
BnB-ADOPT+ with Several Soft Arc Consistency Levels
Patricia Gutierrez and Pedro Meseguer 1

Abstract. Distributed constraint optimization problems can be
solved by BnB-ADOPT+, a distributed asynchronous search algo-
rithm. In the centralized case, local consistency techniques applied to
constraint optimization have been shown very beneficial to increase
performance. In this paper, we combine BnB-ADOPT+ with differ-
ent levels of soft arc consistency, propagating unconditional dele-
tions caused by either the enforced local consistency or by distributed
search. The new algorithm maintains BnB-ADOPT+ optimality and
termination. In practice, this approach decreases substantially BnB-
ADOPT+ requirements in communication cost and computation ef-
fort when solving commonly used benchmarks.

1 INTRODUCTION
There is an increasing interest in solving constraint optimization
problems (COP) in a distributed form. Often it occurs that differ-
ent problem elements are distributed among autonomous agents, and
they cannot be grouped into a single agent for privacy or for other
reasons (for example, consider distributed meeting scheduling [7] or
sensor networks applications [1]). In this case, we talk about dis-
tributed COP (DCOP). To solve them, distributed algorithms are
needed, to achieve an optimal solution without joining all problem
elements into a single agent. Since they are based on message pass-
ing, communication costs have to be included when evaluating them.

ADOPT [6] is an asynchronous distributed search algorithm for
DCOP solving. It has been improved in BnB-ADOPT [8], which
changed the original best-first strategy for depth-first, obtaining bet-
ter performance. This algorithm has also been improved removing
some redundant messages in BnB-ADOPT+ [2], which is currently
one of the most performant asynchronous distributed search algo-
rithms for DCOP solving to optimality.

In the centralized case, COPs are often formulated using soft con-
strains [5]. The standard search solving algorithm is branch-and-
bound (BnB). Maintaining some local consistency on soft constraints
during BnB search causes substantial improvements in performance
[4, 3]. Taking inspiration from this fact, we have explored local con-
sistency maintenance of soft constraints when solving DCOPs. No-
tice that local consistencies are conceptually equal in the central-
ized/distributed cases. However, maintaining local consistencies dur-
ing distributed search requires different techniques than in the cen-
tralized case, where all problem elements are available to the single
agent performing the search. Maintaining local consistencies keeps
the optimality and termination of asynchronous distributed search.

Specifically, we have taken BnB-ADOPT+ as asynchronous dis-
tributed search algorithm, on top of which we maintain AC∗ and
FDAC∗ versions of soft arc consistency. Then, we present the new
algorithms BnB-ADOPT+-AC∗ and BnB-ADOPT+-FDAC∗. They

1 IIIA, CSIC, Campus UAB, 08193 Bellaterra, Spain.
{patricia|pedro}@iiia.csic.es

achieve spectacular reductions in communication and computation if
compared with the original BnB-ADOPT+ on several benchmarks.

This paper is organized as follows. In section 2 we telegraphically
describe the concepts used in the rest of the paper (we assume some
familiarity with BnB-ADOPT and soft arc consistency versions). We
present our approach in section 3, discussing some differences with
the centralized case. We introduce the new algorithms with some de-
tail in section 4, and their experimental evaluation in section 5. Fi-
nally, we conclude in section 6.

2 PRELIMINARIES
COP. A binary Constraint Optimization Problem (COP) is defined
by (X ,D, C), where X = {x1, . . . , xn} is a set of variables; D =
{D1, . . . , Dn} is a collection of finite domains; Di is the initial do-
main of xi; C is a set of unary and binary soft constraints represented
as cost functions; Cij ∈ C specifies the cost of every combination
of values of var(Cij) = (xi, xj), Cij : Di ×Dj 7→ N ∪ {0,∞}.
The cost of a complete tuple is the addition of all individual cost
functions evaluated on that particular tuple. This definition assumes
the weighted model of soft constraints [5]. An optimal solution is a
complete tuple with minimum cost.
Soft Arc Consistency. Let be a binary COP: (i, a) means xi taking
value a, > is the lowest unacceptable cost, Cij is the binary cost
function between xi and xj , Ci is the unary cost function on xi val-
ues, Cφ is a zero-ary cost function that represents a necessary global
cost of any complete assignment. As [3], we consider the following
local consistencies (variables are totally ordered):

• Node Consistency*: (i, a) is node consistent* (NC∗) if Cφ +
Ci(a) < >; xi is NC∗ if all its values are NC∗ and there is a ∈ Di
s.t. Ci(a) = 0; a COP is NC∗ if every variable is NC∗.

• Arc consistency*: (i, a) is arc consistency (AC) wrt. cost function
Cij if there is b ∈ Dj s.t. Cij(a, b) = 0; b is a support of a;
xi is AC if all its values are AC wrt. every binary cost function
involving xi; a COP is AC∗ if every variable is AC and NC∗.

• Directional arc consistency*: (i, a) is directional arc consistent
(DAC) wrt. cost function Cij , j > i, if there is b ∈ Dj s.t.
Cij(a, b) +Cj(b) = 0; b is a full support of a; xi is DAC if all its
values are DAC wrt. every Cij , j > i; a COP is DAC∗ if every
variable is DAC and NC∗.

• Full DAC*: a COP is FDAC∗ if it is DAC∗ and AC∗.

AC∗/DAC∗ can be reached forcing supports/full supports to NC∗

values and pruning values not NC∗. Supports can be forced on every
value by projecting the minimum cost from its binary cost functions
to its unary costs, and then projecting the minimum unary cost into
Cφ. Full supports can be forced in the same way, but first it is needed
to extend from the unary costs of neighbors to the binary cost func-
tions the minimum cost required to perform in the next step the pro-



jection over the value. The systematic application of these operations
does not change the optimum cost and maintains an optimal solution
[3]. When we prune a value from xi to ensure AC∗/DAC∗, we need
to recheck AC∗/DAC∗ on every variable that xi is constrained with,
since the deleted value could be the support/full support of a value of
a neighbor variable. So, a deleted value in one variable might cause
further deletions in other variables. The AC∗/DAC∗ check must be
performed until no further values are deleted.
DCOP. A Distributed Constraint Optimization Problem (DCOP)
is defined by (X ,D, C,A,α), where X ,D, C define a COP, A =
{1, . . . , p} is a set of p agents and α : X → Amaps each variable to
one agent. We assume that each agent holds exactly one variable (so
variables and agents can be used interchangeably) and cost functions
are unary and binary only. Agents communicate through messages,
which could be delayed but never lost, and they are delivered in the
order they were sent, for any pair of agents.
BnB-ADOPT. BnB-ADOPT [8] is a reference algorithm for DCOP.
It is a depth-first version of ADOPT [6], showing a better perfor-
mance. As ADOPT, it arranges agents in a DFS tree. Each agent
holds a context, which is a set of assignments involving the agent’s
ancestors, and will be updated with message exchange. Messages
are VALUE(i , j , val , th), –i informs child or pseudochild j that it
has taken value val with threshold th–, COST(k , j , context , lb, ub)
–k informs parent j that with context its bound are lb and ub–,
and TERMINATE(i, j), –i informs child j that terminates–. A BnB-
ADOPT agent executes the following loop: it reads and processes all
incoming messages and takes value. Then, it sends a VALUE to each
child or pseudochild and a COST to its parent.
BnB-ADOPT+. BnB-ADOPT+ [2] is a version of BnB-ADOPT
that saves most of redundant VALUE and COST messages, keeping
optimality and termination. BnB-ADOPT+ causes substantial reduc-
tions in communication costs with respect to BnB-ADOPT.

3 BnB-ADOPT+ + SOFT ARC CONSISTENCY
Here we present our contribution combining distributed search (BnB-
ADOPT+) and maintaining some kind of soft arc consistency for
DCOP solving. Due to the distributed setting this combination re-
quires some care. In a naive approach, each time an agent needs infor-
mation of other agent this would generate two messages (request and
response) which could cause a serious degradation in performance.
In our approach, we try to keep the number of exchanged messages
as low as possible, introducing the required elements to enforce the
selected soft arc consistency in existing BnB-ADOPT+ messages,
keeping their meanings for distributed search.

Let us consider a DCOP instance, where agents are arranged in a
DFS tree and each agent executes BnB-ADOPT+. Let us consider

a 

b 

i 
a 

b 

j 
3


3

2

2


a 

b 

i 
a 

b 

j 
3


2

Τ=2


a 

b 

i 
a 

b 

j 
3


2


Figure 1. Left: Simple example with two agents i and j and two values per
variable. Binary costs are indicated, unary costs are zero. The optimum cost
is 2 and there are two optimal solutions (i, b)(j, a) and (i, b)(j, b). Center: i

projects Cij on its unary costs. No link between two values of different
agents means a zero binary cost. Right: if > = 2, pruning v with

cost(v) = > causes to lose value (i, b) which is part of the two optimal
solutions. In fact, no value remains for i.

a generic agent self that takes value v. After sending VALUE mes-
sages, self receives COST messages from its children. A COST mes-
sage contains the lower bound computed by BnB-ADOPT+, with the
context (variable, value) pairs on which this lower bound was com-
puted. We consider COST messages whose context is simply the self
agent with its actual value v. If the sum of the lower bounds of these
COST messages exceeds> (the lowest unacceptable cost), the value
v of self can be deleted. To see this, it is enough to realize that the
lower bound is computed assuming (variable, value) pairs of context:
if this is simply (self , v), the actual cost of v does not depend on the
value of any other agent, so if it exceeds > it can be deleted.

This reasoning is valid for any agent. In addition, some extra prun-
ing can be done at the agent located at the root of the DFS tree
(Droot = {a, b, . . .}). Let us assume that initially root takes value
a. After a while, root knows cost(a) = lb(a) = ub(a) =>1, and it
decides to change its assignment to b. After exchanging some mes-
sages, root knows cost(b) = lb(b) = ub(b) =>2. If>1 > >2 then
value a can be removed fromDroot because cost(a) > cost(b). Just
removing awill cause no effect in BnB-ADOPT+, because it will not
consider a again as possible value for root . However, if we inform
constrained agents that a is no longer in Droot , this may cause some
values of other agents to become unfeasible so they can be deleted.

In these two cases, deletions are unconditional because they do
not depend on values of other agents. These deletions can be further
propagated in the same way, decreasing the size of the search space.
Any deletion caused by propagation of unconditional deletions is
also unconditional. To propagate these deletions to other agents we
need to maintain some kind of soft arc consistency during search.

Maintaining soft arc consistency in the distributed case has some
differences with the centralized case. They are summarized next:

• Pruning condition. In the centralized case, a value a ∈ Di can be
removed if it is not NC∗, that is, if Ci(a) +Cφ ≥ >. However, in
the distributed case a can be removed only if Ci(a) + Cφ > >,
as explained in the following. In both cases, > is an upper bound
(≥) of the optimum cost. In the distributed case, BnB-ADOPT+

terminates leaving at each agent an assignment that belongs to a
solution with the optimum cost (optimal solution). Pruned values
will not be in their domains when BnB-ADOPT+ terminates. If
we prune a value when its cost equals >, we might remove a
value that belongs to an optimal solution. For this reason, we can

a 

b 

i 
a 

b 

j 
2


3

1

4

Cϕ=0


a 

b 

a 

b 

2

1


1
 3

Cϕ=0


i j 
a 

b 

a 

b 

1

1


0
 3

Cϕ=1


i j 

agent i  agent i 

a 

b 

a 

b 3

1
 1


1

Cϕ=1


i j 
a 

b 

a 

b 2

1
 0


1

Cϕ=2


i j 

agent j  agent j 

Figure 2. (UP) Left: Simple example with two agents i and j and two
values per variable. Center: i projects Cij on its unary costs. Right: i

projects unary costs on Cφ. (DOWN) Center: j projects Cij on its unary
costs, without considering previous projection of i (this is incorrect). Right:

j projects unary costs on Cφ, causing an incorrect increment.



BnB-ADOPT+ messages:
VALUE(sender , destination, value, threshold)

COST(sender , destination, context [], lb, ub)

STOP(sender , destination)

BnB-ADOPT+-AC∗ messages:
VALUE(sender , destination, value, threshold ,>,Cφ)

COST(sender , destination, context [], lb, ub, subtreeContr)

STOP(sender , destination, emptydomain)

DEL(sender , destination, value)

BnB-ADOPT+-FDAC* messages: those of BnB-ADOPT+-AC∗ plus
UCO(sender , destination, vectorOfExtensions)

Figure 3. Messages of BnB-ADOPT+, BnB-ADOPT+-AC∗ and
BnB-ADOPT+-FDAC∗.

only prune when the value cost exceeds >. An example appears
in Figure 1 (in the centralized case, the only agent executing the
solving procedure stores the complete ”best solution” found as
search progresses; a value of the optimal solution can be pruned
from its domain, because that solution was stored somewhere;
when the algorithm terminates, that solution will be recalled).

• Legal representation of cost functions. In the centralized case, all
cost functions are known and manipulated by a single agent, the
one in charge of COP solving. This agent keeps a single copy of
each cost function, where every update is accumulated. In the dis-
tributed case, a cost function Cij between agents i and j is known
by both agents, which initially share the same representation of
Cij . Operations to maintain soft arc consistency modify this rep-
resentation. Since each agent operates differently, after a while
agents could have a different representation of Cij . Both agents
must maintain a legal representation of Cij during the soft arc
consistency operations. Otherwise, the same cost can be counted
twice when projecting unary costs on Cφ, as shown in Figure 2,
causing Ci(a) + Cφ to become an invalid lower bound for a. To
maintain a legal representation, i has to simulate the action of j
on its Cij representation, and vice versa. In some cases, i has also
to send a message to j.

In the distributed case, it is usually assumed that each agent knows
about (i) its variable and (ii) the cost functions it has with other
agents. Assumption (ii) implies that it also knows about the domain
of variables it is constrained with (assuming that cost functions do
not contain irrelevant values). To enforce any soft arc consistency,
we explicitely require that if agent i is connected with agent j by
Cij , i has to represent locally Dj . For privacy reasons, we assume
that the unary costs of the values of an agent are held by itself, who
knows them and updates them according the local consistency en-
forced. An agent neither can know nor update unary costs of other
agents. Some soft arc consistencies require that agents have to be or-
dered. We take the order of agents in each branch of the DFS tree
used by BnB-ADOPT+. Observe that, although it is not a total order,
agents in separate branches do not share cost functions, so for en-
forcing soft arc consistency it is enough with the ordering that agents
have in DFS branches.

4 BnB-ADOPT+ AND AC∗/FDAC∗

Distributed search can cause unconditional value deletions. These
value deletions can be propagated maintaining soft arc consistency

i 

j 

k 

AC*


AC*
AC*


AC*


DEL(j,i,b) 

DEL(j,k,b) 

{a, b, c} 

i 

j 

k 

AC*


AC*
DAC*


DAC*


DEL(j,i,b) 

DEL(j,k,b) 

{a, b, c} 

UCO(j,i,[.,.,.,.]) 

Figure 4. Three agents i, j, k in the same branch of the DFS tree. (Left)
Maintaining AC∗: Cost functions are AC∗ in both senses; deleting value b in

Dj causes to send two DEL messages to i and k to restore AC∗. (Right)
Maintaining FDAC∗: Cost functions are FDAC∗ (DAC∗ in one sense and

AC∗ in the other); deleting value b in Dj causes to send two DEL messages
to i and k to restore AC∗, plus one UCO message to the higher agent i to

restore DAC∗.

during distributed search. This idea can be easily included in BnB-
ADOPT+. Since there are several soft arc consistencies, this ap-
proach generates new algorithms depending on the selected soft arc
consistency to be maintained. Here we present the connection of
BnB-ADOPT+ with AC∗ and FDAC∗. It is not difficult to prove
than, no matter maintaining AC∗ or FDAC∗, the new algorithms keep
the optimality and termination properties of BnB-ADOPT [8].

4.1 BnB-ADOPT+-AC∗

BnB-ADOPT+-AC∗ performs distributed search and maintains AC∗

level of soft arc consistency. If i and j are two neighbor agents, i < j,
AC∗ is maintained from i to j and from j to i, as shown in Figure
4 (left). Communication between agents is done by message pass-
ing. The semantic of original BnB-ADOPT+ messages remains un-
changed. New elements are included in these messages, they appear
in Figure 3. BnB-ADOPT+-AC* requires some minor changes with
respect to BnB-ADOPT+:

• A new message type, DEL, is required. When self deletes value
a in Dself , it sends a DEL message to every agent constrained
with it. This is depicted in Figure 4 (left). When self receives a
DEL message, it registers that the message value has been deleted
from the domain of sender, and it enforces AC* on the constraint
between self and sender. If, as result of this enforcing, some value
is deleted in Dself , it is propagated.

• VALUE messages include> andCφ. The initial> is passed as pa-
rameter and root propagates it downwards, informing the agents
of the lowest unacceptable cost. As search progresses, root may
discover lower values for >, which are propagated in the same
way. Contributions to Cφ are propagated upwards in COST mes-
sages and aggregated in root , building Cφ, a lower bound of the
instance global cost (no matter which values are assigned). Then,
root propagates Cφ downwards in VALUE messages.

• COST messages include the subtree contribution of each agent to
the global Cφ. Each agent adds its own contribution with the sub-
tree contributions of all its children, and the result is included in
the next COST message sent to its parent. All these contributions
are finally added in root , forming the global Cφ, which is propa-
gated downwards in VALUE messages.



procedure AC∗-preprocess(>)
initialize;
AC∗();
while ¬end ∧ ¬quiescence do
msg ← getMsg();
switch(msg.type)
DEL: ProcessDelete(msg); STOP : ProcessStop(msg);

procedure AC∗()
for each i ∈ neighbors(self ) do

if i < self then
AC∗-one-way(self , i);

1 AC∗-one-way(i, self );
else
AC∗-one-way(i, self );

2 AC∗-one-way(self , i);

procedure AC∗-one-way(i, j); /* after execution, AC∗ from i to j holds */
FromBinaryToUnary(i, j),
if i = self then
PruneDomainSelf();
FromUnarySelfToCφ();

procedure FromBinaryToUnary(i, j)
for each a ∈ Di do
v ← argminb∈Dj

{Cij (a, b)}; α← Cij(a, v);
for each b ∈ Dj do Cij(a, b)← Cij(a, b)− α;
if i = self then Ci(a)← Ci(a) + α;

procedure FromUnarySelfToCφ()
v ← argmina∈Dself

{Cself (a)}; α← Cself (v);
myContribution ← myContribution + α;
for each a ∈ Dself do Cself (a)← Cself (a)− α;

procedure PruneDomainSelf()
for each a ∈ Dself do if Cself (a) + Cφ > > then DeleteValue(a);

procedure DeleteValue(a)
Dself ← Dself − {a};
if Dself = ∅ then

for each j ∈ neighbors(self ) do sendMsg:(STOP, self , j , true);
end ← true;

else
for each j ∈ neighbors(self ) do
sendMsg:(DEL, self , j , a);

3 AC∗-one-way(j , self );
FromUnarySelfToCφ();
if a = myValue then myValue ← argminv∈Dself

LB(v);

procedure ProcessDelete(msg)
Dsender ← Dsender − {msg.value};

4 AC∗-one-way(self , sender);

procedure ProcessStop(msg)
if (msg.emptyDomain = true) then

for each j ∈ neighbors(self ), j 6= sender do
sendMsg(STOP, self , j , true);

end ← true;

Figure 5. The preprocess code for enforcing AC∗.

We assume that cost functions are initially AC∗. If not, they are
made AC∗ by preprocess of Figure 5. A quick description follows:

• AC-preprocess∗. It receives the initial > and performs AC∗.
Then, it performs a receiving loop of DEL or STOP messages that
ends when an empty domain has been detected (end is true) or
when there are no more messages (quiescence is true).

• AC∗(). For each binary cost function in which self is involved,
it enforces AC∗ with the following assumption: it projects first on
the lower agent and then on the higher agent. It is worth noting that
executing AC∗-one-way(i , self ) does not change unary costs of
self values, but modifies the representation ofCi,self in self in the
same way agent i does.

• AC∗-one-way(i, j). It enforces AC∗ property from i to j.
• FromBinaryToUnary(i, j). It projects binary costs Cij on

unary costs. It updates unary costs when the first argument is self .
• FromUnarySelfToCφ(). It projects self unary costs on

myContribution , which accumulates self contribution to Cφ.
• PruneDomainSelf(). Checks for deletion every value in Dself .

1 DAC∗-one-way(i);

2 do nothing /* */

3 if j < self then DAC∗-one-way(j ); else AC∗-one-way(j , self );

4 if self > sender AC∗-one-way(self , sender);

procedure DAC∗-one-way(i)
P [a]← minb∈Dself

{Ci,self (a, b) + Cself (b)};
E [b]← maxa∈Di

{P [a]− Ci,self (a, b)};
sendMsg(UCO, self , i,E);
FromUnarySelfToBinary(i,E);
FromBinaryToUnary(i, self );

procedure FromUnarySelfToBinary(i, vector)
for each b ∈ Dself do

for each a ∈ Di do Ci,self (a, b)← Ci,self (a, b) + vector [b];
Cself (b)← Cself (b)− vector [b];

procedure ProcessUnaryCosts(msg)
for each b ∈ Dsender do

for each a ∈ Dself do
Cself ,sender (a, b)← Cself ,sender (a, b) + msg.vector(b); /* extension */

FromBinaryToUnary(self , sender);
PruneDomainSelf();
FromUnarySelfToCφ();
for each i ∈ neighbors(self ) do

if i < self then DAC∗-one-way(self , i);

Figure 6. Replacing lines 1, 2, 3, 4 of Figure 5 for the ones indicated here,
we obtain the preprocess code for enforcing FDAC∗. When a UCO message

arrives, ProcessUnaryCosts(msg) is called.

• DeleteValue(a). self removes value a from Dself . If Dself =
∅, there is no acceptable solution, so self sends STOP messages to
all its neighbors, indicating that the process terminates. Otherwise,
for all neighbors j, a DEL message is sent notifying a deletion
and AC∗-one-way(j , self ) is executed. Observe that this causes
no change in self unary costs, which are projected on Cφ. If the
deleted value was the current value, a new value is selected.

• ProcessDelete(msg). self received a DEL message: sender
has deleted value a from Dsender . self registers this in its Dsender

copy and enforces AC∗ from self to sender .
• ProcessStop(). self received a STOP message. If caused by

an empty domain, self resends the STOP message to all its neigh-
bors, except sender . In any case, self records its reception in end .

The BnB-ADOPT+-AC∗ process code is not given here for space
reasons. It is based on BnB-ADOPT+[2]. In addition to the normal
BnB-ADOPT+ operation, it includes the following actions to main-
tain AC∗. When self receives a VALUE message, the local copies of
> and Cφ are updated if the values contained in the received mes-
sage are better (lower for >, higher for Cφ). If > or Cφ changed,
Dself is tested for possible deletions (because elements of the dele-
tion condition have changed). When self receives a COST message
from a child c, self records c subtree contribution to Cφ. In the
Backtrack procedure, when self changes value, Dself is tested
for possible deletions. When self receives a DEL message, the pro-
cedure ProcessDelete(msg) that appears in Figure 5 is called.

4.2 BnB-ADOPT+-FDAC∗

BnB-ADOPT+-FDAC∗ performs distributed search and maintains
FDAC∗ level of soft arc consistency. If i and j are two neighbor
agents, i < j, DAC∗ is maintained from i to j and AC∗ from j to i,
as shown in Figure 4 (right). As indicated in Figure 3, in addition to
the messages required for BnB-ADOPT+-AC∗, it requires the new
UCO (unary costs) message. When self enforces DAC∗ on a cost
function with a higher agent i, self sends a UCO message to i with



the minimum contribution of self unary costs for i to project on i
unary costs (following [3]). This is depicted in Figure 4 (right). It is
worth noting that this DAC∗ enforcing does not eliminates previous
AC∗ enforcing on the same pair of agents, theorem 2 of [3]; we al-
ways enforce AC∗ before enforcing DAC∗ on Cij . The vector of ex-
tensions is the E[b] computed in the procedure DAC∗-one-way(i)
in Figure 6. Upon reception, the i agent will perform the extension of
these unary costs into the binary cost function, the projection of the
binary costs into the unary ones and these on Cφ, checking its do-
main for possible deletions and restoring the DAC∗ condition from i
towards higher neighbors.

We assume that cost functions are initially FDAC∗. If not, they can
be made FDAC∗ by the preprocess depicted in Figure 6, where lines
1, 2, 3, 4 replace the corresponding ones in Figure 5. A summary
description of this code follows:

• 1 Instead of AC∗, self enforces DAC∗ with higher agent i.
• 2 self does nothing because to enforce DAC∗ with a lower agent,
self has to wait for the UCO message.

• 3 self enforces either AC∗ or DAC∗, depending on the relative
order between j and self .

• 4 self enforces AC∗ with the higher agent sender .
• DAC∗-one-way(i). self starts enforcing DAC∗ on Ci,self by

performing the required operations on its representation of Ci,self

and sending a UCO message to i.
• FromUnarySelfToBinary(i , vector). self adds in Ci,self

the costs in vector that will be sent to i, subtracting them from
Cself unary costs.

• ProcessUnaryCosts(msg). self receives the UCO message
and extends its costs into Cself ,sender . It projects costs from
Cself ,sender on its unary costs and these on Cφ. self tries to prune
its domain and enforces DAC∗ with any other higher agent i con-
strained with it.

The BnB-ADOPT+-FDAC∗ process code is not given here for space
reasons. Basically it is the BnB-ADOPT+-AC∗ code, plus the recep-
tion and process of the new UCO message. This process is done by
ProcessUnaryCosts(msg) that appears in Figure 6.

5 EXPERIMENTAL RESULTS
We evaluate the efficiency of BnB-ADOPT+-AC*/FDAC* by a dis-
crete event simulator. Performance is evaluated in terms of com-
munication cost (messages exchanged), computation effort (non-
concurrent constraint checks), considering also the number of itera-
tions (synchronous cycles; in a cycle every agent reads all its incom-
ing messages, processes them and sends all its outgoing messages)
the simulator must perform until the solution is found. We tested our
algorithms on unstructured instances with binary random DCOPs,
and on structured distributed meeting scheduling datasets.

Binary random DCOP are characterized by 〈n, d, p1〉, where n
is the number of variables, d is the domain size and p1 is the net-
work connectivity. We have generated random DCOP instances:
〈n = 10, d = 10, p1 = 0.3, 0.4, 0.5, 0.6〉. Costs are selected
from an uniform cost distribution. Two types of binary cost func-
tions are used, small and large. Small cost functions extract costs
from the set {0, . . . , 10} while large ones extract costs from the set
{0, . . . , 1000}. The proportion of large cost functions is 1/4 of the
total number of cost functions (this is done to introduce some vari-
ability among tuple costs; using a unique type of cost function causes
that all tuples look pretty similar from an optimization view). Results
appear in Table 1 (a), averaged over 50 instances.

On the meeting scheduling formulation, variables represent meet-
ings, domain represent time slot assigned for each meeting, and there
are constraints between meetings that share participants. We present
4 cases obtained from the DCOP repository [9] with different hier-
archical scenarios and domain 10: case A (8 variables), case B (10
variables), case C (12 variables) and case D (12 variables). Results
appear in Table 1 (b), averaged over 30 instances.

For each problem, we calculate an initial > to have prune op-
portunities on the AC* and FDAC* preprocess. This is done in the
following way. Each leaf agent choose the best value with local in-
formation, and informs its parent of the selected value and its cost.
Parents receive this information from children and choose their own
best value regarding local information, and also inform their parents
accumulating the cost of the partial solution. When all agents have
chosen their value, we have a complete solution (likely not the op-
timal one) which is an upper bound of the optimum problem cost.
So root calculates the cost of this complete solution and inform this
cost downwards. This cost is considered the initial> of the problem.
With this preprocess we are able to calculate a > different from∞,
requiring only two messages per each agent: one from child to parent
informing the partial solution cost, and one from parent to children
informing of the global initial >.

On random DCOPs, BnB-ADOPT+-AC*/FDAC* showed clear
benefits on communication costs with respect to BnB-ADOPT+.
Maintaining AC* level (BnB-ADOPT+-AC*) the number of ex-
changed messages is divided by a factor from 3 to 10. Notice that
this reduction is obtained generating only very few DEL messages.
In addition, including the FDAC* level (BnB-ADOPT+-FDAC*) en-
hances this reduction, dividing the number of BnB-ADOPT+ ex-
changed messages by a factor from 5 to 27. Notice that maintaining
the higher FDAC* level increases slightly the number of DEL mes-
sages (this is because more deletions have been generated) and only
very few UCO messages are added. In contrast, important savings are
obtained compared to AC*. In general, including few DEL and UCO
messages and performing extra local computation to enforce soft arc
consistency allows BnB-ADOPT+-AC*/FDAC* to obtain large re-
ductions in VALUE and COST messages. This is because values that
will not be in any optimal solution – which would be discovered by
distributed search– are sooner removed by soft arc consistency, so
agents will need to assign less values (consequently they will gen-
erate less VALUE messages) when testing the optimum assignment
for each context. If less VALUEs are generated, less COSTs will be
sent in response. We assume the usual case where communication
time is higher than computation time, then the total elapsed time is
dominated by the communication time, and reducing the number of
messages causes an important effect in performance.

We also observe a clear decrement in the number of cycles of BnB-
ADOPT+-AC*/FDAC* (divided by a factor from 3 to 17), combined
with a decrement in the number of messages per cycle with respect to
the original BnB-ADOPT+. Assuming that processing each message
type requires approximately the same time, the combination of these
two effects is an improvement indicator. Since agents need to pro-
cess less information coming from their neighbors on each iteration,
and they perform less iterations to reach the optimum, this combined
reduction is very beneficial for agent performance.

Notice that although agents need to perform more local compu-
tation to maintain local consistency, the number of non-concurrent
constraint checks (NCCCs) also shows important reductions. This is
the combination of two opposite trends: agents are doing more work
enforcing soft arc consistency and processing new DEL and UCO
messages, but less work processing less VALUE and COST mes-



(a) Random DCOPs
p1 #Msgs #VALUE #COST #DEL #UCO #Cycles #NCCC #Deletions

354,415 119,007 235,399 0 0 34,222 7,117,237 0
35,011 18,489 16,298 196 0 4,962 705,548 66

0.3 28,502 15,564 12,542 223 145 3,935 575,709 76
5,743,888 1,430,183 4,313,695 0 0 547,566 132,071,219 0

622,241 296,087 325,902 225 0 114,147 20,979,964 60
0.4 209,142 105,150 103,496 268 199 31,519 5,693,774 72

9,680,458 2,693,821 6,986,627 0 0 918,093 251,286,055 0
2,469,241 1,092,284 1,376,669 260 0 503,722 131,834,779 55

0.5 1,287,015 571,312 715,069 339 266 223,496 66,967,310 71
7,813,885 2,333,830 5,480,046 0 0 685,061 189,161,842 0
2,299,184 1,022,889 1,275,964 303 0 359,408 113,987,882 54

0.6 1,317,743 624,336 692,658 392 329 173,822 51,705,844 71

(b) Distributed Meeting Scheduling
#Msgs #VALUE #COST #DEL #UCO #Cycles #NCCC #Deletions
35,767 14,021 21,739 0 0 4,427 690,786 0
5,818 2,461 3,157 177 0 1,306 220,040 43

A 5,325 2,198 2,808 199 97 1,167 210,358 49
69,453 28,821 40,623 0 0 7,150 801,384 0
11,474 4,924 6,369 153 0 2,585 313,254 44

B 10,207 4,317 5,591 180 90 2,326 297,964 52
13,862 6,907 6,944 0 0 1,278 157,995 0
3,155 1,655 1,257 209 0 325 48,447 74

C 2,990 1,493 1,126 224 113 295 53,717 80
20,386 9,457 10,917 0 0 1,733 141,816 0
3,507 1,708 1,557 208 0 532 57,412 74

D 3,196 1,474 1,327 235 125 462 61,559 84

Table 1. Experimental results of BnB-ADOPT+ (first row) compared to BnB-ADOPT+-AC* (second row) and BnB-ADOPT+-FDAC* (third row)

sages. This combination turns out to be very beneficial, saving com-
putational effort for all cases tested. In some cases, reduction reaches
up to one order of magnitude.

For the meeting scheduling instances, we also obtain clear bene-
fits maintaining AC*, enhanced by FDAC*. For the stronger FDAC*
level (BnB-ADOPT+-FDAC*) messages are divided by a factor
from 4 to 6, cycles are divided by a factor from 3 to 4 and there
are significant savings in NCCCs. To obtain these results, very few
DEL and UCO messages are needed, and the extra computational ef-
fort required to maintain AC* or FDAC* is effectively balanced by
the decrement on VALUE and COST messages.

So, maintaining soft arc consistency (BnB-ADOPT+-
AC∗/FDAC∗) proved to be clearly beneficial for the instances
tested. The propagation of deletions contributes to diminish the
search effort, decreasing the number of COST and VALUE mes-
sages exchanged. Also, the flows of costs from one agent to another,
implemented by UCO messages, allows an agent to pass some of
their unitary costs to higher agents, searching for more pruning
opportunities. In the worst case, maintaining FDAC∗ our approach
divides the number of messages required to reach an optimal solution
by a factor of 3, substantially decreasing the number of cycles and
the computational effort at each agent.

6 CONCLUSION
In this work we have connected BnB-ADOPT+ with some forms of
soft arc consistency in the weighted case, aiming at detecting and
pruning values which would not be in the optimal solution, with the
final goal of improving search efficiency. These deletions are uncon-
ditional and do not rely on any previous variable assignment. The
transformations introduced (extending unary costs into binary ones,
projecting binary costs into unary ones, projecting unary costs into
Cφ, and pruning values not NC∗) assure that the optimum (and any
optimal solution) of the transformed problem remains the same as the
original instance. According to experimental results, propagation of
unconditional deletions provides substantial benefits for the bench-
marks tested. New messages DEL and UCO have been introduced.

However, the increment in the number of messages due to the gener-
ation of new DEL and UCO messages has been largely compensated
by the decrement in the number of COST and VALUE messages used
to solve the problem. BnB-ADOPT+-AC∗/FDAC∗ has been proved
to be very beneficial with respect to BnB-ADOPT+, not only in com-
munication cost but also in computation effort.

ACKNOWLEDGEMENTS
This work is partially supported by the project TIN2009-13591-C02-
02. We want to thank the referees for their constructive comments.

REFERENCES
[1] R. Bejar, C. Fernandez, M. Valls, C. Domshlak, C. Gomes, B. Selman,

and B. Krishnamachari, ‘Sensor networks and distributed csp: Commu-
nication, computation and complexity’, Artificial Intelligence, 161, 117–
147, (2005).

[2] P. Gutierrez and P. Meseguer, ‘Saving messages in BnB-ADOPT’, Proc.
AAAI-10, (2010).

[3] J. Larrosa and T. Schiex, ‘In the quest of the best form of local consis-
tency for weighted CSP’, Proc. of IJCAI-03, (2003).

[4] J. Larrosa and T. Schiex, ‘Solving weighted csp by maintaining arc con-
sistency’, Artificial Intelligence, 159, 1–26, (2004).

[5] P. Meseguer, F. Rossi, and T. Schiex, Handbook of Constraint Program-
ming. Chapter 9, Soft Constraints., Elsevier, 2006.

[6] P. J. Modi, W.M. Shen, M. Tambe, and M. Yokoo, ‘Adopt: asynchronous
distributed constraint optimization with quality guarantees’, Artificial In-
telligence, 161, 149–180, (2005).

[7] R. Wallace and E. Freuder, ‘Constraint-based reasoning and pri-
vacy/efficiency tradeoffs in multi-agent problem solving’, Artificial In-
telligence, 161, 209–227, (2005).

[8] W. Yeoh, A. Felner, and S. Koenig, ‘Bnb-adopt: An asynchronous
branch-and-bound DCOP algorithm’, Proc. of AAMAS-08, 591–598,
(2008).

[9] Z. Yin. USC dcop repository. Meeting scheduling and sensor net
datasets, http://teamcore.usc.edu/dcop, 2008.


