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Abstract

In this research note, we introduce a graded BDI agent development framework, g-BDI for short,
that allows to build agents as multi-context systems that reason about three fundamental and
graded mental attitudes (i.e. beliefs, desires and intentions). We propose a sound and complete
logical framework for them and some logical extensions to accommodate slightly different views
on desires.
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1. Introduction

Consider the following scenario: Maŕıa, who lives in busy Buenos Aires, wants to relax for a
few days in an Argentinian beautiful destination. She would be rather happy of practicing rafting
and very happy going to a mountain place. She would like more to go climbing than to go trekking.
On top of this, she is stressed and would like to get to the destination with a short trip. Taking
into account her preferences and constraints, the task of Maŕıa’s personal agent is to get, using
domain knowledge, an adequate tourist package satisfying her preferences.

Preferences are the proactive attitude of intentional agents, the motor that make the agent act,
building suitable plans that try to satisfy the most preferred goals, while satisfying a given set of
constraints. Constraints are also a key modeling aspect that account for restrictions or rejections
over the possible states the agent can reach.

In BDI agent architectures [14, 21, 23], desires represent the ideal agent preferences regardless
of the current agent perception of the environment and regardless of the cost involved in actually
achieving them. We consider important for an agent to distinguish what is positively desired from
what is not rejected. By doing so, positive desires then represent what the agent would like to
be the case while negative desires will correspond to what the agent rejects or does not want to
occur. Furthermore, if the agent needs to represent different levels of preference or rejection, the
notions of positive and negative desires become naturally graded.

To have a powerful and flexible representation of an agent preferences is thus a fundamental
issue to be addressed in any agent model. With this aim, in this work we present a general
framework to define graded BDI agent architectures (g-BDI agents for short), based on multi-
context systems [21]. In particular, we introduce a graded logical framework (i.e. languages,
axioms and inference rules) to represent and reason, not only about the agent positive and negative
desires, but also about other mental attitudes as beliefs and intentions. Namely, in a g-BDI agent,
belief degrees represent to what extent the agent believes a formula is true, degrees of positive
or negative desire allow the agent to set different levels of preference or rejection respectively
and intention degrees represent also a preference level but, in this case, modeling the cost/benefit
trade-off of reaching a goal.
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Computational aspects of this agent framework are out of the scope of this research note due to
lack of space. First results on giving operational semantics to g-BDI agents, using process calculus
have been presented in [7]. As a case study of our g-BDI agent framework we have designed and
implemented a prototype of a Tourism Recommender agent (T-Agent) [10] and have obtained
encouraging initial experimental results [9]. This paper builds on authors’ previous work [8] where
the logical representation of graded preferences and intentions was expressed in a unique “flat”
logical framework. Instead, here we present a multi-context agent framework where a different
context is used for each mental attitude.

The structure of this work is as follows. In Section 2, we first present the basic ingredients of
the g-BDI agent model with its multi-context specification, and in the next sections the different
components of the agent model are defined. In Section 3 we formalize the desire context to
represent the agent’s positive and negative preferences, inspired in the bipolar representation
of preferences in the framework of possibilisitic logic proposed in [2, 3]. Next, in Section 4 we
formalize the intention context and in Section 5, we briefly outline the belief context to represent
the agent uncertain beliefs. The necessary functional contexts for planning and communication,
and the bridge rules to transfer formulae between theories for an illustrative agent model are
briefly described in Section 6. Finally, a very short technical appendix with main facts of Rational
Pavelka logic, that is used throughout the paper, has been included.

2. The Graded BDI Agent Model

Several previous works have proposed agent theories and architectures to provide multiagent
systems with a strong formal basis. Among them, one of the most widely recognized is the
BDI agent architecture presented by Rao and Georgeff [23]. We consider that an extension of
this architecture to incorporate degrees in the different attitudes would not only make the model
semantics richer, but it would also help the agents in taking better decisions. With that aim we
have revisited the classical BDI agent architecture to represent and reason under uncertain beliefs
and graded motivations. In this section we introduce the basic ingredients of a general model for
graded BDI agents (g-BDI). The g-BDI model we consider extends the multi-context specification
of agents proposed by Parsons et al. in [21] with the ability to represent graded mental attitudes.

2.1. Multi-context specification

Multi-context systems (MCS) were introduced in [15] to allow different formal (logic) compo-
nents to be defined separately and then interrelated. A MCS specification contains three basic
components: units or contexts, logics, and bridge rules, which channel the propagation of for-
mulae among theories. Thus, an agent programmed as a MCS is defined as a group of inter-
connected units:

〈
{Ci}i∈I ,∆br

〉
, where each context Ci ∈ {Ci}i∈I defines a logic specified by a

tuple Ci = 〈Li, Ai,∆i〉 with Li, Ai and ∆i being the language, axioms, and inference rules respec-
tively. ∆br is a set of bridge rules, that can be understood as rules of inference with premises and
conclusions in different contexts. For instance:

C1 : ψ,C2 : ϕ

C3 : θ

means that if formula ψ is deduced in context C1 and formula ϕ is deduced in context C2 then
the theory of context C3 is extended with formula θ. When a theory Ti ⊂ Li is associated with
each unit, the specification of a particular agent is complete. The deduction mechanism of these
systems is based on two kinds of inference rules, internal rules ∆i inside each unit, and bridge rules
∆br outside. Internal rules allow to draw consequences within a theory, while bridge rules allow to
relate the results within one or several theories with extensions of another theory. Any reasonable
implementation of a multi-context system needs some kind of control strategy to synchronize and
co-ordinate both kinds of inferences (i..e. by internal rules and by bridge rules).

In the running illustrative architecture we have mental contexts to represent beliefs (BC),
desires (DC) and intentions (IC). We also consider two functional contexts, for planning (PC)

2



Figure 1: A multi-context architecture of a graded BDI agent

and communication (CC). The planner context is in charge of finding plans to change the current
world into another world, where some desire is satisfied, and of computing the cost associated
to the plans. The communication context is the agent door to the external world, receiving and
sending messages. In summary, the illustrative g-BDI agent architecture is thus defined as:

Ag = ({BC,DC, IC, PC,CC},∆br)

We could certainly program agents with several belief contexts for instance. The architecture
is a minimum skeleton containing the three modalities. The different contexts of the architecture
will be described in some detail in the following sections. In Figure 1 we present a schema of the
architecture used to illustrate the g-BDI model with the mentioned set of mental contexts (BC,
DC and IC) and functional ones (PC and CC) and some bridge rules ((1) to (6)) interrelating
them. The contexts and concrete architecture we present will thus serve as a blueprint to design
different kinds of agents.

2.2. Logical Framework: a many-valued modal approach

During the last two decades, the Artificial Intelligence community has undertaken the problem
of knowledge representation and reasoning under uncertain and incomplete knowledge, see e.g.
[17]. Among the approaches proposed in the literature, Hájek and colleagues have developed an
alternative approach (see e.g. [16]) where uncertainty reasoning is formalized as suitable modal
theories over suitable [0, 1]-valued fuzzy logics. The basic idea of this approach is to consider the
belief degree of a (classical) proposition as the truth-degree of a fuzzy modal proposition. For in-
stance, in the case where belief degrees are modelled as probabilities, for each classical (two-valued)
formula ϕ, they consider a graded modal formula Bϕ which is interpreted as “ϕ is probable”, whose
truth-degree can be set as the probability of ϕ. Moreover, using  Lukasiewicz logic one can express
the governing axioms of probability theory as logical axioms involving modal formulae of the kind
Bϕ. In this way, many-valued models of these modal axioms faithfully correspond to probability
measures over classical (non-modal) formulae. This approach can be also applied to other graded
mental attitudes, such as desires or intentions, as it will be done in the next two sections. 1

3. Desire Context (DC)

The Desire context is in charge of dealing with the agent’s desires. We define next a many-
valued modal logic to represent and reason about the agent bipolar preferences, i.e. a language, a

1Indeed, for simplicity reasons, we will use in this research note the same underlying fuzzy logic for beliefs,
desires and intentions, the so-called Rational Pavelka logic (RPL), an expansion of  Lukasiewicz logic with rational
truth-constants [16], which is briefly described in Appendix I.
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semantics and a set of axioms. Adopting the semantics based on guaranteed possibility measures,
a precise meaning of desire degrees is given.

As desires are ideal preferences, we consider that it may be somewhat controversial, and domain
dependent, to set (normative) general restrictions about positive (respectively negative) desires
both on a formula and its negation, and also between the positive and negative desires on a given
formula. Hence, we will present a basic axiomatics for bipolar desires representation, and then, we
will consider several axiomatic extensions to cope with some meaningful additional constraints.

3.1. DC Language

The language LDC is defined over a classical propositional language L (built from a countable
set of propositional variables Var with connectives→ and ¬), which is expanded with two (fuzzy)
modal operators D+ and D−. D+ϕ reads as “ϕ is positively desired” and its truth degree repre-
sents the agent’s level of satisfaction would ϕ become true. D−ϕ reads as “ϕ is negatively desired”
(or “ϕ is rejected”) and its truth degree represents the agent’s level of disgust on ϕ becoming true.
We will use a fuzzy modal logic to formalize graded desires and we select Rational Pavelka logic
as the underlying fuzzy logic (see Appendix I). More precisely, formulae of the expanded language
LDC are defined as follows, where Sat(L) denotes the set of satisfiable formulae of L:

• If ϕ ∈ L then ϕ ∈ LDC

• If ϕ ∈ Sat(L) then D−ϕ,D+ϕ ∈ LDC 2

• If r ∈ Q ∩ [0, 1] then r ∈ LDC

• If Φ,Ψ ∈ LDC then Φ → L Ψ ∈ LDC and ¬ LΦ ∈ LDC (other  Lukasiewicz logic connectives,
like ⊗,⊕,∧ L,∨ L,≡ L are definable from ¬ L and → L)

We will call a modal formula closed, or D-formula, when every propositional variable is in the
scope of a D+ or a D− operator. The notation (D+ψ, r), with r ∈ [0, 1] ∩ Q, will be used as a
shortcut of r̄ → L D

+ψ, and reads as: the level of positive desire of ψ is at least r. Analogously
for (D−ψ, r) and r̄ → L D

−ψ.
In this context, the agent’s preferences will be expressed as a theory TD (a set of D-formulae)

containing quantitative expressions about positive and negative preferences, like (D+ϕ, α) or
(D−ψ, β), as well as qualitative expressions like D+ψ → L D

+ϕ (resp. D−ψ → L D
−ϕ), expressing

that ϕ is at least as preferred (resp. rejected) as ψ. In particular (D+φi, 1) ∈ TD means that
the agent has maximum preference in φi and is fully satisfied if it is true. While (D+φj , α) 6∈ TD
for any α > 0 means that the agent is indifferent to φj and the agent does not benefit from φj
becoming true. Analogously, (D−ψi, 1) ∈ TD means that the agent absolutely rejects ψi and thus
the states where ψi is true are totally unacceptable. If (D−ψj , β) 6∈ TD for any β > 0 it simply
means that ψj is not rejected.

3.2. DC Semantics

Some people would argue that if we consider desires as a proactive attitude, reasoning about
desires on disjunctions of formulae is not very intuitive. In most cases an agent may have plans
to achieve ϕ or ψ individually, or to achieve both (ϕ ∧ ψ) but not for achieving one of them,
that is ϕ ∨ ψ. But in some cases, expressing desires for disjunctions may lead to more succinct
specifications. According to the semantics presented in [2], the degree of positive desire for (or
level of satisfaction with) a disjunction of desires ϕ∨ψ is taken to be the minimum of the degrees
for ϕ and ψ. Intuitively, if an agent desires ϕ∨ψ then it is ready to accept the situation where the
less desired goal becomes true, and hence to accept the minimum satisfaction level produced by
one of the two desires. In contrast, the satisfaction degree of reaching both ϕ and φ can be strictly

2We define the modal formulae excluding the possibility of having positive and negative desires on a contradiction,
⊥ /∈ Sat(L).
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greater than reaching one of them separately. These are basically the properties of the guaranteed
possibility measures (see e.g. [2]). Analogously for the degrees of negative desire or rejection, that
is, the rejection degree of ϕ ∨ ψ is taken to be the minimum of the degrees of rejection for ϕ and
for ψ separately, while nothing prevents the rejection level of ϕ ∧ ψ be greater than both.

The intended DC models are Kripke structures M = 〈W, e, π+, π−〉 where W and e are defined
as usual and π+ and π− are preference distributions over worlds, which are used to give semantics
to positive and negative desires:

• π+ : W → [0, 1] is a distribution of positive preferences over the possible worlds. In this
context π+(w) < π+(w′) means that w′ is more preferred than w.

• π− : W → [0, 1] is a distribution of negative preferences over the possible worlds: π−(w) <
π−(w′) means that w′ is more rejected than w.

The truth evaluation for non-modal formulae e : L × W → {0, 1} is defined in the usual
(classical) way. It is extended to atomic modal formulae D−ϕ and D+ϕ by:

• e(D+ϕ,w) = inf{π+(w′) | e(ϕ,w′) = 1}

• e(D−ϕ,w) = inf{π−(w′) | e(ϕ,w′) = 1}

together with the assumption that inf ∅ = 1. This is extended to compound modal formulae by
means of the usual truth-functions of  Lukasiewicz connectives.3

Notice that the evaluation e(w,Φ) of a modal formula Φ only depends on the formula itself
and not on the actual world w ∈ W where the agent is situated, so we will also write eM (Φ) for
e(w,Φ). This is consistent with the intuition that desires represent ideal preferences, regardless of
the actual world and regardless of the cost of moving to a world where the desire is satisfied.

We will write M |= Φ when e(Φ, w) = 1 for all w ∈ W . Let MDC be the class of all Kripke
structures M = 〈W, e, π+, π−〉. Then, for each subclass of models M ⊆ MDC , given a theory T
and a formula Φ, we will write T |=M Φ if M |= Φ for each model M ∈ M such that M |= Ψ for
all Ψ ∈ T .

3.3. DC Axioms and Rules

To axiomatize the above preference-based semantics we need to combine classical logic axioms
for non-modal formulae with Rational Pavelka logic axioms for modal formulae. Also, additional
axioms characterizing the behaviour of the modal operators D+ and D− are needed. The following
are the axioms and rules of the DC logic:

Axioms:

(CPC) Axioms of classical logic for non-modal formulae

(RPL) Axioms of Rational Pavelka logic for modal formulae

(DC0+) D+(ϕ ∨ ψ) ≡ L D
+ϕ ∧ L D

+ψ 4

(DC0−) D−(ϕ ∨ ψ) ≡ L D
−ϕ ∧ L D

−ψ

Rules:

(MP1) modus ponens for →
(MP2) modus ponens for → L

Introduction of D+ and D− for implications:
(ID+) from ϕ→ ψ derive D+ψ → L D

+ϕ
(ID−) from ϕ→ ψ derive D−ψ → L D

−ϕ.

3Standard truth functions on [0, 1] of primitive  Lukasiewicz connectives are as follows: x →L y = min(1, 1 −
x + y),¬Lx = 1 − x. Truth functions of main derived connectives are: x ⊗ y = max(0, x + y − 1), x ⊕ y =
min(1, x+ y), x ∧L y = min(x, y), x ∨L y = max(x, y), x ≡L y = 1− |x− y|.

4Notice that ∧ L is interpreted by the minimum, namely e(Φ ∧ L Ψ, w) = min(e(Φ, w), e(Ψ, w)).
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The formalization we present for D− is somewhat different from the approach presented by
Benferhat et al. in [3], where they use a necessity function, i.e. they consider D−φ as N(¬φ).
Nonetheless, their axiomatic approach is equivalent to ours, since the axiom (DC0−) corresponds
to the necessity axiom N(ϕ ∧ ψ) ≡ N(ϕ) ∧ L N(ψ). The introduction rules for D+ and D−

state that the degree of desire is monotonically decreasing with respect to logical implication.
A straightforward consequence of these rules is that degrees of desire preserve Boolean logical
equivalence, i.e. if ϕ and ψ are classically equivalent, D+ϕ and D+ψ, as well as D−ϕ and D−ψ,
are many-valued equivalent.

The notion of proof, denoted by `DC , is defined as usual from the above axioms and inference
rules. It is a matter of routine to check that the axioms are valid in each DC-model and that the
inference rules preserve validity in each DC-model, hence the above axiomatization is sound with
respect to the defined semantics. Moreover, the basic DC logic is complete for finite theories of
closed (modal) formulae.

Theorem 1 (completeness). Let T be a finite theory of modal formulae and Φ a modal formula.
Then T |=MDC Φ iff T `DC Φ.

Proof: We basically follow the type of proof of [16, Th 8.4.9] with some adaptations, for details
the reader is referred to [8]. 2

The basic logical schema DC puts almost no constraint on the strengths for the positive and
negative desires of a formula ϕ and its negation ¬ϕ. This is in accordance with considering
desires as ideal preferences and hence it may be possible for an agent to have contradictory desires
supported by different arguments.5

Example 1. Recall the scenario described in Section 1. Maŕıa activates a personal agent, based
on our g-BDI agent model, to get an adequate tourist package that satisfies her preferences: she
would be rather happy of practicing rafting (r) and very happy going to a mountain place (m), she
would like more to go climbing (c) than to go trekking, and she wouldn’t like to go farther than
1000km from Buenos Aires (f). The user interface that helps her express these desires ends up
generating a desire theory as follows:

TD = {(D+r, 0.6), (D+m, 0.8), D+m→ L D
+c, (D−f, 0.7)}

Once this initial desire theory is generated the tourist advisor personal agent deduces a number of
new desires:

TD `DC (D+(m ∧ r), 0.8) , TD `DC (D+(m ∨ r), 0.6) , TD `DC (D+c, 0.8)

As Maŕıa would indeed prefer much more to be in a mountain place doing rafting she also expresses
the combined desire with a particularly high value: (D+(m ∧ r), 0.95). Notice that the extended
theory T ′D remains consistent within DC:

T ′D = TD ∪ {(D+(m ∧ r), 0.95)}

Notice that if we consider a compound goal such as going to a far mountain place, represented by
the conjunction (m ∧ f), using the DC axioms, the theory TD proves the following lower bounds
for the positive and negative desire degrees of m ∧ f :

(D+(m ∧ f), 0.8), (D−(m ∧ f), 0.7)

So, m ∧ f has both a high positive and negative desire degree. This has not to be seen as a
shortcoming of the model, it actually reflects that the compound goal has one subgoal which is
highly preferred but also another subgoal which is highly rejected.

5The only indirect constraint DC imposes is the following one: if a theory T derives (D+ϕ, r) and (D+¬ϕ, s)
then, due to axiom (DC0+) and rule (ID+), T also derives both (D+ψ,min(r, s)) for any ψ.
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3.4. Some Additional Consistency Schemas

The basic schema for preference representation and reasoning provided by the DC logic may be
felt too general for some classes of problems and we may want to restrict the possible assignments
of degrees to positive and negative desires for a formula ϕ and its negation ¬ϕ. For instance, as
positive desires are proactive attitudes, it may not be efficient to assign non-zero degrees to D+ϕ
and to D+¬ϕ, since the agent will be searching for necessarily conflicting plans, some aiming to
satisfy ϕ and some to satisfy ¬ϕ.

We propose three different extensions, or schemes, that impose upon the basic logic three
different consistency constraints between positive and negative desires, both at semantic and
syntactic levels. The completeness proofs for the different extensions proposed run like Theorem
1 with the necessary modifications. These different schemes underpin different types of agents, as
the constraints limit in different ways what formulae the agent will accept as desires.

3.4.1. DC1 Schema

It may be unnatural in some domains to simultaneously have positive (in the sense of > 0)
desire degrees for D+ϕ and D+¬ϕ. This constraint and its dual for negative desires amounts to
require the following additional properties of the truth-evaluations in the intended models:

• min(e(D+ϕ,w), e(D+¬ϕ,w)) = 0, and min(e(D−ϕ,w), e(D−¬ϕ,w)) = 0

At the level of Kripke structures, this corresponds to require some extra conditions over π+ and
π−, namely:

• infw∈W π+(w) = 0, and infw∈W π−(w) = 0.

At the syntactic level these conditions are equivalent to add to the basic axiomatic for DC the
following two axioms:

(DC1+) D+ϕ ∧ L D
+(¬ϕ)→ L 0̄ (or equivalently ¬ LD

+(>))

(DC1−) D−ϕ ∧ L D
−(¬ϕ)→ L 0̄ (or equivalently ¬ LD

−(>))

Indeed, one can prove completeness with respect toMDC1 for deductions from finite theories over
the schematic extension of the DC logic with the above two axioms.

We would like to point out that under this schema one can consistently assign positive (and
negative) desires degrees to compound goals starting from the degrees for the atomic ones (e.g.
literals). Indeed, assume we have n atomic goals p1, . . . pn, and consider a theory T = {D+li ≡ αi},
where li is pi or ¬pi, representing an assignment of positive desire degrees to literals under the
above schema DC1, that is, if D+li ≡ αi ∈ T , with αi > 0, then D+¬li ≡ 0 ∈ T . It is easy to
show that this theory is consistent with assigning to conjunctions of different literals l1 ∧ . . . ∧ lj
the compound degree

α1 ⊕ . . .⊕ αj
where e.g. ⊕ is the associative operation x ⊕ y = x + y − x · y. In this way one can consistently
assign desire degrees to any compound goal.

3.4.2. DC2 Schema

The above logical schema DC1 does not put any restriction on positive and negative desires
for the same goal (any classically satisfiable formula). According to Benferhat et al. in [3], a
coherence condition between positive and negative desires should be considered, namely, an agent
cannot desire to be in a world more than the level at which it is tolerated (not rejected). This
condition, translated to our framework, amounts to require in the Kripke structures the following
constraint between the preference distributions π+ and π−:

• ∀w ∈W, π+(w) ≤ 1− π−(w)
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To formulate the axiomatic counterpart that faithfully accounts for the above condition, we
consider MDC2 the subclass of DC-Kripke structures M = (W, e, π+, π−) satisfying the above
constraint between π+and π−. Note that π+(w) ≤ 1− π−(w) iff π+(w)⊗ π−(w) = 0.6

To capture at the syntactical level this class of structures, we consider the extension DC2 of
the DC system with the following axiom: 7

(DC2) (D+ϕ ⊗D−ϕ)→ L 0̄

As in the previous subsection, DC2 can be proved to be complete for finite theories with respect
to the subclass MDC2

of DC-structures.

3.4.3. DC3 Schema

A stronger consistency condition between positive and negative preferences was considered in
[6], requiring that if a world is rejected to some extent, it cannot be positively desired at all. And
conversely, if a goal is somewhat desired it cannot be rejected. Indeed, at the semantic level, this
amounts to require the intended DC-models M = (W, e, π+, π−) to satisfy the following condition
for any w ∈W :

• π−(w) > 0 implies π+(w) = 0 (or equivalently, min(π+(w), π−(w)) = 0)

This is a stronger condition than the one presented in the DC2 schema. We will denote by
MDC3

the subclass of DC-Kripke structures satisfying it. At the syntactic level, the axiom that
faithfully represents this consistency condition is the following one:

(DC3) (D+ϕ ∧ L D
−ϕ)→ L 0̄

Again, the extension of DC logic with the (DC3) axiom can be proven to be complete for
finite theories with respect to the subclass MDC3 of DC-structures.

Example 2. (Example 1 continued) Maŕıa, a few days later, breaks her ankle. She activates the
recommender agent to reject the possibility of going climbing (c). If Maŕıa selects for the agent
the schema DC1, the agent simply adds the formula (D−c, 1) into the former desire theory T ′D,
yielding the new theory:

T ′′D = {(D+m, 0.8), (D+r, 0.6), (D+(m ∧ r), 0.95), (D+c, 0.85), (D−f, 0.7), (D−c, 1)},

as the schema allows for opposite desires.
If Maŕıa selects DC2, the formulae D+c and D−c are not allowed to have degrees adding up

to more than 1, and hence the above theory T ′′D becomes inconsistent. Actually, T ′′D becomes also
inconsistent under DC3, DC3 is stronger than DC2 (it does not even allow to have non-zero
degrees for D+c and D−c). In these cases, the agent should apply a revision mechanism, for
instance to remove (D+c, 0.85) from the theory.

4. Intention Context (IC)

This context represents the agent intentions. We follow the model introduced by Rao and
Georgeff [23], in which an intention is considered a fundamental pro-attitude with an explicit
representation. However, as in the work of Cohen and Levesque [11], in our approach, intentions
result from the agent’s beliefs and desires and then, we do not consider them as a basic attitude.
Intentions, as well as desires, represent a sort of the agent preferences. We consider that intentions
cannot depend just on the benefit, or satisfaction, of reaching a (positive) desire ϕ —represented
in D+ϕ, but also on the world’s state w and the cost of transforming it into a world w′ where the

6Here we use the same symbol as the  Lukasiewicz connective ⊗ to denote its corresponding truth-function on
[0, 1], i.e. x⊗ y = max(x+ y − 1, 0) for any x, y ∈ [0, 1].

7An equivalent presentation of axiom (DC2) is D+ϕ→ L ¬ LD
−ϕ.
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formula ϕ is true. By allowing degrees in intentions we represent a measure of the cost/benefit
relation involved in the agent’s actions towards the desired goal. The formalization of the intention
semantics alone is difficult, because generally it will not only depend on the formula intended, but
also on the plan that the agent executes to achieve a state where the formula is valid. Therefore,
as it will be shown below, we have chosen to a very general framework to axiomatize intentions,
able to be specialized to more particular semantics if needed.

We represent in this context two kinds of graded intentions, intention of a formula ϕ considering
the execution of a particularly plan α, noted Iαϕ, and the final intention to ϕ, noted Iϕ, which
takes into account the best path to reach ϕ. As in the other contexts, if the degree of Iϕ is δ, it
may be considered that the truth degree of the expression “ϕ is intended” is δ. The intention to
make ϕ true must be the consequence of finding a feasible plan α, that permits to achieve a state
of the world where ϕ holds.

The language LIC to represent the agent intentions is defined in a similar way as we did in
DC, starting with the same basic propositional language L and incorporating a family of many-
valued modal operators. We assume the agent has a finite set of actions or plans Πf (a finite
subset of the potentially infinite set of actions Π) at her disposal to achieve the desires. Then, for
each α ∈ Πf we introduce a modal operator Iα such that the truth-degree of a formula Iαϕ will
represent the strength the agent intends ϕ by means of the execution of the particular action α.8

We also introduce another modal operator I with the idea that the truth-degree Iϕ will represent
the intention degree with which the agent intends ϕ by means of the best plan in Πf .

Models for IC are Kripke structures M = 〈W, e, {να}α∈Πf 〉 where, as in the DC structures,
W is a set of worlds and e : W × V ar → {0, 1} is such that, for each world w ∈ W , e(w, ·) is
a Boolean evaluation of propositional variables, which is extended to propositional formulae as
usual. Here, for each α ∈ Πf , να : U → [0, 1] is a mapping (where U ⊆ 2W is such that the sets
{w ∈W | e(w,ϕ) = 1} are ν-measurable for each proposition ϕ) which provides a measure of the
degree of intention for (the set of models of) a goal by means of the plan α. Intuitively, without
any other information about how much the goal is desired, how costly is the application of α or
how probable is that the goal will become true by executing α, the only property which is required
to να is that a disjunction of goals has to be intended at least to the degree of the least intended
goal, i.e. for each A,B ∈ U :

min(να(A), να(B)) ≤ να(A ∪B)

Actually, this is a very general condition, which is compatible with different particular semantics
an agent may consider. Indeed, as one would expect, this is a weaker condition than the one
required for desires since in case degrees of intentions become independent of the cost of the
actions (because e.g. all actions have the same cost), their properties should be basically the same
as those of desires. This condition is compatible as well with the semantics of intention degrees
used in step 5 of Section 6 as a form of expected global benefit, where benefit is understood as
the utility of reaching a goal (as a function of its desire degree) minus the cost of the action used
to reach that goal9 Indeed, let us denote by [ϕ] the set of worlds where ϕ is true, Pα([ϕ]) the
probability of making ϕ true after α, D([ϕ]) the positive desire degree of ϕ, u : [0, 1] → R a
non-increasing mapping transforming desire degrees into negative costs, cα the (real-valued) cost
of the action α, and h : R → [0, 1] a non-decreasing map interpreting benefits into normailzed
utility degrees, and define να([ϕ]) = h(Pα([ϕ]) · (u(D([ϕ]))− cα)). Then one can indeed check that
the inequality να([ϕ] ∪ [ψ]) ≥ min(να([ϕ]), να([ψ])) holds.

Finally, let us mention that the above condition on να says nothing about whether the intention
degree is monotonically increasing or decreasing with respect to inclusion (implication). In fact, if
a goal ϕ has a relatively high intention degree, then the joint intention degree of ϕ with another
goal ψ, i.e. the degree of the conjunction ϕ ∧ ψ, can be higher when ψ is also highly desired, but

8In the IC context we are not concerned about the question of whether a given desire can be reached by the
execution of a particular action, this is left for the Planner context, see Section 6.

9A similar semantics for intentions is used in [24], where the net value of an intention is defined as the difference
between the value of the intention outcome and the cost of the intention.
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can also be lower if ψ is rejected.
Then, an evaluation e in each world is extended to atomic modal formulae by stipulating

• e(w, Iαϕ) = να({w ∈W | e(w,ϕ) = 1}),

• e(w, Iϕ) = max{e(w, Iαϕ) | α ∈ Πf}

and to compound modal formulae using the truth functions of Rational Pavelka logic.
As usual, we will write M |= Φ when e(Φ, w) = 1 for all w ∈ W and will denote by MIC the

class of all Kripke structures M = 〈W, e, {να}α∈Πf 〉. Then, given a theory T and a formula Φ, we
will write T |=MIC Φ if M |= Φ for each model M ∈MIC such that M |= Ψ for all Ψ ∈ T .

A complete axiomatics for the IC logic with respect to the class of structures MIC is the
following:

1. Axioms of classical logic for the non-modal formulae

2. Axioms of Rational Pavelka logic for the modal formulae

3. Axiom for Iα modalities: (Iαϕ ∧ L Iαψ)→ L Iα(ϕ ∨ ψ)

4. Definitional Axiom for I: Iϕ ≡ L

∨
α∈Πf Iαϕ

5. Inference Rules: modus ponens for → and for → L, and introduction of Iα for equivalences:
from ϕ ≡ ψ derive Iαψ ≡ L Iαϕ for each α ∈ Πf .

The axiom for the Iα is indeed weaker than the (DC0+) and (DC0−) axioms for desires,
while axiom 4 syntactically captures the idea that the intention degree of ϕ is the highest degree
with which the agent intends ϕ by means of some plan in Πf . The rule of introduction of the
Iα operators for equivalences is needed to guarantee the syntactic irrelevance of these operators,
and it is obviously weaker than the rules of introduction of the positive and negative desires for
implications in the DC.

The notion of proof for IC, denoted `IC , is defined as usual from the above axioms and
inference rules. The presented axiomatics is obviously sound and one can prove completeness in
an analogous way as for DC logic and hence we omit the proof.

Theorem 2. Let T be a finite modal theory and Φ a modal formula. Then T `IC Φ iff T |=MIC
Φ.

5. Belief Context (BC)

In this context the agent represents her uncertain beliefs about the world where she lives.
Since situated agents need to reason about their possible actions and the changes they may cause
to the environment, the potential consequences of actions must be part of any situated agent’s
beliefs set. We use propositional Dynamic logic (PDL) [19] to describe statements related to action
execution, and to represent probabilistic beliefs on them we adopt a similar fuzzy modal approach
to the one used in the other mental contexts. Here, atomic modal formulas of the BC logic are of
the form Bϕ, where ϕ is a PDL formula. In particular, B[α]ϕ is meant to denote that it is likely,
or probable, that after executing action α, ϕ becomes true. The probabilistic logic for BC is then
axiomatized as a theory in Rational Pavelka logic (RPL), again in a similar way than as we do
in the DC and IC contexts. Due to space limitations, details on the language definition, axioms
and rules for the BC context are not included here but can be checked in [6]. We would like to
note that other uncertainty models (like the possibilistic necessity model) might be used as well.

6. Functional contexts and Bridge rules

In this section we present the remaining necessary components of our multi-context agent
architecture example: the Planner context (PC), the Communication context (CC) and the Bridge
rules (BR). The Planner context (PC) builds plans to satisfy the user’s desires, where plans have
an associated cost according to the actions involved. The theory of planning in PC includes special
predicates to represent actions, plans, beliefs and desires, such as the predicate fplan:

10



• fplan(ϕ, α, preC, postC, cα) is generated within PC when a plan instance is found to be
feasible, that is, if and only if: (i) α makes ϕ true, (ii) ϕ is such that (D+ϕ, d0) belongs to
the DC theory of the agent over a given threshold d0, (iii) the preconditions hold to some
degree, i.e. (BpreC, s0) must be in the BC theory for a given threshold s0, and (iv) avoids
negative desires as post-conditions, i.e. if (¬ LD

−postC, 1 − e0) belongs to the agent DC
theory then e0 must be very small. cα ∈ R is the cost of the plan.

The communication context (CC) makes it possible to encapsulate the agent’s internal struc-
ture by having a unique and well-defined interface with the environment. The theory inside this
context will take care of the sending and receiving of messages to and from other agents in the
multiagent society where our g-BDI agents live. The communication context perceives changes in
the environment and adds them as beliefs into the belief context BC via a bridge rule (see step
1 below). Also, it declares the preferred actions to execute via another bridge rule (see step 7
below).

For our running illustrative example of g-BDI agent architecture (see Figure 1), we define a
set of basic bridge rules and we show the information flow from perception to action.

1. CC perceives the environment: The agent perceives the environment and generates graded
beliefs (where the degree r depends on the perception) by means of the following bridge rule:

CC : ϕ

BC : (Bϕ, r)

2. DC gets the user’s graded positive and negative desires: The agent receives the user preferences
as formulae in the DC context in a similar way: from user’s expressed desires, and using a
bridge rule, to graded positive and negative desires.

3. Desires and beliefs are passed from DC and BC to PC: From positive and negative desires,
and beliefs about plans and domain knowledge, bridge rules generate corresponding predicate
instances (quoting using d.e)10 in the PC context:

DC : (D+ϕ, d)

PC : posdesire(d(D+ϕ, d)e)
DC : (D−ψ, d)

PC : negdesire(d(D−ψ, d)e)
BC : (BΦ, r)

PC : belief(d(BΦ, r)e)

4. PC looks for feasible plans, as mentioned above, feasible plans fulfill (to some degree) positive
desires, satisfy some preconditions and avoid undesired postconditions. Thus, PC generates
predicate instances of fplan(ϕ, α, PreC, PostC, cα).

5. A process for deriving intentions: Here we assume actions (and plans) do not fail11 and that
a belief degree r in a formula (B[α]ϕ, r) is interpreted as the probability that ϕ satisfies the
user by executing α. Then the intention degree to reach a desire ϕ by means of a plan α
is taken as a trade-off between the benefit of reaching this desire and the cost of the plan,
weighted by the belief degree r. This is implemented by the following bridge rule:

DC : (D+ϕ, d), BC : (B[α]ϕ, r), PC : fplan(ϕ, α, preC, postC, cα)

IC : (Iαϕ, h(r · (u(d)− cα)))
(1)

where u : [0, 1]→ R is a non-decreasing mapping that transforms desire degrees into negative
costs (benefits), i.e. u(d) can be interpreted as how much the user accepts to pay to achieve a
goal desired to the degree d, and h : R→ [0, 1] is a non-decreasing transformation that maps
global benefits back to normalized utility degrees. Indeed, the value h(r · (u(d)− cα)) can be
read as a monotone transformation of the expected benefit of intending ϕ through plan α.

6. Action selection process: The information supplied by the above bridge rule to the IC context
allows this context to derive (Iϕ, iϕ), a single intention formula for each desire ϕ. That is,
iϕ is the intention degree of the best feasible plan for ϕ (see the definitional axiom for I in
Section 4).

10A quoting mechanism such as d.e allows to transform modal formulae into first order logic terms.
11Otherwise, we would need to consider richer stochastic processes like MDPs or POMDPs.
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7. The PC and IC inform CC of the best plans for each desire: This is done by the following
rule:

PC : fplan(ϕ, α, preC, postC, cα), IC : (Iαϕ, iϕ), IC : (Iϕ, iϕ)

CC : do(α, iϕ)

The agent interacts with the environment through the Communication Context CC by declar-
ing which plan α the agent will finally execute. To do so, the CC context selects the action
with the highest degree among the formulae do(α, iϕ) received via the previous bridge rule.

7. Discussion and Related Work

In this research note we have reported on the development of a graded intentional agent scheme
for practical reasoning, defined as a multi-context system, where logical contexts provide a formal
representation (complete axiomatizations) of the different mental attitudes (belief, desires and
intentions) and an interaction framework for them.

The preliminary idea of extending BDI architectures with graded mental attitudes goes back
to Parsons and Giorgini [20], where, also within a multi-context system approach, they introduce
graded beliefs by means of mass assignments in the sense of the Dempster-Shafer theory. This
multi-context model of BDI agents in a bi-valued approach has been previously proposed in [21].
Blee et al. [3] also introduce grades in all the mental notions of BDI. They use a common syntax
for the agent’s mental attitudes while in our multi-context system approach we define in a separate
way a suitable logic for each attitude.

The problem of preference representation has been tackled in the literature with quite a different
number of approaches. Inspired in [2, 3], a possibilistic bipolar representation of preferences has
been used in our agent model. This is related but somewhat different from the logic defined by
Lang et al. in [18] to represent (conditional) desires with a semantics based on utility losses and
gains. These utilities are added up to a single measure which, together with domain knowledge,
induces a (qualitative) partial preference ordering over worlds. In contrast with Boutiller [5] they
also differentiate between factual background knowledge, that tells which worlds are physically
impossible, and contingent knowledge, expressing which of the physical possible worlds can be
the actual state of affairs. Then, the agent should aim at the best feasible world by performing
a suitable action but their work is not focused on action theories. We find some differences
with respect to our agent mode. First, it does not include an explicit representation of the agent
rejections (negative preferences); second desires are only qualitatively represented (preference order
over worlds) while in our model can also represent the strength of them in a numerical way.

An argumentation approach to practical reasoning is proposed in [22, 1] where they provide a
rich argumentation-based framework for uncertain beliefs, consistent desires, and for generating
consistent plans for achieving these desires. These plans, called intentions, are generated via some
ad-hoc rules, that could be mapped into particular bridge rules in our approach. In contrast
to our approach, the authors do not present a, strictly speaking, formal system (a sound and
complete logical system) to represent and reason with these graded attitudes according to a suitable
uncertainty model.

Finally, in [12, 13] the authors also propose a very similar possibilistic approach to deal with
graded beliefs and desires, that are used afterwards to determine the agent’s goals. A set of desire
generation rules (similar to the ones in [22]) determine the graded positive desires and they refer
to the representation of negative desires we use in our model as future work. In particular, in
[13] they propose different belief change operators to deal with trust and distrust. Belief change
may induce changes in the justification degrees of some desires/goals. Then, in [12] they explore
the belief-goal consistency and incompleteness in the proposed formalism for BDI agents. These
relations and the ones called realisms [21], as well as the desire generation rules, can also be
modeled in the g-BDI agent architecture by defining appropriate bridge rules.

It is clearly a matter for further research to include in our logical framework a revision process
for beliefs, desires and intentions in order to keep these attitudes consistent for agents living in
dynamic environments.
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Appendix I: About Rational Pavelka logic

Rational Pavelka logic RPL is an extension of  Lukasiewicz’s infinitely-valued logic by expanding its
language with rational truth-constants to explicitly reason about degrees of truth. It was introduced by
Pavelka in the late seventies and Hájek provided in [16] a simpler formalization.

Formulae are built from propositional variables p1, p2, . . . and truth constants r for each rational
r ∈ [0, 1] using two connectives, an implication → L and a negation ¬ L. Other connectives can defined
from these ones, in particular two conjunctions, two disjunctions and an equivalence:

ϕ ⊗ ψ stands for ¬ L(ϕ→ L ¬ Lψ) ϕ ⊕ ψ stands for ¬ Lϕ→ L ψ
ϕ ∨ L ψ stands for (ϕ→ L ψ)→ L ψ ϕ ∧ L ψ stands for ¬ L(¬ Lϕ ∨ L ¬ Lψ)
ϕ ≡ L ψ stands for (ϕ→ L ψ) ∧ L (ψ → L ϕ)

 Lukasiewicz’s truth functions for the connectives → L and ¬ L are (using the same symbols as for the
connectives):

x → L y = min(1, 1− x+ y) ¬ Lx = 1− x

Taking them into account, the corresponding truth functions for the above definable connectives are:

x ⊗ y = max(0, x+ y − 1) x ⊕ y = min(x+ y, 1)
x ∨ L y = max(x, y) x ∧ L y = min(x, y)
x ≡ L y = 1− |x− y|

An RPL evaluation e is a mapping of propositional variables into [0, 1]. Such a mapping uniquely extends
to an evaluation of all formulae using the above truth functions and defining e(r) = r for each rational
r ∈ [0, 1]. Note that e(r → L ϕ) = 1 iff r ≤ e(ϕ). An evaluation is a model of a set of formulae (theory) T
whenever e(ϕ) = 1 for all ϕ ∈ T . A formula ψ is a logical consequence of a theory T , written T |=RPL ψ,
whenever e(ψ) = 1 for every evaluation e that is a model of T .

Logical axioms of RPL are:

(i) axioms of  Lukasiewicz’s logic

ϕ→ L (ψ → L ϕ) (ϕ→ L ψ)→ L ((ψ → L χ)→ L (ϕ→ L χ))
(¬ Lϕ→ L ¬ Lψ)→ L (ψ → L ϕ) ((ϕ→ L ψ)→ L ψ)→ L ((ψ → L ϕ)→ L ϕ)

(ii) bookkeeping axioms (for arbitrary rationals r, s ∈ [0, 1]):

¬ Lr ≡ L 1− r r → L s ≡ L min(1, 1− r + s)

The only deduction rule is modus ponens for → L. The notion of proof in RPL, denoted `RPL, is defined
as usual from the above axioms and rule. RPL has been shown to be complete for deductions from finite
theories: for each finite T and ϕ, T `RPL ϕ iff T |=RPL ϕ.

14


