lev

∑
l∈L

xu,l ≥
{ 1 − Λ, if ys,lev = 0,

1, if ys,lev = 1.

for all s ∈ S; lev = 1, . . . , levmax. As we can see, for any value 
∑

u∈Us,lev

∑
l∈L xu,l 

there exists only one value of ys,lev  that satisfies the constraints. Hence, problem (33) 
does not lose solutions when constraints (46) and (47) are added.10 Thus, we conclude that 
FC′ = FC .  □

Now, we prove (ii): that the ordering of each pair of feasible solutions in both problems is 
the same. To do so, it is sufficient to prove Lemma 4.2.

Lemma 4.2 The objective function (45) is equivalent to (44), i.e.

 
∥Ky − t∥p =

( ∑
s∈S

∣∣∣ max
u,l

(
σu(s) · xu,l

)
− ts

∣∣∣
p
) 1

p

Proof First, we develop (45):

 

∥Ky − t∥p =
( ∑

s∈S

∣∣∣Ksy − ts

∣∣∣
p
) 1

p

=
( ∑

s∈S

∣∣∣
levmax∑
lev=1

ys,lev − ts

∣∣∣
p
) 1

p

.

From the discussion in Proof 4.1, we remark that ys,lev  can only be set to 1 when at least 
one unit that delivers level lev (or higher) for skill s is recommended, namely is part of the 
solution. For example, if there is planned a unit u that delivers level i for skill s (and no 
other scheduled unit gives a higher level for skill s), i.e., σu(s) = i, then ys,lev = 1, for 
lev = 1, . . . , i; and ys,lev = 0, for lev = i + 1, . . . , levmax. Hence, 

∑levmax

lev=1 ys,lev = i for 
skill s, which indicates that at least there is a unit u which σu(s) = i is part of the solution. 
If we consider all scheduled units in the degree plan instead of only a unit, 

∑levmax

lev=1 ys,lev  

10 Notice that when 
∑

u∈Us,lev

∑
l∈L xu,l > 0, only ys,lev = 1 satisfies constraints (55) and (56). Oth-

erwise, when 
∑

u∈Us,lev

∑
l∈L xu,l = 0, only ys,lev = 0 satisfies constraints (55) and (56).
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is equivalent to obtaining the maximum level of skill s of all scheduled units, which can be 
encoded as maxu,l

(
σu(s) · xu,l

)
. Thus,

 

∥Ky − t∥p =
( ∑

s∈S

∣∣∣
levmax∑
lev=1

ys,lev − ts

∣∣∣
p
) 1

p

=
( ∑

s∈S

∣∣∣ max
u,l

(
σu(s) · xu,l

)
− ts

∣∣∣
p
) 1

p

.

 □

Then, we can introduce Theorem 4.3.

Theorem 4.3 Problems (44) and (45) are equivalent.

Proof The proof is immediate by applying Lemmas 4.1 and 4.2.  □

Step 2. Now, we discuss that both (48) and (52) formalizations are equivalent. First, we 
remark that the space of feasible solutions F  of formalization (48) is equal to the one of 
(45). Second, we define the space of feasible solutions FC′′  of formalization (52) such that

 
FC′′ =

{
x ∈ {0, 1}|X| | x satisfy C′′

}
, (57)

where C′′ is the set of constraints such that

 C′′ = C′ ∪ {z ≤ 0 , z ≤ Ky − t}.

Then, we introduce Lemma 4.4.

Lemma 4.4 The space of feasible solutions of problems (48) and (52) are the same.

Proof Thus, we must evaluate whether constraints (50) and (51) make FC′′  contain less 
feasible solutions over auxiliary variable y. Note that both constraints can be expressed as

 
zs ≤

levmax∑
lev=1

ys,lev − ts,  (58)

 zs ≤ 0,  (59)

∀ s ∈ S. From (59) we remark that we encode z as a non-positive vec-
tor, i.e., z ∈ Z−|S|. From the discussion in Proof 4.1, we notice that 
0 ≤

∑levmax

lev=1 ys,lev ≤ levmax. Notice that from Sect. 3 we remark that 0 ≤ ts ≤ levmax. 
Hence, for any value −levmax ≤

∑levmax

lev=1 ys,lev − ts ≤ levmax there exist a value zs that 
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satisfies the constraints. Thus, the formalization (52) does not lose feasible solutions when 
adding (50) and (51), i.e., FC′′ = FC′ = FC .  □

Having proved Lemma 4.4 and guaranteed (i), we now move to Lemma 4.5.

Lemma 4.5 The objective function (48) is equivalent to (49), i.e.,

 ∥ min(Ky − t, 0)∥p = ∥z∥p.

Proof To prove so, we examine both the constraints (58), (59) and the objective func-
tion (49). We remark that z ∈ Z|S| is a non-positive set of auxiliary variables due to 
constraint (59). However, the domain of z can be even more restricted by (58) when ∑levmax

lev=1 ys,lev − ts < 0. In addition, we know that we aim at minimizing the absolute val-
ues of vector z to a power. Therefore, z variables’ values will be the maximum values of 
their domain restricted by constraints (58) and (59). Formally:

 

zs =
{ ∑levmax

lev=1 ys,lev − ts, if
∑levmax

lev=1 ys,lev − ts < 0,
0, otherwise,

= min

(
levmax∑
lev=1

ys,lev − ts, 0

)

= min(Ksy − ts, 0).

∀ s ∈ S. As we have shown, both objective functions are equivalent and, consequently, (ii) 
is guaranteed.  □

Finally, we can prove Theorem 4.6.

Theorem 4.6 Problems (43) and (52) are equivalent.

Proof By direct applications of Lemmas 4.1, 4.2, 4.4 and 4.5.  □

5 Experimental analysis

The main objective of this section is to show the potential of our approach as a valuable 
decision-supporting tool for students and curriculum designers. To this end, we consider 
four scenarios we deem representative and realistic use cases for our approach. First, we 
focus on a student at the beginning of their degree who wants to plan the best path to achieve 
the skills required by some desired job(s). Secondly, we consider a student who wants to 
identify the jobs that are more attainable in the job market after completing the degree. 
Thirdly, we focus on the case when a student may be uncertain about the desired target job, 
hence they specify a set of multiple candidate jobs to receive a broader recommendation 
by our algorithm. Finally, we consider a student who has already started their degree and 
requests recommendations to move ahead. The student will request degree plans that lead to 
maximizing the acquisition of the skills required by some desired job.
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5.1 Dataset

Our use cases employ a real-world dataset of skills, i.e., the SFIA skill framework (British 
Computer Society, 2021). We consider version 8 of this dataset (with 121 skills), adopted 
by governments and institutions in Australia,11 the USA, the UK, and the EU to define 
jobs and positions that require a certain level of professional skills. As to degree data, we 
consider a real-world bachelor’s degree, i.e., the Bachelor of Information and Communica-
tion Technology (ICT) of the Western Sydney University,12 which involves |U| = 82 units 
(Ucore = 16 of which are core units) and 7 different majors, together with the corresponding 
precedence constraints among units. Importantly, our dataset contains the courses in the syl-
labus of the Bachelor of ICT together with information on the skills acquired when complet-
ing each course. For that, we tasked university experts with associating, by hand, each unit 
with the skills in the SFIA framework that a student would acquire after completing the unit. 
Moreover, experts were asked to set the level of each skill acquired when completing a unit. 
Each unit rewards a student with 10 credits (i.e., cu = 10 ∀u ∈ U). To obtain a Bachelor of 
ICT, a student must obtain cT = 240 credits, completing 40 credits each semester. There-
fore, a student completes a bachelor’s degree in 6 semesters. Finally, we consider a dataset 
of 118 jobs obtained from the real-world APS Digital Career Pathways dataset (Australian 
Digital Transformation Agency, 2019), which specifies the level of SFIA skills required by 
each job.

5.2 Implementation

Even though our model can be used with any p-norm, following the discussion by Salas-
Molina et al. (2023, Section 6), we restrict our attention to p ∈ {1, 2, ∞}, since those are the 
values that can be better semantically characterized. Specifically, the optimal solution for 
p = 1 aims to minimize the total (or, equivalently, the average) residual ri = zi, while for 
p = 2 we aim to minimize the standard deviation of the residual. Finally, the optimal solu-
tion for p = ∞ aims to minimize the maximum residual. Among the three above-mentioned 
values of p, we argue that p = 1 is the best-suited for our cases since we aim to reduce the 
total gap between the acquired skills and those required by the target job. For p = 1, the 
DPP amounts to a MILP. We remark that solving DPP for different values of p is indeed 
technically possible, but such an exercise has been left out for the sake of simplicity.

We implement and solve our problem in (52) with CPLEX v22.1.0.13 We run our tests 
on a machine with an 8-core 1.00GHz CPU and 16.0GB of RAM. The average runtime for 
computing the optimal solution is 0.025 ± 0.001 seconds in all our experiments for p = 1. 
We also evaluate the computational benefit of solving the initial problem in (43) to solving 
our transformed problem in (52). We do so by comparing the runtime to solve the problem 
in (52) with the ILOG CPLEX solver to the runtime required to solve the original problem 
in (43) with the ILOG CP solver. We observe that while the optimal solution is computed 
in 0.025 seconds on average with our approach, the average runtime using the CP solver is 
10.4 ± 2.2 seconds, i.e., our approach outperforms the CP solver by 2 orders of magnitude.

11  h t t p s :  / / s fi   a - o n l i  n e . o  r g / e n  / t o o l  s - a n d -  r e s o  u r c e s  / s t a n  d a r d - i  n d u s  t r y - s k i l l s - p r o fi  l e s.
12  h t t p s :   /  / h b o o  k . w e s t e r  n s y d n  e  y . e  d  u .  a u /  p r o g  r  a m s  / b a c h e   l o r - i  n f o r  m a  t i  o n - c o m  m u n i c  a t  i o  n s - t e c h n o l o g y /.
13 Our implementation is available at https://github.com/RogerXLera/DegreePlanning.
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At this point, is important to mention that computing degree plans in real time has value 
from an application perspective. Indeed, we conceive our DPP as part of an interactive soft-
ware application for students and curriculum designers. Therefore, such an application must 
rapidly respond to requests issued by students and curriculum designers.

5.3 Use case: beginning-of-degree planning

In our first use case, we consider students at the beginning of their degree (i.e., Q = ∅); thus, 
they need a plan for all semesters of their degrees. Therefore, the goal of our first experi-
ment is to show the degree paths computed by our approach depending on the skills required 
by two selected example jobs: Penetration Tester (a highly-specific and technical job) and 
Software Engineer (a more general job). Table 1 shows the elective units of the computed 
degree paths coursed in each semester,14 where the numbers are semesters’ labels and “Au” 
and “Sp” stand for Autumn and Spring semesters, respectively. Our results show that, for the 
Penetration Tester job, the Cybersecurity major is planned to be coursed as the one that best 
matches the skills required. For the Software Engineer job, our approach plans to pursue the 
Mobile Computing major. Table 2 shows the skills acquired in each of the above-mentioned 
degree paths and the units providing such skills after completion. For both degree paths, we 
see that there are units related to the major that provide the required skills, justifying the pur-
suit of that major. For the Penetration Tester degree path example, we show that the Ethical 
Hacking Principles and Practices unit, which is compulsory to complete the Cybersecurity 

14 We do not show the degree path with the core units for the sake of brevity.

Table 1 Elective subjects computed for the degree plans targeting Penetration Tester and Software Engineer 
jobs
Penetration Tester Major: Cybersecurity
Semester Unit Unit type
2 (Sp) Object Oriented Programming Elective
3 (Au) Data Structures and Algorithms Major
4 (Sp) Network Security Major
5 (Au) Discrete Mathematics Elective
5 (Au) Ethical Hacking Principles and Practice Major
6 (Sp) Computer Organisation Major
6 (Sp) Information Security Major
6 (Sp) Formal Software Engineering Elective
Software Engineer Major: Mobile 

Computing
Semester Unit Unit type
2 (Sp) Social Computing Elective
3 (Au) Data Structures and Algorithms Elective
3 (Au) Discrete Mathematics Elective
4 (Sp) Information Systems Deployment and Management Major
4 (Sp) Mobile Applications Development Major
5 (Au) Wireless and Mobile Networks Major
6 (Sp) Network Security Major
6 (Sp) Formal Software Engineering Elective
Units within both degree plans are in bold
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major, is the only unit that gives 3 out of 4 levels of the Penetration Testing skill. In addition, 
there are elective units that help students to achieve the required level for some skills. It is 
the case for the Formal Software Engineering unit, which provides students with level 3 of 
the Software Design skill and level 4 of the Methods and Tools skill. Other elective units are 
planned since they are the prerequisite of other electives. For instance, Discrete Mathemat-
ics is a prerequisite of Formal Software Engineering.

In such examples, a student would achieve almost all required skills. However, we 
observe that some skills required by more multidisciplinary jobs cannot be covered. This 
result is expected due to the lack of units that can provide some skills or their required 
level. Indeed, it is reasonable to expect that, for some technical and multidisciplinary jobs, 
students might not reach the required level of skills after completing their bachelor’s. None-
theless, our approach allows students to start their professional careers in the best position 
based on the curriculum offered by the university.

5.4 Use case: most attainable jobs on the market

In our second use case, the student’s goal is to identify the degree plans (computed by our 
algorithm) whose completion leads to the most attainable jobs on the market. For this pur-
pose, we first consider a job affinity function that measures the achieved skills with respect 
to the ones required by the target job(s).

Table 2 Skills required by the considered jobs and their Required Level (RqL), along with the Achieved 
Level (AcL) after completing the computed degree path and the unit that provides such skill level
Penetration Tester (α = 93%)
Skill RqL AcL Unit
Systems Design 4 4 Professional Experience
Software Design 3 3 Formal Software Engineering
Programming 3 3 Object Oriented Programming &

Data Structures and Algorithms
Penetration Testing 4 3 Ethical Hacking Princ. and Practice
Software Engineer (α = 85%)
Skill RqL AcL Unit
Porting 4 3 Mobile Applications Development 

&
Web Systems Development

Testing 3 2 Mobile Applications Development 
&
Web Systems Development

Methods and Tools 4 4 Formal Software Engineering
Systems Integration 5 3 Info. Systs. Depl & Manag. &

Web Systems Development
Systems Design 4 4 Professional Experience
Software Design 3 3 Formal Software Engineering
Programming 4 4 Mobile Applications Development
Units in black are core units. Units in italic are electives that belong to the major program selected to 
complete by the approach. Units in bold are electives that do not belong to the major program selected by 
the approach
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Definition 5.1 (Job affinity) Given a target vector of skills t and a degree plan encoded by 
the decision variable z, we define the job affinity function α(t, z) as

 
α(t, z) = 100 · ∥t + z∥1

∥t∥1
. (60)

We define α in terms of z, which measures the shortage between the achieved level of 
skills and the target t. Hence, when α = 100%, the student has fully achieved the desired 
job requirements. On the other hand, when α = 0%, the student does not possess any skills 
out of those required by the job.

Given the above-defined job affinity function, we solve the DPP for all the jobs in our 
dataset and compute the corresponding job affinity values. Notice that the capability of our 
approach of solving the DPP within seconds is fundamental for this kind of analysis, for 
which we must solve the DPP multiple times (as many as jobs). Figure 3 reports the histo-
gram of job affinity values. Results show that for almost 10% of target jobs (11 out of 118 
target jobs), the optimal degree paths achieve a job affinity greater than 90%. Furthermore, 
for 58% of the jobs, the computed degree paths achieve job affinities greater than 50%. In 
more detail, for 8 jobs, the job affinity for their optimal degree plans is 100%, i.e., students 
acquire all the skills required by the jobs when completing the recommended optimal degree 
plans.

Furthermore, we illustrate the evolution of skills learned along semesters in Fig. 4. We 
show how job affinity progressively increases over semesters. In more detail, by the end of 
the third semester (half of the degree plan), students acquire 40% of the required skills on 
average. Moreover, once the degree plan is completed, the average job affinity is 56% as 
shown in Fig. 5. Therefore, 29% of job affinity value is gained in the second part of a degree 
plan, where most of the elective units are completed. We argue that most of the skills not 
acquired can not be learned with any of the units of the degree curriculum. This is usual 
since some jobs require high-level skills that can only be acquired with additional special-
ized education or professional experience.

To better understand and illustrate the value of electives, in Fig. 5, we show in greater 
detail the job affinity values for the degree plans computed considering each job in our data-

Fig. 3 Histogram of job affinities for all jobs. We report the distribution of the job affinity values in two 
frequency metrics: the absolute number of jobs (left axis), and the percentage of jobs (right axis)
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set. Specifically, we plot the job affinity values considering (i) degree plans without elective 
units (considering only core and major units), (ii) whole degree plans (with electives), and 
(iii) all units from the syllabus (all u ∈ U). Notice that elective units significantly increase 
the job affinity values of degree plans. In detail, the average job affinity without consider-
ing electives is 41.5%, while the average job affinity is 56.2%. Thus, elective units lead to 
a 26% relative increase in job affinity. Furthermore, the recommended degree plans have 
the highest job affinity values possible in most cases since coursing all available courses in 
the degree syllabus does not significantly increase job affinity. This indicates that most of 
the skills not acquired in the recommended degree plans can not be learned with any of the 
units of the degree curriculum. As mentioned above, this is usual since some jobs require 

Fig. 5 Cactus plot showing the job affinity for the degree plan of each target job. We order degree plans 
from the lowest job affinity to the highest on the x-axis. We plot the job affinity considering degree plans 
without the elective units (in blue); whole degree plans (in brown); and all units from the degree syllabus, 
U( in red)

 

Fig. 4 Evolution of the job affinity during the degree plan. The shadowed region represents the standard 
deviation of the job affinity for the different target jobs
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high-level skills that can only be acquired with additional specialized education or profes-
sional experience.15

We believe these analyses could be useful for students and curriculum designers. On the 
one hand, students can identify which jobs are more aligned with their degree, helping them 
better understand whether it is appropriate for the professional career they aim to pursue. 
Moreover, students can track their skill acquisition during their studies. On the other hand, 
curriculum designers can evaluate which portion of the job market is “covered” by the 
degree in terms of professional skills and, if deemed appropriate, adjust the offered units in 
a principled way.

5.5 Use case: multi-job target

Our third use case focuses on a scenario in which a student is uncertain about the specific job 
to pursue but has several potential candidate jobs in mind. Along these lines, our algorithm 
could benefit the student since it could recommend a joint degree path to cover the profes-
sional skills required by such potential jobs. Nonetheless, such a joint degree plan aiming 
at several target jobs at once could provide, for each individual job, a lower skill coverage 
compared to the degree paths specifically aimed at each job separately.

Thus, this experiment aims to quantify the skill coverage of joint degree plans with 
respect to individual degree plans. Hence, the larger the skill coverage of a joint degree 
plan relative to such individual plans, the better, because it is closer to the best possible 
individual plans.

To quantify the skill coverage of joint degree plans, we first define an auxiliary metric 
to compute the skill coverage of each job in a candidate job set given a joint degree plan. 
Recall that a degree plan (as well as a joint degree plan) is characterized by a set of decision 
variables. Along these lines, we use the vector z encoding the computed plan to determine 
the skill coverage of a joint degree plan. In detail, zs ∈ Z− encodes the level shortage of 
skill s of a joint degree plan, i.e., the difference between the target skill level ts and the skill 
level that would be achieved by following the plan.

Definition 5.2 (Single Job Affinity (SJA)) Given a candidate job j = ⟨Sj , σ′
j⟩, a candidate 

job set J  such that j ∈ J , a target vector of the candidate job set required skills t, and a 
joint degree plan for the jobs in J  whose skill level shortage is encoded by the decision vari-
able vector z, we define the Single Job Affinity of job j for the joint degree plan as:

 
αj,J (t, z) = 100 ·

∑
s∈Sj

min(σ′
j(s), ts + zs)∑

s∈Sj
σ′

j(s)
, (61)

where ts + zs is the achieved level of skill s after completing the joint degree plan.
After that, we define the notion of Relative Job Affinity to compute the skill coverage of a 
job in a joint degree plan with respect to an individual degree plan.

15 For example, the role of “Software Engineer” requires level 5 of skill “Systems Integration” (see Table 2). 
According to the SFIA, such a high level indicates that “the employee is capable of providing authoritative 
guidance in such skill and is accountable for delivering significant work outcomes”. Therefore, such a skill 
level can only be acquired after years of professional experience.
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Definition 5.3 (Relative Job Affinity (RJA)) Given a candidate job j ∈ J , the target vector t 
of the skills required by the candidate jobs in J , the skill level shortage z of a joint degree 
plan for J , the target vector t̂j  of the skills required by job j, and the skill level shortage 
ẑj  of an individual job degree plan for job j, we define the Relative Job Affinity of the joint 
degree plan with respect to the individual degree plan as

 
RJA(j, t, z, t̂j , ẑj) = 100 · αj,J (t, z)

αj(t̂j , ẑj)
, (62)

where αj,J (t, z) is the SJA of job j and αj(t̂j , ẑj) is the job affinity of job j individual job 
degree plan.16

Given a set of candidate jobs and a joint degree plan for it, we quantify its skill coverage in 
three steps. First, we compute the degree plan for each job in the candidate job set. Second, 
we compute the RJA for each job in the candidate job set. Finally, we need a global measure 
to quantify the skill coverage of a joint degree plan with respect to all the individual plans. 
Thus, we aggregate the candidate jobs’ RJAs to obtain the skill coverage of the joint degree 
plan. To this end, we define the Average RJA as follows.

Definition 5.4 (Average Relative Job Affinity (ARJA)) Given a candidate job set J , the target 
vector t of the skills required by the candidate jobs in J , the skill level shortage z of a joint 
degree plan for J , the set of target vectors (denoted as T̂ ) of the skills required by each job 
j ∈ J , and the set of skill level shortages (denoted as Ẑ) of an individual job degree plan 
for each job j ∈ J , we define the Average Relative Job Affinity of the joint degree plan as

 
ARJA(J , t, z, T̂ , Ẑ) = 1

|J |
·
∑
j∈J

RJA(j, t, z, t̂j , ẑj) = 100
|J |

·
∑
j∈J

αj,J (t, z)
αj(t̂j , ẑj)

. (63)

Once we have defined our metric for skill coverage of a joint degree plan, we describe our 
experimental setting. We aim to quantify how well a joint degree plan covers a student’s 
requirements as their uncertainty increases, assuming that if students are more uncertain, 
they will specify more candidate jobs. Thus, we consider up to |J | = 10 for cases with 
maximum uncertainty, and we refer to cases with minimum uncertainty when |J | = 2. To 
compute the ARJA for different sizes of candidate job sets, we solve the DPP for 4500 
unique candidate job sets of size |J | = 2, 3, . . . , 10, i.e., 500 combinations of jobs per set 
size. Notice that computing the degree plan for all the possible job combinations is impos-
sible because of the so-called “Curse of Dimensionality”. For this experimental setting, 

the total number of combinations is 
∑10

k=1

( 118
k

)
= 1.07 × 1014. Therefore, given the 

impossibility of computing the degree plan due to the unmanageable number of possible 
combinations of jobs, the capability of our approach to compute degree plans in real time 
is crucial.

Figure 6 shows how the skill coverage decreases as the student’s uncertainty increases. 
In detail, we notice a decrease in the ARJA as the number of target jobs increases, i.e., as the 
number of target jobs (i.e., the student’s uncertainty) increases. We do not plot the statistical 
error since it is negligible (≈ 0.2%). Overall, even in the case with maximum uncertainty, 

16 Notice that RJA ∈ [0, 100].
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i.e., the case where candidate job sets contain 10 jobs, the ARJA is high, i.e., 10.5% decrease 
with respect to no uncertainty about their target job (i.e., |J | = 1). This shows that the joint 
degree plans that DPP computes are valuable recommendations for a student despite uncer-
tainty. Specifically, for instances considering up to 4 target jobs, the average ARJA is 95%. 
Moreover, the average ARJA decreases below the 90% exclusively for candidate job sets 
with a big number of jobs, i.e., |J | ≥ 9. Therefore, when a student is uncertain about their 
desired career path, our approach can compute degree paths for multiple target jobs with 
a minimum decrease in skill coverage with respect to the case where students know their 
desired job. This is due to the fact that, in our dataset, different jobs may require common 
skills, as well as to the fact that units may provide skills that are required by multiple jobs.

5.6 Use case: mid-degree planning

In our fourth use case, we consider that a student has already started their bachelor’s degree 
and they have already completed some units. Henceforth, we employ our approach to plan a 
path for the remaining part of their degree. We consider 12 “reference” degree paths based 
on the recommended ones in the bachelor’s syllabus. Then, for each reference degree path, 
we consider that there is a student who partially completed such degree path (i.e., 1 semes-
ter, 2 semesters, etc.). We then complete each partial path with our approach and calculate 
the job affinity increase by comparing the computed path with the reference one. We ana-
lyzed the 20 jobs with the highest job affinity for each “reference” degree path.

Figure 7 shows the increase of the job affinity’s mean and standard deviation across all 
the above-mentioned experiments. Results indicate that our approach can indeed provide 
an improvement with respect to the reference path indicated by the bachelor’s syllabus. We 
also observe that the maximum increase is obtained when our approach is employed early 
in the degree path. This result is expected since, in this case, the optimization is less con-
strained, thus it can reach a higher job affinity. Moreover, we observe a sharp drop in the job 
affinity increase when students complete half of their degree. As expected, choosing a target 
during the first half of the degree is crucial for skill achievement.

Fig. 6 Average RJA along the size of the set of target jobs
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6 Real-world applicability of our approach

6.1 Current deployment

To showcase the applicability of our approach to real-world university systems, we devel-
oped JobIQ17 based on the approach proposed in this paper. Such a system recommends 
Western Sydney University degrees based on students’ career preferences. The website 
informs students which skills they acquire during their study (as shown in Fig. 8) and which 
job markets they can target after graduation. Furthermore, it shows them current job offers 
from the countries where such a university is present, i.e., Australia, New Zealand, and 
Indonesia, including financial prospects or demanding employers. This approach provides 

17 https://www.jobiq.com.au. Last Consulted: February 2025.

Fig. 8 Screenshot of JobIQ showing the skills required by the ICT Business and Systems Analysts job and 
which skills are acquired after completing the Bachelor’s Degree in ICT

 

Fig. 7 Evolution of job affinity increase along semesters
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an idea of what career prospects there are for our graduates. Therefore, JobIQ has become 
one of the main recruitment tools for our hiring strategy.

6.2 Extending our DPP model to other curricula

Even though our formulation discussed in Sect. 3 involves some aspects specific to the 
Bachelor’s Degree in ICT from Western Sydney University (such as the major requirements 
in Sect. 3.1), we will now discuss how it can be adapted to other common scenarios by 
means of additional linear constraints.

As a first example, it is common for students to be forced to enroll in a minimum num-
ber of credits each semester. Furthermore, to avoid students suffering from an excessive 
workload, degree curricula usually specify a maximum number of credits (Castro and 
Manzano, 2001). In such cases, we would replace constraint (16) by the set of constraints 
dmin ≤ Dx ≤ dmax, where dmin, dmax ∈ N|L| are vectors whose components are the 
minimum and maximum number of credits allowed to enroll per semester. Furthermore, it is 
common to require that students complete a minimum number of credits to graduate instead 
of allowing them to just enroll in a given number of credits. In such case, we would modify 
constraint (14) such that cT x ≥ cT .

Another common scenario is when academic curricula require to complete a given num-
ber of “basic-level” units to access “higher-level” units. In such a case, we formalize such a 
restriction with a new type of prerequisite constraint that enforces having completed a cer-
tain number of basic-level units before enrolling in a higher-level course. We define a subset 
of units containing the basic-level units B ⊂ U  and a second subset of units containing the 
higher-level units H ⊂ U . Then, we impose a set of linear constraints such that

 

∑
u∈B

l−1∑
i=1

xu,i ≥ nh · xh,l, for all h ∈ H, l ∈ L,

where nh is the number of basic-level units to be completed to enroll in unit h.
Moreover, some institutions require students to complete special courses (or a certain 

number) to finish their bachelor’s degree. For example, in the US, some degrees require the 
completion of “Liberal Education” courses (Roth, 2014). In such a case, we define a special 
subset of units I ⊂ U . Then, we impose a set of linear constraints such that

 

∑
u∈I

∑
l∈L

xu,l ≥ nI

where nI  is the number of special units to be completed to finish a bachelor’s degree.

7 Related work

Historically, Operational Research (OR) has proven to be a very useful tool for the solution 
of several challenges related to education (Johnes, 2015), especially to help governments in 
the allocation and planning of the resources aimed at the education of the citizens. OR has 
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also been used to solve scheduling problems such as High School Timetabling, University 
Course Timetabling and Audit Scheduling (Brucker and Knust, 2000), by formalizing them 
as an RCPSP (Brucker et al., 1999; Hartmann and Briskorn, 2022). RCPSP is a well-known 
NP-hard problem (Blazewicz et al., 1983) that consists of activities that must be scheduled 
within a planning horizon to meet precedence and resource constraints and to minimize the 
project’s duration, i.e., the makespan.

While there exist similarities between DPP and RCPSP,18 the two are fundamentally 
different problems, preventing us from employing any of the algorithms proposed in the 
above-cited literature. Firstly, DPP and RCPSP have different optimization objectives: the 
goal of DPP is obtaining the set of skills that best matches the student’s job preferences, 
whereas the main goal of the RCPSP is to minimize the makespan. In other words, in the 
DPP formalization, the student or the university set the available time they count on com-
pleting the degree, but minimizing such a time is not the optimization objective, in contrast 
with RCPSP. Secondly, in the DPP, not all units must be scheduled since the goal is selecting 
the ones that best fit with the skill set required by the student’s job preferences, in contrast 
with the RCPSP for which all activities must be scheduled. Finally, DPP’s constraints are 
specific to the university-course context and cannot be accommodated within the RCPSP 
framework.

Another closely related problem is the Balanced Academic Curriculum Problem (BACP), 
which is the planning problem aiming at assigning a set of courses from an academic cur-
riculum to a set of teaching periods (e.g. semesters, trimesters, etc.). However, unlike the 
DPP —whose goal is to maximize the affinity between the skills acquired by the student and 
the requirements by the desired job—, the BACP’s goal is to balance the workload of a plan 
among teaching periods while meeting the constraints of the academic curriculum.

The BACP has received attention in the last decades since it is a key task universi-
ties tackle every academic year. Castro and Manzano (2001), Castro et al. (2007) initially 
propose both Integer Programming (IP) and Constraint Programming (CP) models that 
minimize the maximum workload per teaching period, hence balancing the academic work-
load of the academic curriculum. Hnich et al. (2002, 2004) combine IP and CP techniques 
to build a hybrid approach that efficiently solves the BACP. Lambert et al. (2005, 2006) 
propose a hybrid algorithm that integrates a genetic algorithm with CP techniques to out-
perform state-of-the-art optimization solvers. Moreover, Monette et al. (2007) define new 
balance criteria as objective functions of the BACP. Then, they solve the BACP employing 
a set of local search strategies and constraint programming techniques. Di Gaspero and 
Schaerf (2008), Chiarandini et al. (2012), and Ceschia et al. (2014) propose a generalization 
of the BACP. They consider that not all courses must be completed in a curriculum since 
students can choose which courses to take. In addition, they allow professors to set their 
preferences on which teaching periods they give their courses. Ünal and Uysal (2014) pro-
pose to formalize the BACP as a Generalised Quadratic Assignment Problem. They model 
such a problem with the aim of planning related courses as closely as possible in the degree 
plan. Similarly, Slim et al. (2015) propose to schedule the most crucial courses as early as 
possible in the plan. More recently, Christou et al. (2024) propose an Integer Linear Pro-
gramming (ILP) formalization to plan degrees for the American College of Greece. How-
ever, their formalization has different optimization goals with respect to the generalization 

18 University units can be thought as activities with precedence constraints. Moreover, the sequence of semes-
ters is analogous to the planning horizon, and credits can be considered as resources.
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of the BACP (Ceschia et al., 2014). Their approach to compute degree plans has three goals: 
(i) minimize the total duration of a bachelor’s degree, (ii) balance the courses’ difficulty in 
each semester, and (iii) maximize the expected average score during the degree. Finally, 
Heileman and Zhang (2024) propose a related problem, the so-called Optimal Learning 
Outcome Assignment (OLOA) problem. Such a problem consists of assigning learning out-
comes, i.e., learning concepts that students must acquire, into the courses of an academic 
curriculum. Such a problem aims to reduce the difficulty of the curriculum by optimizing 
the arrangement of learning outcomes.

Even though the BACP is a problem closely related to the DPP, our goal is different from 
all the above-mentioned approaches. By addressing DPP, our work focuses on maximizing 
the required skills for a student’s desired job. Moreover, we introduce new realistic con-
straints that have not been modeled in the literature so far, such as the introduction of majors 
in a degree curriculum and their related restrictions to complete them.

Alongside BACP approaches, commercial tools capable of planning degree paths have 
also been proposed in the last few years. The most notable example is Prepler,19 a web 
application to plan degree paths for multiple universities of the United States according to a 
desired study load, i.e., hours that students are willing to devote in each semester. Nonethe-
less, the objective of Prepler is minimizing the amount of “off track” time experienced by 
the student to reduce the number of tuition fees, which is fundamentally different from the 
DPP.

Researchers have also developed methods or applications as part of Career Planning 
(CaP) intending to guide future job positions given the individual’s job experience (Ghosh 
et al., 2020; Liu et al., 2016). Despite the abundance of works focusing on CaP, to the best of 
our knowledge, the DPP is a novel problem that has not been proposed before in the above-
discussed literature. One major difference is that instead of predicting future job positions of 
an individual, the DPP’s objective is to plan the optimal degree path to acquire the required 
skills for a desired future job.

Finally, the problem of recommending university courses or subjects to students has been 
addressed by EdRecSys, which plays a crucial role in the context of Technology Enhanced 
Learning (TEL) (Drachsler et al., 2015). Several EdRecSys have been developed, as dis-
cussed in several surveys (Drachsler et al., 2015; Dascalu et al., 2016). In contrast with 
the above-mentioned literature, whose main goal is providing recommendations to students 
about courses or subjects based on other students’ choices and preferences without a specific 
optimization goal, our approach computes the degree path that maximizes the acquisition of 
skills according to the desired job.

8 Conclusions and future work

As motivated above, developing decision-support tools for guiding students throughout 
their educational pathways toward the acquisition of the skills required by their preferred 
job(s) is key. In this paper, our goal was to contribute to the development of such decision-
support tools.

First, we formalized the problem of computing the degree path for a student to be employ-
able in their desired jobs as an optimization problem. Solving such an optimization problem 

19 Online at https://www.prepler.com/degree-plans (last consulted: January 2024).
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yields the degree paths that maximize the “coverage” of the professional skills required by 
a student’s desired job(s). Second, because of the non-linearity of the objective function in 
that optimization problem, we introduced a non-trivial linearization of the problem so that 
we can solve it with standard integer optimization tools. We formally prove that our trans-
formation produces an equivalent optimization problem.

Throughout our experimental evaluation with real-world data from the Bachelor of 
ICT of the University of Western Sydney, we showed that our approach can be a valuable 
decision-support tool for (i) students planning their academic pathways and (ii) curriculum 
designers assessing the matching between a university’s degrees and the job market. Despite 
showcasing it for an actual real-world example, our model is straightforward to adapt to 
other university curricula without changing the proposed solution method.

In spite of the above-mentioned improvements to the state of the art, our work can be 
improved according to the following open research lines. On the one hand, we plan to 
explain the degree plans provided by our approach since presenting explanations is key to 
increasing users’ trust and satisfaction within an educational planning system, as suggested 
by Barria-Pineda (2020). On the other hand, we plan to personalize degree paths by also 
taking into account a student’s preferences and their academic performance in already-com-
pleted units. Notice that, in contrast with existing related work (Drachsler et al., 2015; Shao 
et al., 2021) in the educational recommender systems literature, which provides personal-
ized recommendations on courses without planning them, in future work, we will combine 
optimization and learning to provide individualized degree plans by predicting the expected 
performance of students. To do that, we plan to employ: (i) actual data on the student’s per-
formance following the recommended degree plan; and (ii) observed performance of other 
students who completed their degrees. Predicting such expected performance is important 
as an indicator for students of the difficulty of the degree plan they are about to follow. As 
students progress, the expected performance can be refined, and our approach can learn to 
anticipate problems and recommend variations of a degree plan.
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Appendix: Job affinity evolution along semesters

Figure 9 shows the evolution of the distribution of job affinities for all jobs after each semes-
ter. Notice that most jobs have low job affinity values after completing the first semesters. 
This indicates that students have not acquired many of the skills required for those jobs, 
which is usual since, in the first semesters, students complete core units (which are the 
ones that have no prerequisites). However, job affinity increases over semesters as more 
jobs have higher job affinity values. Figure 9f shows the distribution of the job affinity after 
completing semester 6, i.e., after finishing the degree. Thus, note that Fig. 9f is the same as 
Fig. 3, whose results are discussed in Sect. 5.4.
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Fig. 9 Evolution of the distribution of job affinities for all jobs after completing each semester
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