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Abstract

The site selection process to optimize re-
newable facilities has become a relevant is-
sue, mainly due to the variability of such re-
sources. Among the different solutions, Ge-
ographic Information Systems in combina-
tion with fuzzy logic and Multi-Criteria De-
cision Making approaches provide a consis-
tent tools to solve these complex decision
problems. Moreover, the versatility of GIS
software has led to the generation of spatial
analysis extensions, such as the fuzzy mem-
bership tool transforming the input data into
real numbers that belongs to the unit interval.
In this work, a comparative study between
fuzzy membership tool of ArcGIS software
and a combination of the fuzzy MCDM
methodologies (AHP-TOPSIS) is applied to
optimize the offshore wind site selection. A
case study based on the offshore wind re-
source in the Gulf of Maine is also included
and discussed.

Keywords: Criteria, Alternatives, Fuzzy
membership tool, Multi-Criteria Decision
Making (MCDM), Renewable energy.

1 Introduction

In parallel to the emergence of fuzzy logic [24], new
approaches have been designed during the last decades,
such as intuitionistic fuzzy sets [3], neutrosophic sets
[17], pythagorean fuzzy sets [23] and picture fuzzy
sets [5]. Furthermore, their combination with Multi-
Criteria Decision Making (MCDM) methodologies has
allowed to solve numerous decision problems in a va-
riety of fields: science, management and business, en-
gineering, or technology [13].

The renewable energy sector has not been an excep-
tion. Indeed, it can be framed within the 17 Sustain-
able Development Goals, as for example the assur-
ance of accessing to affordable, reliable, sustainable
and modern energy for all [20] . Applications combin-
ing MCDM methodologies with fuzzy series have been
carried out in the last decades [18]. Recent studies can
be also found in the specific literature, such as the com-
bination of Analytical Hierarchy Process (AHP) [15]
with the Technique for Order Preference by Similarity
to the Ideal Solution (TOPSIS) [10], for evaluation of
the energy alternatives in India based on their sustain-
ability [16], or the application of fuzzy Analytical Net-
work Process (ANP) and fuzzy TOPSIS for selection
of wave power plants in Vietnam [21].

Furthermore, the search and evaluation of optimal sites
to implant renewable energies facilities has brought
about the emergence of tools. As an example, Ge-
ographic Information Systems (GIS) combined with
fuzzy logic and MCDM approaches have allowed to
solve complex decision problems, such as the wind-
powered pumped storage power plant site selection [1],
the offshore and onshore wind energy power plants site
selection [19, 2] or even the solar installation site selec-
tion [25]. The versatility of GIS software has even led
to the generation of spatial analysis extensions, such
as the fuzzy membership tool of the ArcGIS software.
This tool transforms the input data into real numbers
that belongs to the interval [0,1] through fuzzy mem-
bership functions specified by the user [11]. How-
ever, not all membership functions can be useful for
solving a given decision problem, since their effective-
ness highly depends on the nature of the input data.
Under this framework, this paper aims to carry out a
comparative study between the fuzzy membership tool
of ArcGIS and the application of a combination of
MCDM methodologies (AHP-TOPSIS) through their
fuzzy versions. Few studies can be found in the spe-
cific literature to integrate AHP-TOPSIS with different
extensions of fuzzy sets [14], such as Interval type–2
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Abstract

The aim of this paper is to present categor-
ical equivalences involving Nelson algebras
with a consistency operator. These algebraic
structures are the algebraic semantics of a
paraconsistent logic, actually a logic of for-
mal inconsistency, based on Nelson logic,
also known as constructive logic with strong
negation. In particular, we will extend a
well-known relationship between Nelson al-
gebras/lattices and Heyting algebras with a
boolean filter to these expanded structures in
terms of categorical equivalences.

Keywords: Nelson algebras, Heyting al-
gebras, Consistency operators, Categorical
equivalence.

1 Introduction

In a recent paper [5], the authors have studied logics
of formal inconsistency (LFIs) that can be defined as
degree-preserving companions of logics of (bounded,
integral, commutative) distributive involutive residu-
ated lattices (dIRLs) with a consistency operator. Spe-
cial attention is paid to the class of Nelson lattices, the
subvariety of dIRLs satisfying the following equation

(((x∗ x)→ y)∧ ((∼y∗∼y)→∼x))→ (x → y) = 1,

called Nelson equation. Nelson lattices are term equiv-
alent to the so-called Nelson algebras, that are the alge-
braic structures arising when an involutive negation ∼
is added to Heyting algebras, related to Nelson logic,
also known as constructive logic with strong negation.
Note that, in the prelinear case, Nelson lattices become
Nilpotent Minimum algebras while Heyting algebras
become Gödel algebras, two well-known varieties of
algebras falling within the hierarchy of algebraic struc-
tures related to mathematical fuzzy logic systems.

LFIs is a family of paraconsistent logics that internal-
ize in the object language a notion of consistency by
means of a specific connective ◦ (primitive or defin-
able) with the following intended meaning: although
LFIs are non-explosive logics in general, the connec-
tive ◦ allows to recover the explosion property from
a formula ϕ and its negation ¬ϕ whenever they are
deemed to be consistent, in the sense of ϕ falling under
the scope of ◦. In this paper, the algebraic counterpart
of the consistency connective in the class of dIRLs,
where the equation x∧∼x = 0 is not valid in general,
will be played by unary operators in dIRL-algebras,
that we will call consistency operators, satisfying the
following minimal properties:

(◦1) x∧∼x∧◦(x) = 0

(◦2) if x∧∼x∧ y = 0 then y ≤ ◦(x)

Condition (◦1) stands for the requirement that x and
∼x are explosive when put together with ◦(x). Finally,
condition (◦2) guarantees that ◦(x) is the maximum
value satisfying (◦1). Also we will consider boolean
consistency operators, i.e. those operators that also sat-
isfy the Booleanity condition:

(◦3) ◦(x)∨∼◦ (x) = 1.

In [5], the extensions of dIRLs with consistency op-
erators are studied from a general algebraic point of
view. In this paper we focus on the class of Nelson lat-
tices (or algebras) with consistency operators and we
extend to these expanded structures a well-known rela-
tionship between Nelson algebras/lattices and Heyting
algebras with a boolean filter in terms of categorical
equivalences.

The paper is structured as follows. After this introduc-
tion, some needed algebraic preliminaries are gathered
in Section 2. In Section 3 we formally define Nelson
algebras with consistency operators and prove some
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basic results. Then, in Section 4, we present some first
algebraic relationships between Nelson algebras with
consistency operators and Heyting algebras with dual
pseudocomplement. These algebraic results are lift to
a categorical equivalence in Section 5, where we prove
that the algebraic category of Nelson algebras with a
consistency operator is equivalent to a category whose
objects are pairs (H,F) where H is a Heyting algebra
and F is a boolean filter of H such that every element
of F admits a dual pseudocomplement. In Section 6 we
study some particular cases and in particular we focus
on categorical equivalences for prelinear algebras. Fi-
nally, in Section 7 we conclude and present our future
work on this subject.

2 Algebraic preliminaries

The algebraic structures that will be central to this pa-
per are Nelson algebras defined as follows

Definition 2.1. A Nelson algebra is a system A =
(A,∨,∧,⇒,∼,0,1) of type (2,2,2,1,0,0) such that its
reduct (A,∨,∧,∼,0,1) is a Kleene algebra and ⇒ sat-
isfies the following conditions for all x,y,z ∈ A:

(N1) x ⇒ x = 1;

(N2) x∧ (x ⇒ y) = x∧ (∼ x∨ y);

(N3) x ⇒ (y∧ z) = (x ⇒ y)∧ (x ⇒ z);

(N4) x ⇒ (y ⇒ z) = (x∧ y)⇒ z.

Notice that, for every Nelson algebra A = (A,∨,∧,⇒
,∼,0,1) the unary operator ∼ is an involutive negation.
Moreover, one can define, in A an additional negation
operator as ¬x = x ⇒ 0. In what follows it will be
convenient to adopt the redundant signature (∧,∨,⇒
,¬,∼,0,1) for Nelson algebras.

Nelson algebras form a variety which is isomorphic to
that of Nelson lattices (cf. [3, Theorem 3.11]), that
is, bounded distributive commutative integral residu-
ated lattices (A,∨,∧,∗,→,0,1) satisfying the so called
Nelson equation:

(((x∗ x)→ y)∧ ((∼y∗∼y)→∼x))→ (x → y) = 1

where ∼ stands for the residual negation, that is, ∼x
stands for x → 0.

The second class of algebras that will play a main role
in this paper is that of Heyting algebras, that constitute
the algebraic semantics of intuitionistic logic [9].

Definition 2.2. A Heyting algebra H = (H,∨,∧,∗,→
,⊥,�) is a bounded distributive commutative integral
residuated lattice such that x∗y = x∧y for all x,y ∈ H.

By the very definition of a Heyting algebra H, the ∗ op-
erator is redundant in the signature. Furthermore, one
can always define the residual negation operator ¬x =
x →⊥. For convenience, we will henceforth consider
Heyting algebras in the signature (∨,∧,→,¬,⊥,�).

For every Nelson algebra A = (A,∨,∧,⇒,¬,∼,0,1)
and for every a ∈ A, let a∗ = ∼¬a. Define A∗ = {a∗ |
a ∈ A} with operations a �∗ b = (a � b)∗ for all binary
operations �, and ¬∗a = (¬a)∗. Then the algebra A∗ =
(A∗,∨∗,∧∗,⇒∗,¬∗,0,1) is a Heyting algebra.

For every Heyting algebra H, a filter F of H is said to
be Boolean provided that the quotient structure H/F is
a boolean algebra. Let hence H be a Heyting algebra
and F a Boolean filter of H. Define:

NF(H) = {(a,b)∈ H×H | a∧b =⊥ and (a∨b)∈ F}.

Consider operations on NF(H) as follows:

• (a,b)∨ (c,d) = (a∨ c,b∧d)

• (a,b)∧ (c,d) = (a∧ c,b∨d)

• (a,b)⇒ (c,d) = (a → c,a∧d)

• ¬(a,b) = (¬a,a)

• ∼(a,b) = (b,a)

Then we have the following relationships between Nel-
son and Heyting algebras.

Theorem 2.3 ([11]). (1) For each Heyting alge-
bra H and boolean filter F of H, the structure

NF(H) = (NF(H),∨,∧,⇒,¬,∼,(⊥,�),(�,⊥))
is a Nelson algebra such that NF(H)∗ is isomorphic to
H.

(2) For every Nelson algebra A there is a boolean filter
F on A∗ such that A and NF(A∗) are isomorphic.

Furthermore the following holds.

Lemma 2.4 ([4, Theorem 5.2]). For every Nelson al-
gebra A, the lattice Fil(A) of its filters is isomorphic to
the lattice Fil(A∗) of filters of the Heyting algebra A∗.
As a consequence the lattice Con(A) of congruences of
A and Con(A∗) of congruences of A∗ are isomorphic
as well.

Therefore we can prove the following properties relat-
ing Nelson algebras A and their corresponding Heyting
algebras A∗.

Theorem 2.5. For every Nelson algebra A the follow-
ing properties hold:

1. A is subdirectly irreducible iff A∗ is subdirectly
irreducible;

Figure 1: Linear fuzzy membership.

fuzzy set, interval-valued intuitionistic fuzzy set, hesi-
tant fuzzy sets and neutrosophic sets. The authors se-
lect the ordinary fuzzy sets by considering numerous
studies conducted on the extended TOPSIS methods
within a fuzzy environment [4]. The proposed decision
problem is assessed through the offshore wind energy
power plant site selection in the Gulf of Maine, USA.

The rest of the paper is structured as follows: Section 2
describes the methodology used for the decision prob-
lem considered, i.e., the fuzzy membership tool of the
ArcGIS software and the fuzzy versions of the AHP-
TOPSIS combination; Section 3 presents and discusses
the proposed decision problem (via the description of
its study area, alternatives and criteria); and finally,
Section 4 gives the main conclusions.

2 Methodology

2.1 Fuzzy membership tool

From a mathematical point of view, a membership
function, fA : U → [0,1], can be defined as a rule that
ascribes each element x ∈U to the degree of member-
ship of x to A, fA(x) ∈ [0,1]. In fact, this type of func-
tions can be considered, depending on the context in
which was applied, as a membership function associ-
ated with fuzzy sets. In ArcGIS software, the different
membership functions ( fA) associated with fuzzy sets
includes fuzzy gaussian, fuzzy large or small, fuzzy
near and fuzzy linear. The graphical representation
of the fuzzy linear function is shown as an exam-
ple in Figure 1. These fuzzy membership functions
allow data to be reclassified and placed in the do-
main of the unit interval [0,1]. A further explanation
about the mathematical expressions involved and how
such fuzzy membership functions work can be seen in
[11, 6].

2.2 Fuzzy Analytic Hierarchy Process (FAHP)

The AHP methodology was developed by T. Saaty in
the 1980s [15]. This MCDM approach is based on
three main characteristics:

1. Modeling the decision problem through a specific
hierarchy: upper vertex the objective of the de-
cision problem is located; the alternatives to be
evaluated are positioned in the lowest level of the
hierarchy.

2. Comparing by pairs of elements in each level of
the hierarchy with respect to each element in the
previous level.

3. Synthesizing the judgments vertically on different
levels of the hierarchy.

The judgments provided by the decision maker on the
criteria pairs (Ci,C j) are represented in a nxn–matrix
(Cnxn). The C12 value is then an approximation of the
relative importance of C1 to C2, that is, C12 ≈ (w1/w2):

1. ci j ≈ (wi/w j) i, j = 1,2, ...,n

2. cii = 1 i = 1,2, ...,n

3. If ci j = α,α �= 0, thus a ji = (1/α) i, j =
1,2, ...,n

4. If ci is more important than c j, thus ci j ≈
(wi/w j)> 1

These assertions imply that C must be positive and re-
ciprocal with 1 on the main diagonal. The values as-
signed to ci j according to the Saaty scale is located in
the interval 1-9 or the corresponding inverses. Such
scale is shown in Table 1, represented through triangu-
lar fuzzy numbers.

In AHP decision problems, where the values are fuzzy
numbers, the normalized geometric mean is used as es-
timator of the weight in instead of λ .

wi =
∏n

j=1(ai j ,bi j ,ci j)
(1/n)

∑m
i=1 ∏n

j=1(ai j ,bi j ,ci j)(1/n)

with (ai j,bi j,ci j) being a fuzzy number

In this study, the AHP approach is applied to obtain the
weights of the criteria.

2.3 Fuzzy Technique for Order Preference by
Similarity to the Ideal Solution (FTOPSIS)

TOPSIS approach has become, together with the AHP
methodology, the most widely used MCDM method-
ologies [12], mainly due to their rational and un-
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2. A is directly indecomposable iff A∗ is directly in-
decomposable.

Proof. (1) is [4, Corollary 5.3]. Let us hence prove
(2). Recall that an algebra is directly indecomposable
(d.i. for short) iff its unique pair of factor congruences
is (∆,∇). Assume that A is not d.i. and let (Θ,Θ′) be
a non trivial pair of factor congruences. Let λ be the
isomorphism between Con(A) and Con(A∗) of Lemma
2.4. Thus, since both A and A∗ are congruence per-
mutable, (λ (Θ),λ (Θ′)) is a non trivial pair of factor
congruences of A∗, whence A∗ is not d.i. as well. The
other direction can be proven in an analogous way.

3 Nelson algebras with consistency
operators

Definition 3.1. A Nelson algebra with consistency op-
erator is a pair (A,◦) where A is a Nelson algebra and
◦ : A → A satisfies the following conditions:

(◦1) ◦(x) = max{z ∈ A | x∧∼x∧ z = 0}

(◦2) x∧∼x∧◦(x) = 0

The consistency operator ◦ is said to be boolean pro-
vided that is also satisfies the following condition:

(◦3) ◦(x)∨∼◦ (x) = 1.

For convenience, let us represent A as NF(H) for H
being a Heyting algebra and F a boolean filter of H
as in Theorem 2.3. Thus, every x ∈ A is of the form
(a,b) for a,b ∈ H and a∧ b = ⊥ and (a∨ b) ∈ F and
the above condition (◦1) can be reformulated in the
following way: for all (a,b) ∈ A,

◦(a,b)
= max{(z,z′) ∈ A | (a,b)∧∼(a,b)∧ (z,z′) = (⊥,�)}
= max{(z,z′) ∈ A | (a,b)∧ (b,a)∧ (z,z′) = (⊥,�)}
= max{(z,z′) ∈ A | (a∧b,b∨a)∧ (z,z′) = (⊥,�)}
= max{(z,z′) ∈ A | (⊥,a∨b∨ z′) = (⊥,�)},

where the last equality holds because a∧b =⊥ (in H)
for all (a,b) ∈ A. Therefore, since the order in A is de-
fined, with respect to the order of H, as (a,b) ≤ (c,d)
iff a ≤ c and b ≥ d, one has that

◦(a,b) = (c,d) iff
d = min{z′ ∈ H | a∨b∨ z′ =�} and
c = max{z | z∧d =⊥,(z∨d) ∈ F}.

(1)

Proposition 3.2. Let H be a Heyting algebra, F a
boolean filter and A the Nelson algebra NF(H). Then,
the operator ◦ : (a,b) �→ (c,d) where c and d are as
in Equation (1) satisfies ◦(a,b) = max{(z,z′) ∈ A |
(a,b)∧∼(a,b)∧ (z,z′) = (⊥,�)}.

Proof. Let us first notice that {(z,z′) ∈ A | (a,b) ∧
∼(a,b)∧ (z,z′) = (⊥,�)}= {(z,z′) ∈ H ×H | z∧ z′ =
0,(z∨ z′) ∈ F,a∨b∨ z′ =�}. Assume, by way of con-
tradiction, that ◦(a,b) = (c,d) �= max{(z,z′)∈ H×H |
z∧z′ = 0,(z∨z′)∈ F,a∨b∨z′ =�}. Thus there exists
(e, f ) ∈ H ×H with (e, f )> (c,d) and such that

(a) a∨b∨ f =�;

(b) e∧ f =⊥;

(c) (e∨ f ) ∈ F .

By the absurdum hypothesis that (e, f ) > (c,d) it fol-
lows that f ≤ d. If f < d, together with (a), we reach a
contradiction because d =min{z′ ∈H | a∨b∨z′ =�}.
Thus assume that f = d and hence (e, f ) = (e,d) >
(c,d) gives that e > c. By (b) and (c), e ∧ d = ⊥
and (e∨ d) ∈ F . Therefore e > c and both belong to
{z | z∧ d = ⊥,(z∨ d) ∈ F} (with the same d). Thus
c �= max{z | z∧d = ⊥,(z∨d) ∈ F} which contradicts
our hypothesis.

The following example should clarify the above claim.

Example 3.3. Let H be the 5 elements directly inde-
composable Heyting algebra (see the left hand-side of
Fig. 1) and let F be the boolean filter ↑a = {a,b,�}.
Then,

NF(H) = {(⊥,�),(⊥,b),
(⊥,a),(a,¬a),(¬a,a),(a,⊥),(b,⊥),(�,⊥)}.

⊥

a ¬a

b

�

(⊥,�)

(⊥,b)

(⊥,a)

(a,¬a) (¬a,a)

(a,⊥)

(b,⊥)

(�,⊥)

Figure 1: The 5 elements d.i. Heyting algebra (on the
left) and the d.i. Nelson algebra NF(H) (on the right).

Operations on NF(H) are defined as above and they
make it a (d.i.) Nelson algebra. Notice that, in particu-
lar, the order between the elements of NF(H) elements
is as in Fig. 1 (righ-hand-side).

Figure 1: Linear fuzzy membership.
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three main characteristics:

1. Modeling the decision problem through a specific
hierarchy: upper vertex the objective of the de-
cision problem is located; the alternatives to be
evaluated are positioned in the lowest level of the
hierarchy.

2. Comparing by pairs of elements in each level of
the hierarchy with respect to each element in the
previous level.

3. Synthesizing the judgments vertically on different
levels of the hierarchy.

The judgments provided by the decision maker on the
criteria pairs (Ci,C j) are represented in a nxn–matrix
(Cnxn). The C12 value is then an approximation of the
relative importance of C1 to C2, that is, C12 ≈ (w1/w2):

1. ci j ≈ (wi/w j) i, j = 1,2, ...,n

2. cii = 1 i = 1,2, ...,n

3. If ci j = α,α �= 0, thus a ji = (1/α) i, j =
1,2, ...,n

4. If ci is more important than c j, thus ci j ≈
(wi/w j)> 1

These assertions imply that C must be positive and re-
ciprocal with 1 on the main diagonal. The values as-
signed to ci j according to the Saaty scale is located in
the interval 1-9 or the corresponding inverses. Such
scale is shown in Table 1, represented through triangu-
lar fuzzy numbers.

In AHP decision problems, where the values are fuzzy
numbers, the normalized geometric mean is used as es-
timator of the weight in instead of λ .

wi =
∏n

j=1(ai j ,bi j ,ci j)
(1/n)

∑m
i=1 ∏n

j=1(ai j ,bi j ,ci j)(1/n)

with (ai j,bi j,ci j) being a fuzzy number

In this study, the AHP approach is applied to obtain the
weights of the criteria.

2.3 Fuzzy Technique for Order Preference by
Similarity to the Ideal Solution (FTOPSIS)

TOPSIS approach has become, together with the AHP
methodology, the most widely used MCDM method-
ologies [12], mainly due to their rational and un-
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Now, let us define ◦(a,¬a) = max{(z,z′) ∈ H × H |
(a,¬a)∧ (¬a,a)∧ (z,z′) = (⊥,�)}. To this end let
us first compute d = min{z′ ∈ H | a∨¬a∨ z′ = �},
thus d = �. Then compute c = max{z ∈ H | z ∧
� = ⊥ and z∨� ≥ a} which gives c = ⊥. Therefore
◦(a,¬a) = (⊥,�). Notice that such ◦(a,¬a) also sat-
isfies (◦2).

It is also easy to compute, by the same method, that
◦(⊥,a) = ◦(a,⊥) = ◦(⊥,b) = ◦(b,⊥) = (⊥,�), while
◦(⊥,�) = ◦(�,⊥) = (�,⊥). Thus, (NF(H),◦) is in
particular a simple algebra.

4 Nelson algebras with a consistency
operator and Heyting algebras with
dual pseudocomplement

In order to extend the results of [3] to Nelson algebras
with a consistency operator, we need to restrict our at-
tention to those Heyting algebras that define, for some
of its elements, the unary operation of dual pseudo-
complement �a = min{z ∈ H | a∨ z =�}.

Notice that, if H+ = (H,∧,∨,→,←,⊥,�) is a double
Heyting algebra as defined in [10] the operator � is
definable define for all a ∈ H and in fact �a = a ←�.
In particular, for all a ∈ H, we have

¬a = a →⊥= max{z ∈ H | a∧ z =⊥}

and

�a =�← a = min{z ∈ H | a∨ z =�}.

Therefore, if H+ is a double Heyting algebra, F is a
boolean congruence of its Heyting reduct and NF(H)
is the Nelson algebra defined as in Section 2 one can
always define ◦ on NF(H) in the following way:

◦(a,b) = (¬(�(a∨b)),�(a∨b)). (2)

Before proving that the above defined operator satisfies
the condition of ◦, let us show the following easy fact.

Lemma 4.1. For every Heyting algebra H, for every
boolean filter F of H and for every a ∈ H, a∨¬a ∈ F.

Proof. Since F is boolean H/F is a boolean algebra.
Thus for all [a]F ∈ H/F , [a]F ∨¬[a]F = [�]F , that is,
[a∨¬a]F = [�]F and hence a∨¬a ∈ F .

Then �(a∨b) is by definition the min{z | (a∨b)∨ z =
�} and ¬(�(a∨ b)) = max{z | �(a∨ b)∧ z = 0}. Set
d = �(a∨ b) and c = ¬(�(a∨ b)). By Lemma 4.1,
(d ∨ c) = (d ∨¬d)Θ�. Therefore the following easily
holds.

Lemma 4.2. Let H be a Heyting algebra, F a boolean
filter of H. The dual pseudo-complement of a ∨ b,
�(a∨b), exists for all those a,b in H such that a∧b= 0
and a∨ b ∈ F iff ◦(a,b) exists in the Nelson algebra
N(H,F) and ◦(a,b) = (¬d,d), where d = �(a ∨ b).
Furthermore, ◦(a,b) satisfies (◦3), that is ◦ is boolean,
if and only if the dual pseudocomplement of every ele-
ment of the filter F exists and is boolean.

In the light of the above Lemma, it is hence clear that,
in order for a Heyting algebra H and a boolean filter F
to allow NF(H) to admit a consistency operator, it is
sufficient that � exists for all the elements of F . In the
next section we will consider such a case.

5 Categories and equivalences

In this section we establish equivalences between cate-
gories that involve Heyting algebras (with extra struc-
ture) and Nelson algebras with consistency operators.
Besides the results which can reasonably be regarded
as natural extensions of those provided in [4] and [11]
between Nelson algebras and Heyting algebras with a
boolean filter (or a boolean congruence), this section is
intended also to highlight which are the necessary and
sufficient properties that are needed to add to Heyting
algebras with boolean filters, to fully capture consis-
tency operators in Nelson algebras.

For every Heyting algebra H, let BPF(H) be the set of
the boolean filters of H further satisfying the following
property:

(DP) For every x ∈ F , �x exists in H.

Thus, BPF(H) is the set of boolean filters of H for
which each element x of any F in this set has a dual
pseudocomplement in H.

Definition 5.1. Consider the set HB made of pairs
(H,F) such that H is a Heyting algebra and F ∈
BPF(H), and consider morphims defined as follows:
given two pairs (H,F) and (H′,F ′) a morphism h be-
tween them is a map such that:

(m1) h is a Heyting homomorphism between H and H′,

(m2) h(F)⊆ F ′,

(m3) for all x ∈ F , h(�x) = �′h(x).

Morphisms are closed under composition. Indeed, if
h : (H,F)→ (H′,F ′), f : (H′,F ′)→ (H′′,F ′′), then f h
is a homomorphism of H to H′′, f h(F) ⊆ F ′′ because
set-theoretical inclusion is compositional, and if x ∈ F ,
then f h(�x) = f (�′h(x)). Since h(F)⊆ F ′, h(x) ∈ F ′.
Hence, by (m3), f (�′h(x)) = �′′ f h(x).

Figure 1: Linear fuzzy membership.
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tant fuzzy sets and neutrosophic sets. The authors se-
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studies conducted on the extended TOPSIS methods
within a fuzzy environment [4]. The proposed decision
problem is assessed through the offshore wind energy
power plant site selection in the Gulf of Maine, USA.

The rest of the paper is structured as follows: Section 2
describes the methodology used for the decision prob-
lem considered, i.e., the fuzzy membership tool of the
ArcGIS software and the fuzzy versions of the AHP-
TOPSIS combination; Section 3 presents and discusses
the proposed decision problem (via the description of
its study area, alternatives and criteria); and finally,
Section 4 gives the main conclusions.
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function, fA : U → [0,1], can be defined as a rule that
ascribes each element x ∈U to the degree of member-
ship of x to A, fA(x) ∈ [0,1]. In fact, this type of func-
tions can be considered, depending on the context in
which was applied, as a membership function associ-
ated with fuzzy sets. In ArcGIS software, the different
membership functions ( fA) associated with fuzzy sets
includes fuzzy gaussian, fuzzy large or small, fuzzy
near and fuzzy linear. The graphical representation
of the fuzzy linear function is shown as an exam-
ple in Figure 1. These fuzzy membership functions
allow data to be reclassified and placed in the do-
main of the unit interval [0,1]. A further explanation
about the mathematical expressions involved and how
such fuzzy membership functions work can be seen in
[11, 6].
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1. ci j ≈ (wi/w j) i, j = 1,2, ...,n
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3. If ci j = α,α �= 0, thus a ji = (1/α) i, j =
1,2, ...,n

4. If ci is more important than c j, thus ci j ≈
(wi/w j)> 1

These assertions imply that C must be positive and re-
ciprocal with 1 on the main diagonal. The values as-
signed to ci j according to the Saaty scale is located in
the interval 1-9 or the corresponding inverses. Such
scale is shown in Table 1, represented through triangu-
lar fuzzy numbers.

In AHP decision problems, where the values are fuzzy
numbers, the normalized geometric mean is used as es-
timator of the weight in instead of λ .
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with (ai j,bi j,ci j) being a fuzzy number

In this study, the AHP approach is applied to obtain the
weights of the criteria.

2.3 Fuzzy Technique for Order Preference by
Similarity to the Ideal Solution (FTOPSIS)

TOPSIS approach has become, together with the AHP
methodology, the most widely used MCDM method-
ologies [12], mainly due to their rational and un-
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Obviously the identity map of each object id :
(H,F) → (H,F) is a morphism and moreover, the
composition of morphisms is associative: if h :
(H,F) → (H′,F ′), f : (H′,F ′) → (H′′,F ′′) and g :
(H′′,F ′′)→ (H′′′,F ′′′) are morphisms, g( f h) = (g f )h
because so are the composition of homomorphisms
and set-theoretical inclusion. Therefore, HB is a cate-
gory.

Now we prove that HB is equivalent to the (algebraic)
category NC of Nelson algebra with a consistency op-
erator, whose objects and morphisms are defined in
the obvious way. To this end, let us consider the map
F : HB → NC:

- For each object (H,F) ∈ HB, F (H,F) =
(NF(H),◦), where (NF(H) is the Nelson algebra
of pairs (a,b) ∈ H ×H such that a∧ b = ⊥ and
a∨ b ∈ F as in the above section, and ◦(a,b) =
(¬�(a∨b),�(a∨b)) as in (2).

- For each morphism h : (H,F)→ (H′,F ′) of HB,
F (h) : F (H,F) → F (H′,F ′) is so defined: for
all (a,b) ∈ F (H,F),

F (h)(a,b) = (h(a),h(b)).

For every object (H,F), F (H,F) is an object in NC.
F (h) actually maps F (H,F) to F (H′,F ′). Indeed,
let h : (H,F)→ (H′,F ′) and let us denote F (H,F) by
(N,◦) and F (H′,F ′) by (N′,◦′). Then, for all (a,b) ∈
N, (h(a),h(b)) ∈ N ′ × N′. Moreover h(a) ∧ h(b) =
h(a ∧ b) = h(⊥) = ⊥ because h is a Heyting homo-
morphism and a∧ b = ⊥. Furthermore, h(a)∨h(b) =
h(a∨b) ∈ F ′ because a∨b ∈ F and (m2).

Proposition 5.2. The map F : HB → NC is a functor.

Proof. In the light of the observations above, it is left
to prove that for every morphism h : (H,F)→ (H′,F ′),
F (h) is a morphism of NC. In particular, we have to
show that, denoting F (H,F) by (N,◦) and F (H′,F ′)
by (N′,◦′), for all x ∈ N, F (h)(◦x) = ◦′F (h)(x). Re-
call that x ∈ N iff x = (a,b) for a,b ∈ H, a∧b =⊥ and
a∨b ∈ F and ◦(a,b) = (¬�(a∨b),�(a∨b)). Thus,

F (h)(◦x) = F (h)(¬�(a∨b),�(a∨b))
= (h(¬�(a∨b)),h(�(a∨b)))
= (¬′�′(h(a)∨h(b)),�′(h(a)∨h(b)))
= ◦′(h(a),h(b))
= ◦′F (h)(x)

where the last equality follows, in particular, by the
property (m3) of Definition 5.1.

Recall from [8] that a functor between two categories
yields a categorical equivalence iff it is full, faithful
and essentially surjective.

Theorem 5.3. The functor F establishes a categorical
equivalence between HB and NC.

Proof. Let us start showing that F is essentially sur-
jective. Let (N,◦) any object of NC. Recall from [3]
that there exists an Heyting algebra H and a boolean
filter F of H such that N ∼= NF(H). Since ◦ exists in N,
by Lemma 4.2, the dual pseudocomplement � exists
in H for all elements of F . Therefore, F ∈ BPF(H)
and (H,F) ∈ HB. Let us define ◦∗ on NF(H) as usual,
◦∗(a,b) = (¬�(a∨ b),�(a,b)). Then it is clear that
(N,◦)∼= (NF(H),◦∗) = F (H,F).

Now we prove that F is full and faithful, i.e., for each
pair of objects (H,F), (H′,F ′), F establishes a bijec-
tion between the set of morphisms of between (H,F)
and (H′,F ′) and the set of morphisms of F (H,F) and
F (H′,F ′). In particular we need to prove that the map
λ that maps each morphism h : (H,F) → (H′,F ′) in
the morphism F (h) : F (H,F) → F (H′,F ′) is a bi-
jection.

(Inj) Suppose h1,h2 are two morphisms (H,F) →
(H′,F ′) and h1 �= h2. In particular let x ∈ H be such
that h1(x) �= h2(x). Thus, x ∧¬x = ⊥ and x ∨¬x ∈
F by Lemma 4.1. Therefore (x,¬x) ∈ NF(H) and
λ (h1)(x,¬x) = (h1(x),h1(¬x)) �= (h2(x),h2(¬x)) =
λ (h2)(x,¬x). Whence λ is injective.

(Sur) Let k : (N,◦) → (N′,◦′) be a morphism of NC.
By previous results, N and N′ can be uniquely repre-
sented as NF(H) and NF ′(H′) for (H and H′ Heyting
algebras and F,F ′ boolean filters. Moreover, for each
homomorphism k : N→N′ there exists h : H→H′ such
that for all (a,b) ∈ N, k(a,b) = (h(a),h(b)). Notice
that hence h(F) ⊆ h(F ′) for otherwise, if there exists
x ∈ F and h(x) �∈ F ′, one would have that (x,⊥) ∈ N
(since x∧⊥ = ⊥ and x∨⊥ = x ∈ F by hypothesis),
while k(x,⊥) = (h(x),h(⊥)) �∈ N′ because, in particu-
lar, h(x)∨ h(⊥) = h(x) �∈ F ′. Therefore (m2) of Def-
inition 5.1 is satisfied. Our further hypothesis that k
preserves ◦, gives us in particular that, for every x ∈ F ,

k(◦(x,⊥)) = k(¬�(x),�(x))
= (¬′�′h(x),�′h(x))
= ◦′k(x,⊥).

(3)

Let us prove that h satisfies (m3) of Definition 5.1,
i.e., for all x ∈ F , h(�x) = �′h(x). Again assume that
for some x ∈ F , h(�x) �= �′h(x). Then k(◦(x,⊥)) =
k(¬�x,�x) = (h(¬�x),h(�x)), while ◦′(k(x,⊥)) =
◦′(h(x),h(⊥)) = ◦′(h(x),⊥) = (¬′�′h(x),�′h(x)) and
hence k(◦(x,⊥)) �= ◦′k(x,⊥) and a contradiction has
been reached.

Therefore F is full, faithful and essentially surjective
and therefore the claim is settled.

Figure 1: Linear fuzzy membership.
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tant fuzzy sets and neutrosophic sets. The authors se-
lect the ordinary fuzzy sets by considering numerous
studies conducted on the extended TOPSIS methods
within a fuzzy environment [4]. The proposed decision
problem is assessed through the offshore wind energy
power plant site selection in the Gulf of Maine, USA.

The rest of the paper is structured as follows: Section 2
describes the methodology used for the decision prob-
lem considered, i.e., the fuzzy membership tool of the
ArcGIS software and the fuzzy versions of the AHP-
TOPSIS combination; Section 3 presents and discusses
the proposed decision problem (via the description of
its study area, alternatives and criteria); and finally,
Section 4 gives the main conclusions.

2 Methodology

2.1 Fuzzy membership tool

From a mathematical point of view, a membership
function, fA : U → [0,1], can be defined as a rule that
ascribes each element x ∈U to the degree of member-
ship of x to A, fA(x) ∈ [0,1]. In fact, this type of func-
tions can be considered, depending on the context in
which was applied, as a membership function associ-
ated with fuzzy sets. In ArcGIS software, the different
membership functions ( fA) associated with fuzzy sets
includes fuzzy gaussian, fuzzy large or small, fuzzy
near and fuzzy linear. The graphical representation
of the fuzzy linear function is shown as an exam-
ple in Figure 1. These fuzzy membership functions
allow data to be reclassified and placed in the do-
main of the unit interval [0,1]. A further explanation
about the mathematical expressions involved and how
such fuzzy membership functions work can be seen in
[11, 6].

2.2 Fuzzy Analytic Hierarchy Process (FAHP)

The AHP methodology was developed by T. Saaty in
the 1980s [15]. This MCDM approach is based on
three main characteristics:

1. Modeling the decision problem through a specific
hierarchy: upper vertex the objective of the de-
cision problem is located; the alternatives to be
evaluated are positioned in the lowest level of the
hierarchy.

2. Comparing by pairs of elements in each level of
the hierarchy with respect to each element in the
previous level.
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The judgments provided by the decision maker on the
criteria pairs (Ci,C j) are represented in a nxn–matrix
(Cnxn). The C12 value is then an approximation of the
relative importance of C1 to C2, that is, C12 ≈ (w1/w2):

1. ci j ≈ (wi/w j) i, j = 1,2, ...,n

2. cii = 1 i = 1,2, ...,n

3. If ci j = α,α �= 0, thus a ji = (1/α) i, j =
1,2, ...,n

4. If ci is more important than c j, thus ci j ≈
(wi/w j)> 1

These assertions imply that C must be positive and re-
ciprocal with 1 on the main diagonal. The values as-
signed to ci j according to the Saaty scale is located in
the interval 1-9 or the corresponding inverses. Such
scale is shown in Table 1, represented through triangu-
lar fuzzy numbers.

In AHP decision problems, where the values are fuzzy
numbers, the normalized geometric mean is used as es-
timator of the weight in instead of λ .
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j=1(ai j ,bi j ,ci j)
(1/n)
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with (ai j,bi j,ci j) being a fuzzy number

In this study, the AHP approach is applied to obtain the
weights of the criteria.

2.3 Fuzzy Technique for Order Preference by
Similarity to the Ideal Solution (FTOPSIS)

TOPSIS approach has become, together with the AHP
methodology, the most widely used MCDM method-
ologies [12], mainly due to their rational and un-
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6 Categorical equivalences for some
relevant particular cases

Let us now consider the full subcategory HBB of HB
obtained by restricting it to those objects (H,F) in
which F ∈ BPF(H) and, for all x ∈ F its dual pseudo-
complement is a boolean element of H, that is to say
for all x ∈ F , �x exists and �x∨¬�x =�.

On the other side let NBC be the full subcategory of
NC whose objects are Nelson algebras with a boolean
consistency operator (A,◦) as in Definition 3.1.

The following result can be easily proved adapting the
proof of Theorem 5.3 taking into account Lemma 4.2.

Corollary 6.1. The restriction of F to HBB estab-
lishes a categorical equivalence between HBB and
NCB.

As we recall in Section 2, the variety of Nelson alge-
bras and the variety of Nelson lattices are isomorphic,
whence they are isomorphic as algebraic category. As
for Nelson lattices, if H is a Heyting algebra and F
is a boolean filter of H, the construction that defines
the Nelson algebra NF(H) of Section 2, can be slightly
modified so as to determine the Nelson lattice (isomor-
phically) associated to NF(H). Indeed, define NF(H),
and the operations ∨, ∧ as in the case of NF(H). Fur-
thermore, for all (a,b),(c,d) ∈ NF(H), put

• (a,b)→ (c,d) = ((a →H c)∧ (b →H d),a∧d);

• (a,b)∗ (c,d) = (a∧ c,(a →H d)∧ (c →H b)).1

Then, the stricture NLF(H) = (NF(H),∨,∧,∗,→
,(⊥,�),(�,⊥)) is a the Nelson lattice isomorphically
corresponding to NF(H).

Nelson lattices with consistency operators are defined
as in the case of Nelson algebras (recall Definition
3.1) and clearly the algebraic category NLC whose ob-
jects are Nelson lattices with a consistency operator is
equivalent to NC and HB.

It is well known that Gödel algebras [7] form the
proper subvariety of Heyting algebras satisfying the
prelinearity equation

(Pre) (x → y)∨ (y → x) =�.

Moreover, it is proved in [3] that the construction defin-
ing the Nelson lattice NLF(H) from a Heyting algebra

1Notice that in the above expressions we denote by → the
residuum in Nelson lattices, while →H denotes the residuum
of the Heyting algebra H.

H and a boolean filter F preserves prelinearity. More-
over, prelinear Nelson lattices (i.e., Nelson lattices sat-
isfying (Pre)) coincides with Nilpotent Minimum alge-
bras introduced in [6].

From the categorical perspective, the full subcategory
GB of HB, whose objects are pairs (G,F) for G be-
ing a Gödel algebra, and the category NMC of Nilpo-
tent Minimum algebras with a consistency operator,
are equivalent. A similar result holds if we consider
the category GBB, the full subcategory of HBB re-
stricted to Gödel algebras, and the category NMCB
with objects being Nilpotent Minimum algebras with a
boolean consistency operator. Thus, we conclude with
the following corollary.

Corollary 6.2. The restriction of F to GB establishes
a categorical equivalence between GB and NMC and
the restriction of F to GBB establishes a categorical
equivalence between GBB and NMCB.

7 Conclusions

In the present paper we presented some categorical
equivalences involving from one side Nelson algebras
with a consistency operator and, from the other, Heyt-
ing algebras with a boolean filter and the dual pseudo-
complement operator.

As we remarked in [5], Nelson algebras with consis-
tency operators provide an algebraic semantics for a
logic of formal inconsistency (LFI) based on Nelson
logic. In that paper, indeed, we introduced algebraic
semantics for more general LFIs based on distributive
involutive residuated lattices (dIRLs) of which Nelson
algebras are a particular case.

In our future work, then, we will be concerned with ex-
tending the categorical equivalences presented here to
the more general setting of dIRLs or some of its rele-
vant subvarieties.

As for the prelinear case, an almost direct byproduct
of our construction shows that Nilpotent Minimum al-
gebras (a.k.a. prelinear Nelson algebras) with consis-
tency operator form an algebraic category that turns out
to be equivalent to that of Gödel algebras (a.k.a. pre-
linear Heyting algebras) with a boolean filter and dual
pseudocomplement. In turn, (finite) Gödel algebras
and Nilpotent Minimum algebras with (or without) a
negation fix-point are dually equivalent, as categories,
to the category of finite forests (see [1] and [2]). Thus
it will be interesting to investigate up to which extent
the duality with the category of finite forests extends
once we also consider consistency operators to Nilpo-
tent Minimum algebras, or equivalently, a dual pseu-
docomplement to Gödel algebras.
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near and fuzzy linear. The graphical representation
of the fuzzy linear function is shown as an exam-
ple in Figure 1. These fuzzy membership functions
allow data to be reclassified and placed in the do-
main of the unit interval [0,1]. A further explanation
about the mathematical expressions involved and how
such fuzzy membership functions work can be seen in
[11, 6].

2.2 Fuzzy Analytic Hierarchy Process (FAHP)

The AHP methodology was developed by T. Saaty in
the 1980s [15]. This MCDM approach is based on
three main characteristics:

1. Modeling the decision problem through a specific
hierarchy: upper vertex the objective of the de-
cision problem is located; the alternatives to be
evaluated are positioned in the lowest level of the
hierarchy.

2. Comparing by pairs of elements in each level of
the hierarchy with respect to each element in the
previous level.

3. Synthesizing the judgments vertically on different
levels of the hierarchy.

The judgments provided by the decision maker on the
criteria pairs (Ci,C j) are represented in a nxn–matrix
(Cnxn). The C12 value is then an approximation of the
relative importance of C1 to C2, that is, C12 ≈ (w1/w2):

1. ci j ≈ (wi/w j) i, j = 1,2, ...,n

2. cii = 1 i = 1,2, ...,n

3. If ci j = α,α �= 0, thus a ji = (1/α) i, j =
1,2, ...,n

4. If ci is more important than c j, thus ci j ≈
(wi/w j)> 1

These assertions imply that C must be positive and re-
ciprocal with 1 on the main diagonal. The values as-
signed to ci j according to the Saaty scale is located in
the interval 1-9 or the corresponding inverses. Such
scale is shown in Table 1, represented through triangu-
lar fuzzy numbers.

In AHP decision problems, where the values are fuzzy
numbers, the normalized geometric mean is used as es-
timator of the weight in instead of λ .

wi =
∏n

j=1(ai j ,bi j ,ci j)
(1/n)

∑m
i=1 ∏n

j=1(ai j ,bi j ,ci j)(1/n)

with (ai j,bi j,ci j) being a fuzzy number

In this study, the AHP approach is applied to obtain the
weights of the criteria.

2.3 Fuzzy Technique for Order Preference by
Similarity to the Ideal Solution (FTOPSIS)

TOPSIS approach has become, together with the AHP
methodology, the most widely used MCDM method-
ologies [12], mainly due to their rational and un-
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Figure 1: Linear fuzzy membership.

fuzzy set, interval-valued intuitionistic fuzzy set, hesi-
tant fuzzy sets and neutrosophic sets. The authors se-
lect the ordinary fuzzy sets by considering numerous
studies conducted on the extended TOPSIS methods
within a fuzzy environment [4]. The proposed decision
problem is assessed through the offshore wind energy
power plant site selection in the Gulf of Maine, USA.

The rest of the paper is structured as follows: Section 2
describes the methodology used for the decision prob-
lem considered, i.e., the fuzzy membership tool of the
ArcGIS software and the fuzzy versions of the AHP-
TOPSIS combination; Section 3 presents and discusses
the proposed decision problem (via the description of
its study area, alternatives and criteria); and finally,
Section 4 gives the main conclusions.

2 Methodology

2.1 Fuzzy membership tool

From a mathematical point of view, a membership
function, fA : U → [0,1], can be defined as a rule that
ascribes each element x ∈U to the degree of member-
ship of x to A, fA(x) ∈ [0,1]. In fact, this type of func-
tions can be considered, depending on the context in
which was applied, as a membership function associ-
ated with fuzzy sets. In ArcGIS software, the different
membership functions ( fA) associated with fuzzy sets
includes fuzzy gaussian, fuzzy large or small, fuzzy
near and fuzzy linear. The graphical representation
of the fuzzy linear function is shown as an exam-
ple in Figure 1. These fuzzy membership functions
allow data to be reclassified and placed in the do-
main of the unit interval [0,1]. A further explanation
about the mathematical expressions involved and how
such fuzzy membership functions work can be seen in
[11, 6].

2.2 Fuzzy Analytic Hierarchy Process (FAHP)

The AHP methodology was developed by T. Saaty in
the 1980s [15]. This MCDM approach is based on
three main characteristics:

1. Modeling the decision problem through a specific
hierarchy: upper vertex the objective of the de-
cision problem is located; the alternatives to be
evaluated are positioned in the lowest level of the
hierarchy.

2. Comparing by pairs of elements in each level of
the hierarchy with respect to each element in the
previous level.

3. Synthesizing the judgments vertically on different
levels of the hierarchy.

The judgments provided by the decision maker on the
criteria pairs (Ci,C j) are represented in a nxn–matrix
(Cnxn). The C12 value is then an approximation of the
relative importance of C1 to C2, that is, C12 ≈ (w1/w2):

1. ci j ≈ (wi/w j) i, j = 1,2, ...,n

2. cii = 1 i = 1,2, ...,n

3. If ci j = α,α �= 0, thus a ji = (1/α) i, j =
1,2, ...,n

4. If ci is more important than c j, thus ci j ≈
(wi/w j)> 1

These assertions imply that C must be positive and re-
ciprocal with 1 on the main diagonal. The values as-
signed to ci j according to the Saaty scale is located in
the interval 1-9 or the corresponding inverses. Such
scale is shown in Table 1, represented through triangu-
lar fuzzy numbers.

In AHP decision problems, where the values are fuzzy
numbers, the normalized geometric mean is used as es-
timator of the weight in instead of λ .

wi =
∏n

j=1(ai j ,bi j ,ci j)
(1/n)

∑m
i=1 ∏n

j=1(ai j ,bi j ,ci j)(1/n)

with (ai j,bi j,ci j) being a fuzzy number

In this study, the AHP approach is applied to obtain the
weights of the criteria.

2.3 Fuzzy Technique for Order Preference by
Similarity to the Ideal Solution (FTOPSIS)

TOPSIS approach has become, together with the AHP
methodology, the most widely used MCDM method-
ologies [12], mainly due to their rational and un-
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