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Abstract

The aim of this paper is to present categor-
ical equivalences involving Nelson algebras
with a consistency operator. These algebraic
structures are the algebraic semantics of a
paraconsistent logic, actually a logic of for-
mal inconsistency, based on Nelson logic,
also known as constructive logic with strong
negation. In particular, we will extend a
well-known relationship between Nelson al-
gebras/lattices and Heyting algebras with a
boolean filter to these expanded structures in
terms of categorical equivalences.
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1 Introduction

In a recent paper [5], the authors have studied logics
of formal inconsistency (LFIs) that can be defined as
degree-preserving companions of logics of (bounded,
integral, commutative) distributive involutive residu-
ated lattices (dIRLs) with a consistency operator. Spe-
cial attention is paid to the class of Nelson lattices, the
subvariety of dIRLs satisfying the following equation

(((xxx) = Y)A((~y*~y) = ~x)) = (x = y) =1,

called Nelson equation. Nelson lattices are term equiv-
alent to the so-called Nelson algebras, that are the alge-
braic structures arising when an involutive negation ~
is added to Heyting algebras, related to Nelson logic,
also known as constructive logic with strong negation.
Note that, in the prelinear case, Nelson lattices become
Nilpotent Minimum algebras while Heyting algebras
become Godel algebras, two well-known varieties of
algebras falling within the hierarchy of algebraic struc-
tures related to mathematical fuzzy logic systems.

LFIs is a family of paraconsistent logics that internal-
ize in the object language a notion of consistency by
means of a specific connective o (primitive or defin-
able) with the following intended meaning: although
LFIs are non-explosive logics in general, the connec-
tive o allows to recover the explosion property from
a formula ¢ and its negation —¢ whenever they are
deemed to be consistent, in the sense of ¢ falling under
the scope of o. In this paper, the algebraic counterpart
of the consistency connective in the class of dIRLs,
where the equation x A ~x = 0 is not valid in general,
will be played by unary operators in dIRL-algebras,
that we will call consistency operators, satisfying the
following minimal properties:

(o) xA~xANo(x)=0

(02) if xA~xAy=0theny < o(x)

Condition (ol) stands for the requirement that x and
~x are explosive when put together with o(x). Finally,
condition (02) guarantees that o(x) is the maximum
value satisfying (ol). Also we will consider boolean
consistency operators, i.e. those operators that also sat-
isfy the Booleanity condition:

(03) o(x)V~o(x)=1.

In [5], the extensions of dIRLs with consistency op-
erators are studied from a general algebraic point of
view. In this paper we focus on the class of Nelson lat-
tices (or algebras) with consistency operators and we
extend to these expanded structures a well-known rela-
tionship between Nelson algebras/lattices and Heyting
algebras with a boolean filter in terms of categorical
equivalences.

The paper is structured as follows. After this introduc-
tion, some needed algebraic preliminaries are gathered
in Section 2. In Section 3 we formally define Nelson
algebras with consistency operators and prove some
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basic results. Then, in Section 4, we present some first
algebraic relationships between Nelson algebras with
consistency operators and Heyting algebras with dual
pseudocomplement. These algebraic results are lift to
a categorical equivalence in Section 5, where we prove
that the algebraic category of Nelson algebras with a
consistency operator is equivalent to a category whose
objects are pairs (H, F) where H is a Heyting algebra
and F is a boolean filter of H such that every element
of F admits a dual pseudocomplement. In Section 6 we
study some particular cases and in particular we focus
on categorical equivalences for prelinear algebras. Fi-
nally, in Section 7 we conclude and present our future
work on this subject.

2 Algebraic preliminaries

The algebraic structures that will be central to this pa-
per are Nelson algebras defined as follows

Definition 2.1. A Nelson algebra is a system A =
(A,V,A,=,~,0,1) of type (2,2,2,1,0,0) such that its
reduct (A,V,A,~,0,1) is a Kleene algebra and = sat-
isfies the following conditions for all x,y,z € A:

(N x=x=1;
(N2) xA(x=y) =xA(~xVy);
(N3) x= (yAz) = (x=y)A(x=2);

N4) x= (y=2z)=(xAy) =z

Notice that, for every Nelson algebra A = (A4,V,A,=
,~,0, 1) the unary operator ~ is an involutive negation.
Moreover, one can define, in A an additional negation
operator as —x = x = 0. In what follows it will be
convenient to adopt the redundant signature (A,V,=
,—,~,0, 1) for Nelson algebras.

Nelson algebras form a variety which is isomorphic to
that of Nelson lattices (cf. [3, Theorem 3.11]), that
is, bounded distributive commutative integral residu-
ated lattices (A, V, A, *,—,0, 1) satisfying the so called
Nelson equation:

(((xxx) 2 Y)A((~yx~y) = ~x)) = (x—y) =1

where ~ stands for the residual negation, that is, ~x
stands for x — 0.

The second class of algebras that will play a main role
in this paper is that of Heyting algebras, that constitute
the algebraic semantics of intuitionistic logic [9].

Definition 2.2. A Heyting algebra H= (H,V N\, *,—
,L,T) is a bounded distributive commutative integral
residuated lattice such that xxy =x Ay forallx,y € H.
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By the very definition of a Heyting algebra H, the * op-
erator is redundant in the signature. Furthermore, one
can always define the residual negation operator —x =
x — L. For convenience, we will henceforth consider
Heyting algebras in the signature (V,A,—,—, 1, T).

For every Nelson algebra A = (A,V,A\,=,—,~,0,1)
and for every a € A, let a* = ~—a. Define A* = {a* |
a € A} with operations a** b = (axb)* for all binary
operations x, and —=*a = (—a)*. Then the algebra A* =
(A*,V* A", =* —*,0,1) is a Heyting algebra.

For every Heyting algebra H, a filter F of H is said to
be Boolean provided that the quotient structure H/F is
a boolean algebra. Let hence H be a Heyting algebra
and F a Boolean filter of H. Define:

Nrp(H) ={(a,b) e HxH|aNb= 1 and (aVb) € F}.

Consider operations on Ng (H) as follows:

(a,b)V (c,d) = (aVe,bNd)

(a,b) A\ (c,d) = (aNe,bVd)

(a,b) = (c,d) = (a— c,aNd)

_'(aa b) - (ﬁa,a)
~(a,) = (b,a)

Then we have the following relationships between Nel-
son and Heyting algebras.

Theorem 2.3 ([11]). (1) For each Heyting alge-
bra H and boolean filter F of H, the structure
NF(H) = (NF (H)7 VA=, (Jﬂ T)7 (T7 J~))
is a Nelson algebra such that Np (H)* is isomorphic to

H.

(2) For every Nelson algebra A there is a boolean filter
F on A* such that A and N (A*) are isomorphic.

Furthermore the following holds.

Lemma 2.4 ([4, Theorem 5.2]). For every Nelson al-
gebra A, the lattice Fil(A) of its filters is isomorphic to
the lattice Fil(A*) of filters of the Heyting algebra A*.
As a consequence the lattice Con(A) of congruences of
A and Con(A*) of congruences of A* are isomorphic
as well.

Therefore we can prove the following properties relat-
ing Nelson algebras A and their corresponding Heyting
algebras A*.

Theorem 2.5. For every Nelson algebra A the follow-
ing properties hold:

1. A is subdirectly irreducible iff A* is subdirectly
irreducible;
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2. A is directly indecomposable iff A* is directly in-
decomposable.

Proof. (1) is [4, Corollary 5.3]. Let us hence prove
(2). Recall that an algebra is directly indecomposable
(d.i. for short) iff its unique pair of factor congruences
is (A, V). Assume that A is not d.i. and let (©,0’) be
a non trivial pair of factor congruences. Let A be the
isomorphism between Con(A) and Con(A*) of Lemma
2.4. Thus, since both A and A* are congruence per-
mutable, (1(@),A(®)) is a non trivial pair of factor
congruences of A*, whence A* is not d.i. as well. The
other direction can be proven in an analogous way. [

3 Nelson algebras with consistency
operators

Definition 3.1. A Nelson algebra with consistency op-
erator is a pair (A, o) where A is a Nelson algebra and
o : A — A satisfies the following conditions:

(ol) o(x)
(02) xA~xAo(x) =0

=max{z €A |xA~xNz=0}

The consistency operator o is said to be boolean pro-
vided that is also satisfies the following condition:
(03) o(x) Vo () = 1.

For convenience, let us represent A as Np(H) for H
being a Heyting algebra and F a boolean filter of H
as in Theorem 2.3. Thus, every x € A is of the form
(a,b) fora,b e Hand aAb= 1 and (aVb) € F and

the above condition (o1) can be reformulated in the
following way: for all (a,b) € A,

o(a,b)

= max{(z,Z) €A|(a,b) A~(a,b) A(z,7) = (L,

= max{(z,7) €A (a,b) A ( ) (z,7) = (L, T)}
= max{(z,z')GA\(a/\b b\/a) (z,7)= (L, T)}
= max{(z,7)€A|(L,avbVv)=(L,T)},

where the last equality holds because a Ab = L (in H)
for all (a,b) € A. Therefore, since the order in A is de-
fined, with respect to the order of H, as (a,b) < (¢,d)
iff a < c¢ and b > d, one has that

o(a,b) = (c,d) iff
d=min{7 €H |aVvbV7=T}and (1)
c=max{z|zAd=L1,(zVd) € F}.

Proposition 3.2. Let H be a Heyting algebra, F a
boolean filter and A the Nelson algebra Np(H). Then,
the operator o : (a,b) — (c,d) where ¢ and d are as
in Equation (1) satisfies o(a,b) = max{(z,7') € A |
(a,b) N~(a,b) A (z,2) = (L, T)}

)}
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Proof. Let us first notice that {(z,2') € A | (a,b) A
~(a,b)N(z,2) = (L, T} ={(z7) eHxH|zAZ =
0,(zVZ) € F,avbVv7 =T}. Assume, by way of con-
tradiction, that o(a,b) = (c,d) # max{(z,7/) € H x H |
zA7 =0,(zVZ7) € F,avbVv7 = T}. Thus there exists
(e,f) € H x H with (e, f) > (c,d) and such that

(@) avbV f=T;
®) eNf=1;
(c) (eVf)€EF.

By the absurdum hypothesis that (e, f) > (c,d) it fol-
lows that f <d. If f <d, together with (a), we reach a
contradiction because d = min{z’ € H |[aVbV7 =T}
Thus assume that f = d and hence (e, f) = (e,d) >
(c,d) gives that e > ¢. By (b) and (c), eANd = L
and (eVd) € F. Therefore e > ¢ and both belong to
{z]znd = L,(zVvd) € F} (with the same d). Thus
c#max{z|zAd = 1,(zVd) € F} which contradicts
our hypothesis. O

The following example should clarify the above claim.

Example 3.3. Let H be the 5 elements directly inde-
composable Heyting algebra (see the left hand-side of
Fig. 1) and let F be the boolean filter Ta = {a,b, T }.
Then,

S
\

Figure 1: The 5 elements d.i. Heyting algebra (on the
left) and the d.i. Nelson algebra Ny (H) (on the right).

Operations on Np(H) are defined as above and they
make it a (d.i.) Nelson algebra. Notice that, in particu-
lar, the order between the elements of Ny (H) elements
is as in Fig. 1 (righ-hand-side).
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Now, let us define o(a,—a) = max{(z,7/) € H X H |
(a,—a) A (—a,a) A (z,7) = (L, T)}. To this end let
us first compute d = min{z’ € H |aV -aVZ =T},
thus d = T. Then compute ¢ = max{z € H | z A
T = _1landzV T > a} which gives ¢ = L. Therefore
o(a,—a) = (L, T). Notice that such o(a,—a) also sat-
isfies (02).

It is also easy to compute, by the same method, that
o(Ll,a)=o(a,L)=0o(L,b)=0(b,L)=(L,T), while
o(L,T)=0o(T,L)=(T,L). Thus, (Ng(H),o0) is in
particular a simple algebra.

4 Nelson algebras with a consistency
operator and Heyting algebras with
dual pseudocomplement

In order to extend the results of [3] to Nelson algebras
with a consistency operator, we need to restrict our at-
tention to those Heyting algebras that define, for some
of its elements, the unary operation of dual pseudo-
complement —a=min{z € H |aVz=T}.

Notice that, if H" = (H,A,V,—, <, 1, T) is a double
Heyting algebra as defined in [10] the operator — is
definable define for alla € H and in fact —ra =a + T.
In particular, for all a € H, we have

~a=a— 1L =max{z€H|aNz=1}
and
—a=T<4a=min{z€H |aVz=T}.

Therefore, if HT is a double Heyting algebra, F is a
boolean congruence of its Heyting reduct and Ny (H)
is the Nelson algebra defined as in Section 2 one can
always define o on Ny (H) in the following way:

o(a,b) = (~(~(aVb)),~(aVb)). )

Before proving that the above defined operator satisfies
the condition of o, let us show the following easy fact.

Lemma 4.1. For every Heyting algebra H, for every
boolean filter F of H and for every a € H, aV —a € F.

Proof. Since F is boolean H/F is a boolean algebra.
Thus for all [a]r € H/F, [a]r V —la]r = [T]F, that is,
[aV —alp =[T|rand henceaV —a € F. O

Then —(a V b) is by definition the min{z | (aVb)Vz =
T} and —=(—(aVb)) = max{z| —(aVb) Az=0}. Set
d=r(aVb) and ¢ = =(—(aVb)). By Lemma 4.1,
(dVc)=(dV—d)®T. Therefore the following easily
holds.
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Lemma 4.2. Let H be a Heyting algebra, F a boolean
filter of H. The dual pseudo-complement of a\V b,
—(aVb), exists for all those a,b in H such that aAb=0
and aV b € F iff o(a,b) exists in the Nelson algebra
N(H,F) and o(a,b) = (~d,d), where d = —(aV D).
Furthermore, o(a,b) satisfies (03), that is o is boolean,
if and only if the dual pseudocomplement of every ele-
ment of the filter F exists and is boolean.

In the light of the above Lemma, it is hence clear that,
in order for a Heyting algebra H and a boolean filter '
to allow Ny (H) to admit a consistency operator, it is
sufficient that — exists for all the elements of F. In the
next section we will consider such a case.

5 Categories and equivalences

In this section we establish equivalences between cate-
gories that involve Heyting algebras (with extra struc-
ture) and Nelson algebras with consistency operators.
Besides the results which can reasonably be regarded
as natural extensions of those provided in [4] and [11]
between Nelson algebras and Heyting algebras with a
boolean filter (or a boolean congruence), this section is
intended also to highlight which are the necessary and
sufficient properties that are needed to add to Heyting
algebras with boolean filters, to fully capture consis-
tency operators in Nelson algebras.

For every Heyting algebra H, let BPF (H) be the set of
the boolean filters of H further satisfying the following

property:
(DP) For every x € F, —x exists in H.

Thus, BPF(H) is the set of boolean filters of H for
which each element x of any F in this set has a dual
pseudocomplement in H.

Definition 5.1. Consider the set HB made of pairs
(H,F) such that H is a Heyting algebra and F €
BPF(H), and consider morphims defined as follows:
given two pairs (H,F) and (H', F’) a morphism / be-
tween them is a map such that:

(ml) hisaHeyting homomorphism between H and H',
(m2) h(F) CF/,
(m3) forallx € F, h(—x) = —"h(x).

Morphisms are closed under composition. Indeed, if
h:(H,F)— (H,F'), f:(H,F') — (H",F"), then fh
is a homomorphism of H to H”, fh(F) C F" because
set-theoretical inclusion is compositional, and if x € F,
then fh(—x) = f(~'h(x)). Since h(F) C F', h(x) € F'.
Hence, by (m3), f(~'h(x)) = ~" fh(x).
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Obviously the identity map of each object id :
(H,F) — (H,F) is a morphism and moreover, the
composition of morphisms is associative: if & :
(H,F) — (H,F'), f: (H,F') - (H",F") and g :
(H",F") — (H",F") are morphisms, g(fh) = (gf)h
because so are the composition of homomorphisms
and set-theoretical inclusion. Therefore, HB is a cate-

gory.

Now we prove that HB is equivalent to the (algebraic)
category NC of Nelson algebra with a consistency op-
erator, whose objects and morphisms are defined in
the obvious way. To this end, let us consider the map
Z :HB — NC:

- For each object (H,F) € HB, #(H,F) =
(Np(H),0), where (Nr(H) is the Nelson algebra
of pairs (a,b) € H x H such that aAb = L and
aVb € F as in the above section, and o(a,b) =
(=—(aVb),~(aVb))asin (2).

- For each morphism 4 : (H,F) — (H',F’) of HB,

F(h): FMH,F)— F(H F') is so defined: for
all (a,b) € Z(H,F),
7 (h)(a,b) = (h(a),h(b)).

For every object (H, F), .# (H, F) is an object in NC.
Z (h) actually maps .% (H,F) to % (H',F’). Indeed,
leth: (H,F)— (H',F') and let us denote .% (H, F) by
(N,0) and #(H',F’) by (N, o). Then, for all (a,b) €
N, (h(a),h(b)) € N' x N'. Moreover h(a) A h(b) =
h(aNb) = h(L) = L because h is a Heyting homo-
morphism and a Ab = L. Furthermore, h(a) V h(b) =
h(aVb) € F' because aV b € F and (m2).

Proposition 5.2. The map .% : HB — NC is a functor.
Proof. In the light of the observations above, it is left
to prove that for every morphism i : (H,F) — (H',F'),
Z (h) is a morphism of NC. In particular, we have to
show that, denoting .% (H, F) by (N, o) and .# (H',F’)
by (N',0'), for all x € N, % (h)(ox) = o' F(h)(x). Re-
call that x € N iff x = (a,b) fora,b € H,aNb= 1 and

aVbeF ando(a,b) = (——(aVb),~(aVb)). Thus,
F(h)(ox) = ZF(h)(-—(aVb),~(aVDb))
= (h(=—(aVb)),h(~(aVD)))
= (A (h(a) Vh(b)),~'(h(a) V h(b)))
= o(h(a),h(b))
= o F(h)(x)

where the last equality follows, in particular, by the
property (m3) of Definition 5.1. O

Recall from [8] that a functor between two categories
yields a categorical equivalence iff it is full, faithful
and essentially surjective.
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Theorem 5.3. The functor F establishes a categorical
equivalence between HB and NC.

Proof. Let us start showing that .% is essentially sur-
jective. Let (N, o) any object of NC. Recall from [3]
that there exists an Heyting algebra H and a boolean
filter F of H such that N 22 Ny (H). Since o exists in N,
by Lemma 4.2, the dual pseudocomplement — exists
in H for all elements of F. Therefore, F € BPF(H)
and (H, F) € HB. Let us define o* on Ng(H) as usual,
o*(a,b) = (-—(aV b),—(a,b)). Then it is clear that
(N,o) = (Np(H),0*) = 7 (H,F).

Now we prove that .% is full and faithful, i.e., for each
pair of objects (H,F), (H',F’), Z establishes a bijec-
tion between the set of morphisms of between (H, F')
and (H', F') and the set of morphisms of .% (H, F') and
F (H',F’). In particular we need to prove that the map
A that maps each morphism 4 : (H,F) — (H',F’) in
the morphism % (h) : % (H,F) — % (H',F’) is a bi-
jection.

(Inj) Suppose hj,h, are two morphisms (H,F) —
(H',F') and h; # hy. In particular let x € H be such
that sy (x) # ha(x). Thus, xA-x = 1 and xV —x €
F by Lemma 4.1. Therefore (x,—x) € Np(H) and
A0) () = (b1 (), 1 () £ (o), o)) =
A(h2)(x,—x). Whence A is injective.

(Sur) Let k : (N,0) — (N’,0') be a morphism of NC.
By previous results, N and N’ can be uniquely repre-
sented as Nr(H) and Nz (H') for (H and H' Heyting
algebras and F, F’ boolean filters. Moreover, for each
homomorphism k : N — N’ there exists 4 : H— H' such
that for all (a,b) € N, k(a,b) = (h(a),h(b)). Notice
that hence h(F) C h(F') for otherwise, if there exists
x € F and h(x) ¢ F', one would have that (x, L) € N
(since x A L = 1 and xV L = x € F by hypothesis),
while k(x, L) = (h(x),h(L)) & N’ because, in particu-
lar, h(x) V h(L) = h(x) & F'. Therefore (m2) of Def-
inition 5.1 is satisfied. Our further hypothesis that k
preserves o, gives us in particular that, for every x € F,

k(o(x, 1)) = k(=—(x),~(x))
= (7'~'h(x),~"h(x)) 3)
= ok(x, L).

Let us prove that s satisfies (m3) of Definition 5.1,
i.e., for all x € F, h(—x) = ~'h(x). Again assume that

for some x € F, h(—x) # ~'h(x). Then k(o(x, L)) =
k(=—x,x) = (h(——x) (ﬁx)), whlle o (k(x, 1)) =
o (h(x),h(L)) = ~'h(x)) and

o (h(x),
hence k(o(x, 1)) # o'k(x
been reached.

L) = (+'~'h(x),
1) and a contradlctlon has

7

Therefore % is full, faithful and essentially surjective
and therefore the claim is settled. O
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6 Categorical equivalences for some
relevant particular cases

Let us now consider the full subcategory HBB of HB
obtained by restricting it to those objects (H,F) in
which F € BPF(H) and, for all x € F its dual pseudo-
complement is a boolean element of H, that is to say
forallx € F, —xexistsand —xV ——x = T.

On the other side let NBC be the full subcategory of
NC whose objects are Nelson algebras with a boolean
consistency operator (A, o) as in Definition 3.1.

The following result can be easily proved adapting the
proof of Theorem 5.3 taking into account Lemma 4.2.

Corollary 6.1. The restriction of F to HBB estab-
lishes a categorical equivalence between HBB and
NCB.

As we recall in Section 2, the variety of Nelson alge-
bras and the variety of Nelson lattices are isomorphic,
whence they are isomorphic as algebraic category. As
for Nelson lattices, if H is a Heyting algebra and F
is a boolean filter of H, the construction that defines
the Nelson algebra Nr (H) of Section 2, can be slightly
modified so as to determine the Nelson lattice (isomor-
phically) associated to Nz (H). Indeed, define Ng(H),
and the operations V, A as in the case of N (H). Fur-
thermore, for all (a,b), (c,d) € Np(H), put

o (a,b) = (c,d)=((a—=uc)N(b—nd),and);

e (a,b)x(c,d) = (anc,(a—pd)A(c—pyb)).!

Then, the stricture NLp(H) = (Np(H),V,A,*,—
(L, T),(T,L)) is a the Nelson lattice isomorphically
corresponding to Ny (H).

Nelson lattices with consistency operators are defined
as in the case of Nelson algebras (recall Definition
3.1) and clearly the algebraic category NLC whose ob-
jects are Nelson lattices with a consistency operator is
equivalent to NC and HB.

It is well known that Godel algebras [7] form the
proper subvariety of Heyting algebras satisfying the
prelinearity equation

(Pre) (x—=y)V(y—x)=T.

Moreover, it is proved in [3] that the construction defin-
ing the Nelson lattice NLy (H) from a Heyting algebra

INotice that in the above expressions we denote by — the
residuum in Nelson lattices, while — g denotes the residuum
of the Heyting algebra H.
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H and a boolean filter F' preserves prelinearity. More-
over, prelinear Nelson lattices (i.e., Nelson lattices sat-
isfying (Pre)) coincides with Nilpotent Minimum alge-
bras introduced in [6].

From the categorical perspective, the full subcategory
GB of HB, whose objects are pairs (G, F) for G be-
ing a Godel algebra, and the category NMC of Nilpo-
tent Minimum algebras with a consistency operator,
are equivalent. A similar result holds if we consider
the category GBB, the full subcategory of HBB re-
stricted to Godel algebras, and the category NMCB
with objects being Nilpotent Minimum algebras with a
boolean consistency operator. Thus, we conclude with
the following corollary.

Corollary 6.2. The restriction of % to GB establishes
a categorical equivalence between GB and NMC and
the restriction of % to GBB establishes a categorical
equivalence between GBB and NMCB.

7 Conclusions

In the present paper we presented some categorical
equivalences involving from one side Nelson algebras
with a consistency operator and, from the other, Heyt-
ing algebras with a boolean filter and the dual pseudo-
complement operator.

As we remarked in [5], Nelson algebras with consis-
tency operators provide an algebraic semantics for a
logic of formal inconsistency (LFI) based on Nelson
logic. In that paper, indeed, we introduced algebraic
semantics for more general LFIs based on distributive
involutive residuated lattices (dIRLs) of which Nelson
algebras are a particular case.

In our future work, then, we will be concerned with ex-
tending the categorical equivalences presented here to
the more general setting of dIRLs or some of its rele-
vant subvarieties.

As for the prelinear case, an almost direct byproduct
of our construction shows that Nilpotent Minimum al-
gebras (a.k.a. prelinear Nelson algebras) with consis-
tency operator form an algebraic category that turns out
to be equivalent to that of Godel algebras (a.k.a. pre-
linear Heyting algebras) with a boolean filter and dual
pseudocomplement. In turn, (finite) Godel algebras
and Nilpotent Minimum algebras with (or without) a
negation fix-point are dually equivalent, as categories,
to the category of finite forests (see [1] and [2]). Thus
it will be interesting to investigate up to which extent
the duality with the category of finite forests extends
once we also consider consistency operators to Nilpo-
tent Minimum algebras, or equivalently, a dual pseu-
docomplement to Godel algebras.
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