
Intl. Trans. in Op. Res. 27 (2020) 91–111
DOI: 10.1111/itor.12603

INTERNATIONAL
TRANSACTIONS

IN OPERATIONAL
RESEARCH

Minimum common string partition: on solving large-scale
problem instances

Christian Blum

Artificial Intelligence Research Institute (IIIA-CSIC), Campus of the UAB,
Carrer de Can Planas, 08193 Bellaterra, Spain

E-mail: christian.blum@iiia.csic.es [Blum]

Received 8 February 2018; received in revised form 9 July 2018; accepted 20 September 2018

Abstract

Minimum common string partition is an NP-hard combinatorial optimization problem from the bioinfor-
matics field. The current state-of-the-art algorithm is a hybrid technique known as construct, merge, solve,
and adapt (CMSA). This algorithm combines two main algorithmic components: generating solutions in a
probabilistic way and solving reduced subinstances obtained from the tackled problem instances, if possible,
to optimality. However, the CMSA algorithm was not intended for application to very large problem in-
stances. Therefore, in this paper we present a technique that makes CMSA, and other available algorithms for
this problem, applicable to problem instances that are about one order of magnitude larger than the largest
problem instances considered so far. Moreover, a reduced variable neighborhood search (RVNS) for solving
the tackled problem, based on integer programming, is introduced. The experimental results show that the
modified CMSA algorithm is very strong for problem instances based on rather small alphabets. With growing
alphabet size, it turns out that RVNS has a growing advantage over CMSA.

Keywords: minimum common string partition; large-scale problem instances; reduced variable neighborhood search

1. Introduction

Optimization problems based on strings are abundant in research fields such as bioinformatics (Gus-
field, 1997; Blum and Festa, 2016) and text processing (Manning et al., 2008). In the context of
computer science, a string s is a data type for representing and storing sequence information in terms
of a finite sequence of characters from a (generally finite) alphabet �. Each string s has a length
denoted by |s|. Words, and even whole texts, may be stored by means of strings. Strings also play an
important role in bioinformatics because most of the genetic instructions involved in the growth,
development, functioning, and reproduction of living organisms are stored in deoxyribonucleic
acid (DNA) molecules, which can be represented by strings over the alphabet � = {A,C, T, G}.

C© 2018 The Authors.
International Transactions in Operational Research C© 2018 International Federation of Operational Research Societies
Published by John Wiley & Sons Ltd, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main St, Malden, MA02148,
USA.

http://orcid.org/0000-0002-1736-3559

92 C. Blum / Intl. Trans. in Op. Res. 27 (2020) 91–111

Similarly, most proteins can be stored as strings of letters from an alphabet of size 20, representing
the 20 standard amino acids that are the building blocks of most proteins.

The minimum common string partition (MCSP) problem is a string-based combinatorial op-
timization problem from the bioinformatics field. The problem input consists of two strings, s1
and s2. Both input strings are composed of letters from a finite alphabet �. Moreover, they ful-
fill the property of being related, which means that each letter of � has the same number of
occurrences in each input string. The property of being related implies that s1 and s2 have the
same length n, that is, |s1| = |s2| = n. A candidate solution to the MCSP problem is obtained by
cutting s1, respectively, s2, into pieces, resulting in a set P1, respectively, P2, of nonoverlapping
substrings. A candidate solution (P1, P2) is a valid solution, if P1 = P2. The optimization goal
consists in finding a valid solution (P1, P2) that minimizes |P1|.1 As an example, consider the fol-
lowing two DNA sequences: s1 = AAGACTG and s2 = ACTAGGA. Counting the number of the
occurrences of all letters in both strings, it is easy to confirm that these two strings are related.
A trivial valid solution can be obtained for any problem instance by cutting both input strings
into substrings of length 1. In the case of the above-mentioned example, the trivial valid solution
is P1 = P2 = {A, A, A, C, T, G, G}, with an objective function value of 7. Note that the optimal
solution in this example is P1 = P2 = {ACT, AG, G, A}, with objective function value 4. The MCSP
problem, as pointed out by Chen et al. (2005), is closely related to the problem of sorting by reversals
with duplicates, which is one of the key problems in genome rearrangement. It has been shown to be
NP-hard even in very restrictive cases (Goldstein et al., 2005). Moreover, Jiang et al. (2012) proved
the NP-completeness of the decision version of the MCSPc problem—with c being the alphabet
size—for c ≥ 2.

1.1. Existing works

Research work on the MCSP began with the development of approximation algorithms (see, e.g.,
Shapira and Storer, 2002; Chrobak et al., 2004; Kolman, 2005; Cormode and Muthukrishnan,
2007; Kolman and Waleń, 2007). More recently, Goldstein and Lewenstein (2011) proposed a
greedy algorithm that runs in O(n) time. Another greedy algorithm obtaining better results (on
average) was presented in He (2007). The first metaheuristics proposed in the related literature for
the MCSP problem were (a) the Min-Max Ant System from Ferdous and Sohel Rahman (2013,
2017) and (b) the probabilistic tree search algorithm from Blum et al. (2014). Both works used a range
of artificial and real DNA instances from Ferdous and Sohel Rahman (2013) for the experimental
evaluation. However, it was discovered that the best results, at least for the smaller problem instances
used in Ferdous and Sohel Rahman (2013), are obtained by integer linear programming (ILP)
techniques. The first ILP model was proposed in Blum et al. (2015), together with a deterministic 2-
phase heuristic based on the ILP model. Later on, improved ILP models were presented in Ferdous
and Sohel Rahman (2015) and Blum and Raidl (2016). The current state-of-the-art technique is a
construct, merge, solve, and adapt (CMSA) approach from Blum et al. (2016). This hybrid technique
sequentially applies an ILP solver to a reduced subinstance of the original problem instance. The
CMSA variant from Blum et al. (2016) is based on the ILP model from Blum et al. (2015).

1Note that minimizing |P1| is similar to minimizing |P2|.

C© 2018 The Authors.
International Transactions in Operational Research C© 2018 International Federation of Operational Research Societies

C. Blum / Intl. Trans. in Op. Res. 27 (2020) 91–111 93

1.2. Our contribution

The main problem with CMSA, the current state-of-the-art technique, is that the number of binary
variables used in the available ILP models is very large and grows exponentially with the input
string length. The largest problem instances studied in Blum et al. (2016) consist of input strings
of length 2000. In order to make CMSA, as well as the available ILP models, applicable to much
larger problem instances, we first present a modification that allows a substantial reduction in
the size of the models, while still being able to obtain optimal solutions to the tackled problem
instances. Second, after applying the modified models to problem instances whose size—in terms of
the input string length—ranges from 2000 to 20,000, we use the obtained results in order to decide
for one of the modified ILP models for the application within CMSA. Moreover, we develop an
ILP-based reduced variable neighborhood search (RVNS) technique, which uses the same modified
ILP model. An extensive experimental evaluation shows that CMSA has advantages over RVNS
for instances based on rather small alphabets, while the opposite is the case for instances based on
rather large alphabets. Finally, note that a preliminary version of this work was published in the
conference proceedings of variable neighborhood search (VNS) 2017 (Blum, 2018). The extension
concerns the following aspects. In Blum (2018), we only provided a straightforward modification
of the ILP model from Blum et al. (2015) and the corresponding CMSA algorithm. In this work,
we test the same modification on two different ILP models and choose the better one—according
to the obtained results—for its use within CMSA and RVNS. Moreover, we make both algorithms
applicable to large problem instances based on small alphabets. In particular, the algorithm versions
from Blum (2018) were not applicable to instances with input strings of length 20,000 based on
an alphabet of size 4, for example. Finally, the experimental evaluation is extended by considering
instances of a wider range of alphabet sizes.

1.3. Organization of this paper

The remainder of this paper is structured as follows. The modification of the existing ILP models
is described in Section 2. Moreover, this section provides a detailed experimental evaluation of the
original models and the modified models on a wide range of problem instances. The redesigned
CMSA algorithm applicable to large problem instances is described in Section 3, whereas the ILP-
based RVNS algorithm is detailed in Section 4. Finally, an experimental evaluation of both CMSA
and RVNS, in comparison to the standard greedy algorithm and the best results obtained from
solving the ILP models, is provided in Section 5. The paper concludes with a summary of the
findings and an outlook to future work.

2. Modification of the ILP models

This section deals with the crucial idea of this work: it turns out to be possible to define modified ILP
models whose optimal solutions, which are partial solutions with respect to the original problem
instances, can be transformed in a straightforward way—and with a linear time complexity—into
optimal solutions to the original problem instances. First, the modification of the ILP from Blum

C© 2018 The Authors.
International Transactions in Operational Research C© 2018 International Federation of Operational Research Societies

94 C. Blum / Intl. Trans. in Op. Res. 27 (2020) 91–111

et al. (2015), known as ILPcb, is presented. Second, the corresponding modification of the alternative
ILP presented in Blum and Raidl (2016), known as ILPcs, is described. Finally, both original and
modified models are applied to a wide range of problem instances. Note that the third existing ILP
model from Ferdous and Sohel Rahman (2015) is not considered here because a corresponding
modification is not as straightforward as for the other two models.

2.1. Modification of ILPcb

Model ILPcb is based on the concept of common blocks. Each common block bi of input strings s1
and s2 is a triple (ti, k1i, k2i) consisting of a string ti and two indexes 0 ≤ k1i ≤ n and 0 ≤ k2i ≤ n.
Hereby, ti is a substring of both s1 and s2. Moreover, ti starts at position k1i in s1, while it starts at
position k2i in s2. Henceforth, let B denote the set of all possible common blocks with respect to s1
and s2. Using this definition, the MCSP problem can be rephrased as a subset problem, that is, any
solution S is represented by a subset of common blocks from B, S ⊂ B. A candidate solution S has
to fulfill the following conditions in order to be a valid solution:

1.
∑

bi∈S |ti| = n, that is, the sum of the length of the substrings corresponding to the common
blocks in S is equal to the length of the input strings.

2. For any two common blocks bi �= b j ∈ S, it holds that the substrings they represent neither
overlap in s1 nor in s2.

The goal is to find a valid solution S∗ such that |S∗| is minimal. The optimal solu-
tion S∗ for the example instance from Section 1, for example, can be represented as S∗ =
{(ACT, 4, 1), (AG, 2, 4), (G, 7, 6), (A, 1, 7)}.

Model ILPcb uses for each common block bi ∈ B a binary variable xi indicating if it is selected for
the solution:

min
|B|∑

i=1

xi (1)

s.t.
∑

bi∈B s.t. k1i≤ j<k1i+|ti|
xi = 1 for j = 1, . . . , n (2)

∑

bi∈B s.t. k2i≤ j<k2i+|ti|
xi = 1 for j = 1, . . . , n (3)

xi ∈ {0, 1} for bi ∈ B.

The objective function (1) counts the number of selected common blocks. Equation (2), respec-
tively, Equation (3), ensures that each position j = 1, . . . , n of string s1, respectively, string s2, is (1)
covered by exactly one selected common block and that (2) selected common blocks do not overlap.
Note that Equations (2) and (3) implicitly ensure that the sum of the lengths of the selected common
blocks is n.

C© 2018 The Authors.
International Transactions in Operational Research C© 2018 International Federation of Operational Research Societies

C. Blum / Intl. Trans. in Op. Res. 27 (2020) 91–111 95

Fig. 1. Input sequences: s1 = AAGACTG, s2 = ACTAGGA. Solving model ILPmod
cb has resulted in the partial solution

containing the common blocks that are gray-shaded. In order to obtain a complete optimal solution for the problem
instance, the first uncovered A in s1 is matched with the first uncovered A in s2. Moreover, the first uncovered G in s1 is

matched with the first uncovered G in s2. The complete optimal ILPcb solution is, thus,
S∗ = {(ACT, 4, 1), (AG, 2, 4), (A, 1, 7), (A, 7, 6)}.

Note that the size of B is a determining factor for the computational difficulty of solving ILPcb. In
particular, |B| is exponential in the length of the input strings. A problem instance with n = 1000 and
|�| = 4, for example, results already in |B| ≈ 334.000, that is, model ILPcb has already approximately
334.000 variables. Moreover, in Blum et al. (2015) it was shown that a large percentage of the
common blocks of B contain substrings of length 1. In the case of randomly generated instances
with n = 1000 and |�| = 4, for example, this is the case for about 75% of all common blocks. If
it were possible to solve the problem to optimality without implicitly regarding the blocks with
substrings of size 1, it would be possible to solve problem instances with much longer input strings.
Indeed, this turns out to be possible, in the following way. First, let B>1 ⊂ B be the set of common
blocks with substrings consisting of at least two letters. The modified ILP, henceforth denoted by
ILPmod

cb , is obtained as follows:

1. We replace all occurrences of B with B>1.
2. We use a new objective function to minimize:

∑
bi∈B>1 xi + (n − ∑

bi∈B>1 xi|ti|)
3. We exchange the equality signs in Equations (2) and (3) with a “≤” symbol.

Note that the new objective function minimizes the sum of (a) the number of common blocks
selected from B>1 and (b) the number of uncovered positions, given the set of selected common
blocks. Obviously, an optimal solution to ILPmod

cb is a partial solution with respect to the tackled
MCSP problem instance. In the case of the example from Section 1, the optimal solution of ILPmod

cb
contains common blocks (ACT, 4, 1) and (AG, 2, 4). And, as this results in two uncovered positions
in each input string, the objective function value of this ILPmod

cb solution is 4. On the basis of an
optimal ILPmod

cb solution, an optimal ILPcb solution can easily be obtained by adding the correct
common blocks from B \ B>1—that is, common blocks with substrings of length 1—to the solution.
These blocks are identified by finding a bijective mapping from the uncovered positions of s1 to the
uncovered positions of s2, in a way such that positions that are mapped to each other have the same
letters. This can be done in O(n) time, simply by mapping the first uncovered occurrence of each
letter l ∈ � in s1 to the first uncovered occurrence of this letter in s2, the second occurrence of this
letter in s1 to the second one in s2, and so on. See Fig. 1 for how this would be done in the case of
the example of Section 1.

It is easy to see that a solution S∗ of ILPcb obtained from an optimal solution S∗,mod of ILPmod
cb ,

in the way as described above, is an optimal solution. Assume that S∗ would not be an optimal
solution of ILPcb. This would mean that there exists at least one solution S′ of ILPcb with |S′| <

C© 2018 The Authors.
International Transactions in Operational Research C© 2018 International Federation of Operational Research Societies

96 C. Blum / Intl. Trans. in Op. Res. 27 (2020) 91–111

|S∗|. Obviously, it holds that |S∗| = |S∗,mod| + |S∗ \ S∗,mod|. Moreover, as S′ can be transformed
into a solution S′,mod of ILPmod

cb by removing all the blocks with substrings of size 1, it holds
that |S′| = |S′,mod| + |S′ \ S′,mod|. Because |S′| < |S∗|, it must hold that |S′,mod| + |S′ \ S′,mod| <

|S∗,mod| + |S∗ \ S∗,mod|. On the other hand, as S∗,mod is an optimal solution of ILPmod
cb , it must

hold that |S′,mod| + |S′ \ S′,mod| ≥ |S∗,mod| + |S∗ \ S∗,mod|. This is a contradiction to the previous
statement. Therefore, the procedure described above transforms an optimal solution of ILPmod

cb into
an optimal solution of ILPcb.

2.2. Modification of ILPcs

Model ILPcs exploits the fact that, especially when the alphabet size is small, many substrings occur
many times in both input strings. In the case of model ILPcb, if a substring t appears, for example,
10 times in s1 and 20 times in s2, 10 × 20 = 200 common blocks are required just for this substring.
In the following, let T denote the set of all (unique) strings that appear as substrings in both s1 and
s2. For each t ∈ T , let Q1t, respectively, Q2t, denote the set of all positions at which t starts in input
string s1, respectively, s2. For each combination of t ∈ T and k ∈ Q1t, model ILPcs uses a binary
variable y1

t,k. In the same way, a binary variable y2
t,k is used for each t ∈ T and k ∈ Q2t. Based on

these variables, model ILPcs can be stated as follows:

min
∑

t∈T

∑

k∈Q1t

y1
t,k (4)

s.t.
∑

t∈T

∑

k∈Q1t s.t. k≤ j<k+|t|
y1

t,k = 1 for j = 1, . . . , n (5)

∑

t∈T

∑

k∈Q2t s.t. k≤ j<k+|t|
y2

t,k = 1 for j = 1, . . . , n (6)

∑

k∈Q1t

y1
t,k =

∑

k∈Q2t

y2
t,k for t ∈ T (7)

y1
t,k ∈ {0, 1} for t ∈ T, k ∈ Q1t

y2
t,k ∈ {0, 1} for t ∈ T, k ∈ Q2t.

The objective function (4) corresponds to the number of selected substrings.2 Equations (5) and (6)
ensure that for each position j = 1, . . . , n of input strings s1 and s2, exactly one covering substring
is selected. Furthermore, Equation (7) ensures that each string t ∈ T is chosen the same number of
times from s1 and from s2.

2In fact,
∑

t∈T

∑
k∈Q2t

y2
t,k can equally be used as the objective function.

C© 2018 The Authors.
International Transactions in Operational Research C© 2018 International Federation of Operational Research Societies

C. Blum / Intl. Trans. in Op. Res. 27 (2020) 91–111 97

The modification of ILPcs, henceforth denoted by ILPmod
cs , is obtained in a way which is analogous

to the modification of model ILPcb. In particular, let T >1 ⊂ T be the subset of T containing all
strings with length greater than 1. Model ILPmod

cs is then obtained from ILPcs as follows:

1. All occurrences of T are replaced with T >1.
2. A new objective function, to be minimized, is used:

∑
t∈T >1

∑
k∈Q1t

y1
t,k + (n −

∑
t∈T >1

∑
k∈Q1t

y1
t,k|t|).

3. The equality signs in Equations (5) and (6) are replaced by a “≤” symbol.

Finally, given an optimal solution to ILPmod
cs , an optimal solution to ILPcs can be derived in a way

analogous to the procedure described in the context of models ILPcb and ILPmod
cb .

2.3. Results

In order to test the differences between the four ILP models, they were implemented for their resolu-
tion with the ILP solver IBM ILOG CPLEX v12.7. Hereby, ANSI C++ was used as programming
language, and GCC 5.4.0 was used for compilation. Moreover, note that CPLEX was run in one-
threaded mode, in order to be able to perform a fair comparison with the other algorithms proposed
in this work (see Section 5). The experimental evaluation was performed on a cluster of PCs with
Intel(R) Xeon(R) CPU 5670 CPUs of 12 nuclei of 2933 MHz and at least 40 GB of RAM. As the
techniques proposed in this paper are thought for the application to large-scale instances, 10 in-
stances were produced uniformly at random for each combination of n ∈ {2000, 4000, . . . , 20, 000}
and |�| ∈ {4, 20, 36, 52}. Thus, the benchmark set consists of 400 problem instances. Each problem
instance was solved with each of the four models, with a computation time limit of 3600 CPU
seconds, that is, one hour of computation time. The obtained results are provided in Table 1. Each
table row provides the results for each of the four models, averaged over the 10 problem instances
for a certain combination of n and |�|. For each model we provide four values: (a) the average
solution quality (column with heading “avg.”), (b) the time (in seconds) when the first integer
feasible solution was found (column with heading “ti (s)”), (c) the time (in seconds) when the best
integer feasible solution was found (column with heading “tb (s)”), and (d) the average optimality
gap in percent (column with heading “Gap (%)”). All cases in which the search was aborted—due
to exceeding the memory limit of 8 GB—before finding a first integer feasible solution are marked
with “-s-.” Moreover, those cases in which not even the data structures and the ILP model fit into
the allowed memory of 8 GB are marked with “-m-.” Finally, those few cases in which optimality
was proved are marked with an asterisk. The best average result of each table row is provided in
bold.

The following observations can be made:

� First of all, in both cases (ILPcb and ILPcs) CPLEX provides—when given the same computation
time limit—generally better results with the modified models than with the original ones. This
is with the exception of ILPcs and ILPmod

cs in the context of instances based on alphabets with
|�| = 4. Starting from string length n = 1000, CPLEX only finds the trivial solutions of the
modified models (setting all decision variables to zero) within the allowed computation time.

C© 2018 The Authors.
International Transactions in Operational Research C© 2018 International Federation of Operational Research Societies

98 C. Blum / Intl. Trans. in Op. Res. 27 (2020) 91–111

T
ab

le
1

N
um

er
ic

al
re

su
lt

s
ob

ta
in

ed
fr

om
th

e
fo

ur
IL

P
m

od
el

s

IL
P

cb
IL

P
m

od
cb

IL
P

cs
IL

P
m

od
cs

|�
|

n
av

g.
ti

(s
)

tb
(s

)
G

ap
(%

)
av

g.
ti

(s
)

tb
(s

)
G

ap
(%

)
av

g.
ti

(s
)

tb
(s

)
G

ap
(%

)
av

g.
ti

(s
)

tb
(s

)
G

ap
(%

)

4
20

00
53

1.
8

13
.3

35
93

.9
23

.9
53

9.
8

4.
5

35
93

.8
25

.0
46

9.
4

0.
5

35
26

.2
13

.7
46

7.
4

0.
4

32
88

.6
13

.3
40

00
-s

-
-s

-
-s

-
-s

-
40

00
.0

17
.7

17
.7

44
,4

97
.8

97
8.

1
1.

1
35

51
.0

24
.9

10
08

.2
0.

9
35

99
.7

27
.2

60
00

-s
-

-s
-

-s
-

-s
-

60
00

.0
28

5.
7

28
5.

7
66

,7
13

.2
13

94
.9

2.
0

35
79

.4
25

.2
23

71
.6

1.
7

35
81

.0
39

.6
80

00
-s

-
-s

-
-s

-
-s

-
-s

-
-s

-
-s

-
-s

-
18

05
.8

2.
5

2.
5

10
0.

0
80

00
.0

2.
3

28
75

.6
42

2.
4

10
,0

00
-s

-
-s

-
-s

-
-s

-
-s

-
-s

-
-s

-
-s

-
21

92
.0

4.
2

4.
2

10
0.

0
10

,0
00

.0
2.

3
2.

3
18

71
.6

12
,0

00
-m

-
-m

-
-m

-
-m

-
-s

-
-s

-
-s

-
-s

-
25

82
.7

4.
9

4.
9

10
0.

0
12

,0
00

.0
3.

3
3.

3
19

53
.0

14
,0

00
-m

-
-m

-
-m

-
-m

-
-s

-
-s

-
-s

-
-s

-
29

52
.7

5.
3

5.
3

10
0.

0
14

,0
00

.0
3.

5
3.

5
20

18
.8

16
,0

00
-m

-
-m

-
-m

-
-m

-
-s

-
-s

-
-s

-
-s

-
33

32
.1

7.
1

7.
1

10
0.

0
16

,0
00

.0
4.

9
4.

9
20

84
.6

18
,0

00
-m

-
-m

-
-m

-
-m

-
-s

-
-s

-
-s

-
-s

-
37

13
.3

7.
9

7.
9

10
0.

0
18

,0
00

.0
6.

1
6.

1
21

36
.6

20
,0

00
-m

-
-m

-
-m

-
-m

-
-m

-
-m

-
-m

-
-m

-
40

67
.3

10
.3

10
.3

10
0.

0
20

,0
00

.0
7.

9
7.

9
21

86
.3

20
20

00
11

32
.6

2.
3

35
97

.0
14

.1
98

7.
9

0.
2

35
57

.6
1.

5
98

8.
7

0.
2

35
99

.7
1.

5
98

6.
0

0.
1

35
85

.2
1.

2
40

00
20

69
.9

8.
7

21
50

.1
49

.0
17

94
.9

0.
5

35
99

.5
1.

9
18

03
.2

0.
3

35
73

.7
2.

3
17

98
.3

0.
2

35
83

.5
2.

0
60

00
29

62
.6

22
.8

22
.8

10
0.

0
28

80
.4

1.
5

35
95

.6
13

.1
26

10
.5

0.
6

30
98

.3
4.

1
25

75
.1

0.
3

33
27

.7
2.

8
80

00
38

36
.8

19
1.

7
19

1.
7

10
0.

0
80

00
.0

3.
4

3.
4

22
19

.9
35

93
.9

0.
8

30
82

.3
10

.9
34

74
.8

0.
6

29
36

.4
7.

9
10

,0
00

-s
-

-s
-

-s
-

-s
-

10
,0

00
.0

5.
0

5.
0

27
77

.4
44

14
.8

1.
0

33
73

.4
12

.2
43

09
.3

0.
6

33
86

.3
10

.2
12

,0
00

-s
-

-s
-

-s
-

-s
-

12
,0

00
.0

8.
7

8.
7

33
34

.3
53

51
.5

1.
7

35
50

.3
15

.4
51

78
.8

0.
6

32
17

.1
12

.5
14

,0
00

-s
-

-s
-

-s
-

-s
-

14
,0

00
.0

13
.5

13
.5

38
85

.7
62

28
.3

1.
8

35
04

.4
16

.9
60

11
.8

0.
8

35
97

.9
13

.8
16

,0
00

-s
-

-s
-

-s
-

-s
-

16
,0

00
.0

12
.2

12
.2

44
41

.8
70

73
.9

2.
8

2.
8

10
0.

0
16

,0
00

.0
1.

4
1.

4
30

3.
8

18
,0

00
-s

-
-s

-
-s

-
-s

-
18

,0
00

.0
12

.7
12

.7
49

95
.3

78
52

.6
2.

2
2.

2
10

0.
0

18
,0

00
.0

1.
7

1.
7

31
3.

6
20

,0
00

-s
-

-s
-

-s
-

-s
-

20
,0

00
.0

14
.5

14
.5

55
50

.5
86

28
.7

2.
2

2.
2

10
0.

0
20

,0
00

.0
1.

5
1.

5
32

1.
8

C
on

ti
nu

ed

C© 2018 The Authors.
International Transactions in Operational Research C© 2018 International Federation of Operational Research Societies

C. Blum / Intl. Trans. in Op. Res. 27 (2020) 91–111 99

T
ab

le
1

C
on

ti
nu

ed

IL
P

cb
IL

P
m

od
cb

IL
P

cs
IL

P
m

od
cs

|�
|

n
av

g.
ti

(s
)

tb
(s

)
G

ap
(%

)
av

g.
ti

(s
)

tb
(s

)
G

ap
(%

)
av

g.
ti

(s
)

tb
(s

)
G

ap
(%

)
av

g.
ti

(s
)

tb
(s

)
G

ap
(%

)

36
20

00
12

22
.3

0.
9

28
05

.6
0.

1
12

21
.8

*
0.

1
53

.0
0.

0
12

21
.8

*
0.

1
10

7.
3

0.
0

12
21

.8
*

0.
1

15
5.

7
0.

0
40

00
24

90
.2

4.
3

35
99

.7
13

.6
21

80
.2

0.
2

35
98

.3
1.

3
21

85
.1

0.
3

35
98

.5
1.

5
21

81
.0

0.
2

35
97

.5
1.

3
60

00
35

67
.6

11
.1

11
.1

10
0.

0
31

62
.2

0.
5

32
68

.2
3.

2
31

32
.6

0.
4

34
09

.7
2.

3
31

19
.1

0.
3

35
99

.2
1.

9
80

00
46

02
.9

20
.5

20
.5

10
0.

0
41

83
.7

0.
7

32
58

.4
5.

9
41

48
.9

0.
9

29
85

.5
5.

1
40

52
.1

0.
4

24
24

.1
2.

9
10

,0
00

55
97

.4
98

.3
98

.3
10

0.
0

51
12

.4
1.

3
33

76
.5

6.
4

50
62

.4
1.

2
28

65
.7

5.
5

49
69

.8
0.

6
22

31
.4

3.
7

12
,0

00
65

82
.6

16
3.

9
16

3.
9

10
0.

0
60

39
.2

1.
6

35
94

.8
6.

7
59

43
.9

0.
9

29
44

.1
5.

2
58

53
.1

0.
6

31
49

.3
3.

7
14

,0
00

-s
-

-s
-

-s
-

-s
-

14
,0

00
.0

2.
3

2.
3

11
47

.1
68

37
.0

1.
0

28
01

.6
5.

4
68

39
.7

0.
6

34
12

.4
5.

4
16

,0
00

-s
-

-s
-

-s
-

-s
-

16
,0

00
.0

3.
2

3.
2

13
10

.4
77

52
.8

1.
3

34
83

.8
6.

1
75

81
.1

0.
8

33
24

.7
4.

0
18

,0
00

-s
-

-s
-

-s
-

-s
-

18
,0

00
.0

4.
0

4.
0

14
72

.7
88

15
.3

2.
5

35
94

.3
8.

3
85

11
.4

0.
7

33
18

.7
5.

1
20

,0
00

-s
-

-s
-

-s
-

-s
-

20
,0

00
.0

5.
1

5.
2

16
36

.6
95

98
.4

2.
5

35
33

.5
7.

5
94

68
.1

1.
0

35
34

.0
6.

3

52
20

00
14

12
.8

0.
7

2.
2

0.
0

14
12

.8
*

0.
1

0.
1

0.
0

14
12

.8
*

0.
1

0.
1

0.
0

14
12

.8
*

0.
1

0.
1

0.
0

40
00

25
58

.1
3.

8
32

22
.7

3.
3

24
76

.5
0.

1
20

26
.2

<
0.

1
24

76
.7

0.
2

22
95

.4
0.

1
24

76
.5

0.
1

23
89

.3
<

0.
1

60
00

39
36

.4
6.

1
36

08
.4

12
.4

34
79

.4
0.

3
35

88
.7

0.
9

34
82

.7
0.

3
36

00
.0

1.
0

34
81

.0
0.

3
35

98
.5

0.
9

80
00

50
93

.2
14

.0
14

.0
10

0.
0

44
68

.9
0.

4
32

47
.2

1.
6

45
54

.6
0.

7
31

12
.4

3.
5

44
67

.5
0.

3
33

88
.3

1.
6

10
,0

00
62

05
.5

21
.9

21
.9

10
0.

0
54

68
.5

0.
6

33
52

.6
2.

8
55

93
.4

1.
0

33
70

.8
5.

0
54

62
.7

0.
5

20
64

.1
2.

7
12

,0
00

73
05

.8
87

.1
87

.1
10

0.
0

64
36

.4
0.

8
35

95
.3

3.
2

65
80

.2
1.

4
31

99
.3

5.
3

64
20

.1
0.

5
22

56
.2

3.
0

14
,0

00
83

85
.7

13
1.

9
13

1.
9

10
0.

0
76

25
.2

1.
6

34
19

.6
6.

4
75

53
.9

1.
0

28
42

.5
5.

5
74

78
.9

0.
8

32
28

.4
4.

5
16

,0
00

-s
-

-s
-

-s
-

-s
-

86
56

.1
1.

3
34

13
.1

7.
0

85
30

.9
2.

0
34

66
.2

5.
6

84
94

.4
0.

6
29

52
.7

5.
2

18
,0

00
-s

-
-s

-
-s

-
-s

-
18

,0
00

.0
2.

8
2.

8
69

5.
4

95
15

.1
2.

1
35

22
.7

6.
0

93
52

.2
0.

6
33

02
.7

4.
4

20
,0

00
-s

-
-s

-
-s

-
-s

-
20

,0
00

.0
3.

4
3.

4
77

1.
7

10
,8

26
.5

2.
6

34
01

.7
9.

0
10

,4
24

.2
1.

2
35

23
.8

5.
6

C© 2018 The Authors.
International Transactions in Operational Research C© 2018 International Federation of Operational Research Societies

100 C. Blum / Intl. Trans. in Op. Res. 27 (2020) 91–111

Fig. 2. Sizes of the modified models (in percent) with respect to the sizes of the original models (in terms of the
number variables).

In contrast, when applied to ILPcs, CPLEX finds better initial solutions in only slightly higher
computation times. The same happens for instances with |�| = 20 and n ≥ 16,000.

� Models ILPcs and ILPmod
cs are the only ones that provide solutions for all problem instances. In

contrast, ILPcb can only provide solutions for 18 of 40 combinations of n and |�|. This is due to
the extreme model size (see Table 2). For example, in the case of n = 20,000 and |�| = 4, model
ILPcb contains more than 133 million variables. CPLEX is clearly more efficient in solving the
modified model ILPmod

cb . However, even ILPmod
cb cannot be solved in 7 of 10 cases concerning the

instances with |�| = 4.

Based on these results, we select model ILPmod
cs for its use within the CMSA and RVNS algorithms

that are outlined in the following sections.
Finally, we also provide the information about the model size reduction obtained by our proposed

modification of the ILP models in graphical terms. Figure 2 shows the size of the modified models
in terms of the relative size (in percent) with respect to the sizes of the original models. The barplots
provide this information in terms of averages over all instances of the same alphabet size. Standard
deviations are also provided in these graphics. It can be seen that the model size reduction is greater
for model ILPcb than for model ILPcs. Note that—in the case of |�| = 52, for example—the modified
model (ILPmod

cb) contains only about 2.5% of the variables of the original model.

3. Adaptation of the original CMSA algorithm

In the following, we first describe the redesigned CMSA algorithm, in contrast to the original one
for solving the MCSP problem as described in Blum et al. (2016). Afterward, the main differences
to the original CMSA version are outlined.

Our modified CMSA algorithm works on a complete set of solution components C, which consists
of a component c1

t,k for each variable y1
t,k (t ∈ T >1, k ∈ Q1t) and a component c2

t,k for each variable
y2

t,k (t ∈ T >1, k ∈ Q1t). The definition of variables y1
t,k and y2

t,k is found in Section 2.2. In short, a

C© 2018 The Authors.
International Transactions in Operational Research C© 2018 International Federation of Operational Research Societies

C. Blum / Intl. Trans. in Op. Res. 27 (2020) 91–111 101

T
ab

le
2

A
bs

ol
ut

e
m

od
el

si
ze

s
(i

n
te

rm
s

of
th

e
nu

m
be

r
of

va
ri

ab
le

s)

|�
|=

4
|�

|=
20

|�
|=

36
|�

|=
52

n
IL

P
cb

IL
P

m
od

cb
IL

P
cs

IL
P

m
od

cs
IL

P
cb

IL
P

m
od

cb
IL

P
cs

IL
P

m
od

cs
IL

P
cb

IL
P

m
od

cb
IL

P
cs

IL
P

m
od

cs
IL

P
cb

IL
P

m
od

cb
IL

P
cs

IL
P

m
od

cs

20
00

13
35

.4
33

3.
9

21
.6

17
.6

21
2.

6
10

.7
8.

9
4.

9
11

6.
4

3.
3

7.
4

3.
4

80
.5

1.
6

6.
2

2.
2

40
00

53
36

.7
13

34
.5

47
.2

39
.2

84
6.

0
42

.4
19

.4
11

.4
46

1.
0

12
.9

16
.4

8.
4

31
7.

3
6.

2
14

.5
6.

5
60

00
12

,0
03

.7
30

01
.4

74
.4

62
.4

18
98

.9
95

.1
30

.8
18

.8
10

33
.5

28
.8

25
.4

13
.4

71
1.

0
13

.8
23

.3
11

.3
80

00
21

,3
39

.9
53

34
.7

10
2.

3
86

.3
33

74
.3

16
8.

7
43

.0
27

.0
18

35
.9

51
.2

34
.6

18
.6

12
62

.1
24

.3
32

.1
16

.1
10

,0
00

33
,3

45
.6

83
38

.8
13

1.
3

11
1.

3
52

71
.4

26
3.

9
55

.6
35

.6
28

67
.1

79
.9

44
.0

24
.0

19
70

.2
38

.1
40

.9
20

.9
12

,0
00

48
,0

13
.0

12
,0

05
.0

16
0.

7
13

6.
7

75
88

.5
38

0.
1

68
.5

44
.5

41
25

.9
11

5.
1

53
.7

29
.7

28
34

.8
54

.7
49

.8
25

.8
14

,0
00

65
,3

50
.5

16
,3

41
.4

19
0.

4
16

2.
4

10
,3

27
.0

51
6.

7
81

.6
53

.6
56

12
.5

15
6.

1
63

.5
35

.5
38

56
.9

74
.5

58
.6

30
.6

16
,0

00
85

,3
51

.9
21

,3
40

.4
22

0.
9

18
8.

9
13

,4
88

.4
67

5.
2

94
.9

62
.9

73
29

.3
20

3.
9

73
.6

41
.6

50
36

.2
97

.2
67

.4
35

.4
18

,0
00

10
8,

01
6.

6
27

,0
05

.1
25

1.
4

21
5.

4
17

,0
67

.6
85

4.
2

10
8.

3
72

.3
92

72
.0

25
7.

7
84

.0
48

.0
63

70
.2

12
2.

7
76

.4
40

.4
20

,0
00

13
3,

35
0.

8
33

,3
41

.2
28

2.
5

24
2.

5
21

,0
69

.6
10

54
.6

12
1.

7
81

.7
11

,4
45

.3
31

8.
2

94
.5

54
.5

78
62

.3
15

1.
4

85
.4

45
.4

N
um

be
rs

ar
e

di
vi

de
d

by
10

00
an

d
ro

un
de

d
to

th
e

fir
st

po
si

ti
on

af
te

r
th

e
co

m
m

a.

C© 2018 The Authors.
International Transactions in Operational Research C© 2018 International Federation of Operational Research Societies

102 C. Blum / Intl. Trans. in Op. Res. 27 (2020) 91–111

setting of y1
t,k = 1, respectively, y2

t,k = 1, in model ILPmod
cs means that substring t starting at position

k in input string s1, respectively, input string s2, is selected for the solution. Moreover, when the value
of such a variable is 1, the corresponding solution component is added to the respective solution.
This means that a solution S in the context of the CMSA algorithm is a subset of the complete set of
solution components, that is, S ⊂ C. In the same way, a subinstance C′ is a subset of the complete set
of solution components. Furthermore, CMSA uses a so-called age value a j

t,k ≥ 0 for each solution
component c j

t,k ∈ C, j ∈ {1, 2}. These age values are used as a measure of the usefulness of solution
components. Finally, the objective function value f (S) of a solution S is (in accordance to the
objective function of model ILPmod

cs) calculated as f (S) := |S|/2 + (n − ∑
c1

t,k∈S |t|). Note that the
term |S|/2 results from the fact that only solution components concerning the first input string are
counted.

CMSA, whose pseudocode is provided in Algorithm 1, works roughly as follows. First, the
subinstance C′ is initialized with the components from an initially generated solution (see line 3
of Algorithm 1). Then, at each iteration, two main algorithmic are used: (a) the probabilistic
construction of solutions (see line 7 of Algorithm 1) and (b) the solution of reduced problem
instances (subinstances) of the original problem instances by means of an exact solver (see line 11
of Algorithm 1). In the case of the MCSP, subinstances are modeled as ILPs, and CPLEX is used
as an exact solver. At each iteration, CMSA probabilistically generates a number of na solutions.
The components found in these solutions are added to the current subinstance, which is then solved
(if possible) to optimality by CPLEX. The components found in the solution provided by CPLEX
receive an age value of 0, which means that they are regarded to be useful. The age value of all
other components in the subinstance is incremented. The last action of each iteration consists in
removing those components that have reached a maximum allowed age—denoted by agemax—from
the current subinstance. The rationale behind this step is that components that never appear in
the optimal solution of the current subinstance should be removed because they simply slow down
CPLEX when solving the subinstance to optimality. In the following, the functions of CMSA are
outlined in more detail.

Algorithm 1. Construct, merge, solve, and adapt (CMSA)

1: input: two related input strings s1 and s2. Values for the parameters
2: aj

t,k := 0 ∀ c j
t,k ∈ C

3: Sbsf := GenerateInitialSolution()
4: C′ := Sbsf
5: while termination conditions not satisfied do
6: for i = 1, . . . , na do
7: S := GenerateSolution()
8: C′ := C′ ∪ S
9: if f (S) < f (Sbsf) then Sbsf := S end if
10: end for
11: Silp := ApplyILPSolver(C′)
12: if f (Silp) < f (Sbsf) then Sbsf := Silp end if
13: C′ := AdaptSubinstance(Silp)
14: end while
15: output: Sbsf

C© 2018 The Authors.
International Transactions in Operational Research C© 2018 International Federation of Operational Research Societies

C. Blum / Intl. Trans. in Op. Res. 27 (2020) 91–111 103

Function GenerateInitialSolution(): As shown in Section 2.3, when using model ILPcs, CPLEX
is able to generate reasonably good integer feasible solutions in a relatively short amount of com-
putation time. Therefore, function GenerateInitialSolution() (see line 3 of Algorithm 1) applies
CPLEX to model ILPcs and stops the run when the first integer solution is found. The solution
components corresponding to those variables representing substrings of length greater than 1 are
added to Sbsf . Moreover, the subinstance C′ is initialized with the components from Sbsf (see line 4
of Algorithm 1).

Function GenerateSolution(): This function uses a modified variant of the greedy algorithm
from (He, 2007) in a probabilistic way. This algorithm is based on the concept of common blocks. The
original deterministic version works as follows. Given a valid partial solution S ⊂ B, let N(S) ⊂ B
denote the set of common blocks that can be added to S such that the result is again a valid
(possibly still partial) solution. The algorithm starts with S := ∅. At each iteration, one of the
blocks bi ∈ N(S) is selected such that

bi := argmax{|t j| | b j ∈ N(S)}. (8)

This block is then added to S, and the process is continued until S is a complete—in the sense of
nonextensible—solution. In other words, the algorithm stops once N(S) is empty. The modified
version of this algorithm uses only the blocks from B>1, that is, blocks representing substrings
of length greater than 1. However, during preliminary experiments we noted that even this mod-
ified version runs into memory problems for instances with n ≥ 18,000 and |�| = 4. Therefore,
the algorithm is executed with B>2 instead of B>1, that is, only considering blocks representing
substrings of length greater than 2. Once no more such block can be added to S, we only generate
those blocks from B=2—that is, the set of blocks representing substrings of length 2—that can
feasibly be added to S, and proceed with the algorithm until no further block with a substring of
length 2 can be added. Function GenerateSolution() (see line 7 of Algorithm 1) uses this mod-
ified algorithm in a probabilistic way. In particular, at each construction step, the longest feasible
block according to Equation (8) is selected with a predefined probability drate ≥ 0. Otherwise, a
candidate list of the lsize > 0 best candidates is generated, and one of these candidates is selected
uniformly at random. Both drate and lsize are important parameters of CMSA. Finally, a solution S
is returned in terms of a set of solution components, instead of a set of common blocks. Note that
each selected block bi = (ti, k1i, k2i) is easily transformed into two solution components c1

ti,k1i
and

c2
ti,k2i

.

Function ApplyILPSolver(C′): This function (see line 11 of Algorithm 1) applies model ILPmod
cs to

subinstance C′, that is, instead of applying ILPmod
cs considering the complete set of variables, only

those variables corresponding to the solution components in C′ are considered. A fixed computation
time limit tcplex > 0 is given to CPLEX for this purpose. Note that tcplex is an important parameter
of CMSA.

Function AdaptSubinstance(Silp): In this function (see line 13 of Algorithm 1), first, the age of
all components in C′ is incremented by 1. Then, the age of all components that are in Silp is set

C© 2018 The Authors.
International Transactions in Operational Research C© 2018 International Federation of Operational Research Societies

104 C. Blum / Intl. Trans. in Op. Res. 27 (2020) 91–111

to 0. Moreover, all components from C′ whose age has reached the maximum age limit agemax are
removed from C′.

Note that the differences of this version of CMSA from the original version for the MCSP
problem as described in Blum et al. (2016) are as follows. First, the original version does not use any
initialization of C′, that is, it starts with C′ := ∅. Second, it uses the original version of the greedy
algorithm by He (2007). Third, it uses model ILPcb in line 11 for solving the current subinstance C′

to optimality.

4. ILP-based reduced variable neighborhood search

RVNS (Mladenović and Hansen, 1997) is obtained from standard VNS by removing the local
search phase. In other words, the algorithm explores the predefined neighborhoods randomly
by means of the shaking procedure. As mentioned in Mladenović and Hansen (1997), RVNS is
thought for the application to large-scale problem instances for which the local search step might
be computationally too heavy. Successful applications of RVNS from the literature include the ones
to uncapacitated multilevel lot-sizing problems (Xiao et al., 2011), biomedical literature extraction
and clustering (Consoli and Stilianakis, 2017), and the robust dynamic maximal covering location
problem (Mišković, 2017). Moreover, RVNS is sometimes used to rapidly produce reasonably
good initial solutions (Kocatürk and Özpeynirci, 2014), or in combination with population-based
techniques (Coelho et al., 2016).

Algorithm 2. Reduced variable neighborhood search (RVNS)

1: input: two related input strings s1 and s2. Neighborhood functions Nk, k = 1, . . . , kmax
2: Sbsf := GenerateInitialSolution()
3: k := 1
4: while termination conditions not satisfied do
5: S′ := ChooseRandomNeighbor(Nk(Sbsf))
6: if f (S′) < f (Sbsf) then
7: Sbsf := S′, k := 1
8: else
9: k ← k + 1
10: if k > kmax then k := 1 end if
11: end if
12: end while
13: output: Sbsf

Just like CMSA, the proposed RVNS—whose pseudocode is provided in Algorithm 2—works on
the complete set of solution components C defined in the previous section. Moreover, solutions
are defined in the same way as in the case of CMSA, that is, a solution S is a subset of C and its
objective function value f (S) is defined as |S|/2 + (n − ∑

c1
t,k∈S |t|). In the following, the functions

of Algorithm 2 are described in detail. First, the function for generating the initial solution (see

C© 2018 The Authors.
International Transactions in Operational Research C© 2018 International Federation of Operational Research Societies

C. Blum / Intl. Trans. in Op. Res. 27 (2020) 91–111 105

GenerateInitialSolution() in line 2 of Algorithm 2 is equal to the function in line 3 of Algorithm 1.
Second, the most important function—ChooseRandomNeighbor(Nk(Sbsf)); see line 5 of Algo-
rithm 2—uses a neighborhood function defined via a solution destruction rate. More specifically,
given a destruction rate 0 < d < 1, a random neighbor of the current solution Sbsf is obtained
by randomly removing �|Sbsf | · d� solution components from Sbsf and subsequently completing
the resulting partial solution Sp

bsf by applying model ILPmod
cs with the following additional set of

constraints:

y j
t,k = 1 ∀ c j

t,k ∈ Sp
bsf , j ∈ {1, 2}. (9)

The partial destruction of solution Sbsf works as follows. First, Sbsf is copied into Sp
bsf . Then, while

|Sp
bsf | > |Sbsf | − �|Sbsf | · d�, a component—say c j

t,k—is randomly chosen from Sp
bsf and successively

removed. Moreover, in case j = 1 (respectively, j = 2), a corresponding component c2
t,l ∈ Sp

bsf (re-
spectively, c1

t,l ∈ Sp
bsf) is removed. Note that, due to the constraints of the problem as described in

the context of ILPcs, such a component must exist. Finally, a specific neighborhood Nk() is defined
via a minimum (respectively, maximum) destruction rate dmin (respectively, dmax). The destruction
rate dk that is applied in the context of neighborhood function Nk() is

dk := dmin + (k − 1) · (dmax − dmin)

kmax − 1
. (10)

Hereby, kmax—that is, the number of neighborhoods—as well as dmin and dmax are important
parameters of the algorithm. As in the case of CMSA, the application of CPLEX at each iteration
of RVNS is limited with a computation time limit (in seconds) denoted by tcplex.

5. Experimental evaluation

The following three algorithmic techniques are experimentally evaluated: (a) the greedy algorithm
by He (2007), modified according to the same reasoning as outlined in Section 2 (denoted by
GREEDY), (b) the modified current state-of-the-art algorithm CMSA from Section 3, and (c) the
ILP-based RVNS (henceforth denoted by RVNS) from Section 4. All algorithms were implemented
in ANSI C++ using GCC 5.4.0. In addition, the ILP models involved in the three techniques were
solved with the ILP solver IBM ILOG CPLEX v12.7 in one-threaded mode. As in the case of the
experimental evaluation of the ILP models in Section 2.3, the experimental evaluation has been
performed on a cluster of PCs with Intel(R) Xeon(R) CPU 5670 CPUs of 12 nuclei of 2933 MHz
and at least 40 GB of RAM.

5.1. Parameter tuning

Both CMSA and RVNS include important parameters for which well-working values must be
found. In order to avoid having to apply a tuning procedure for each combination of n (input
string length) and |�| (alpha size), we decided for the following procedure. We performed a full

C© 2018 The Authors.
International Transactions in Operational Research C© 2018 International Federation of Operational Research Societies

106 C. Blum / Intl. Trans. in Op. Res. 27 (2020) 91–111

Table 3
Parameter value settings for CMSA and RVNS as determined by a full factorial design

CMSA RVNS

|�| n na agemax drate lsize tcplex (dmin, dmax) kmax tcplex

4 2000 3 5 0.1 10 10.0 (0.3, 0.5) 3 50.0
10,000 3 5 0.5 10 10.0 (0.3, 0.5) 5 50.0
20,000 3 5 0.5 5 100.0 (0.3, 0.7) 10 100.0

20 2000 10 5 0.1 10 50.0 (0.3, 0.7) 3 100.0
10,000 3 1 0.1 10 50.0 (0.3, 0.5) 3 100.0
20,000 3 1 0.5 10 100.0 (0.1, 0.5) 3 100.0

36 2000 3 1 0.1 10 50.0 (0.1, 0.7) 5 10.0
10,000 3 1 0.1 5 50.0 (0.1, 0.7) 5 50.0
20,000 3 1 0.5 5 100.0 (0.1, 0.5) 3 50.0

52 2000 3 1 0.1 10 50.0 (0.1, 0.7) 3 50.0
10,000 3 1 0.1 10 50.0 (0.1, 0.7) 3 50.0
20,000 3 1 0.9 5 100.0 (0.1, 0.5) 3 50.0

factorial design based on the parameters and values as described below for each of the two algo-
rithms and instances for each combination of n ∈ {2000, 10, 000, 20, 000} and |�| ∈ {4, 20, 36, 52}.
For this purpose, two tuning instances were randomly generated for each of these combinations
of n and �. The considered parameters and their respective values in the case of CMSA are as
follows:

� na ∈ {3, 5, 10};
� agemax ∈ {1, 5, 10};
� drate ∈ {0.1, 0.5, 0.9};
� lsize ∈ {3, 5, 10};
� tcplex ∈ {10.0, 50.0, 100.0}.

Furthermore, the considered parameters and their respective values in the case of RVNS are as
follows:

� (dmin, dmax) ∈ {(0.1, 0.5), (0.3, 0.7), (0.1, 0.7), (0.3, 0.5)};
� kmax ∈ {3, 5, 10};
� tcplex ∈ {10.0, 50.0, 100.0}.

The best parameter value settings determined by full factorial design are provided in Table 3. Note
that for instances with n /∈ {2000, 10, 000, 20, 000} the parameter values are determined by linear
interpolation. In the case of integer-valued parameters, the actual values are hereby determined by
rounding.

C© 2018 The Authors.
International Transactions in Operational Research C© 2018 International Federation of Operational Research Societies

C. Blum / Intl. Trans. in Op. Res. 27 (2020) 91–111 107

5.2. Numerical results

All three algorithms were applied exactly once—with a computation time limit of 3600 CPU
seconds—to each of the 400 problem instances described in Section 2.3. The results are presented
in Table 4 in terms of averages over the 10 instances for each combination of |�| and n. In the
case of GREEDY, CMSA, and RVNS, the columns with heading “avg” provide the average solution
quality, whereas the columns with heading “t (s)” provide the average computation time at which
the best solutions of each run were found. In addition, the third table column provides the best
results obtained by any of the four ILP models from Section 2. The best result of each table row is
provided in bold. The following can be observed:

� First, the results of the ILP models can only compete with (and slightly improve over) the
results of CMSA and RVNS in the context of smaller problem instances based on alphabet sizes
|�| ∈ {20, 36, 52}. With growing instance size we can note an increasing advantage of CMSA and
RVNS over the ILP models. This effect becomes stronger with decreasing alphabet size.

� Even though being the fastest algorithm, GREEDY generally provides results inferior to the ones
of the other techniques. This is with the exception of larger problem instances based on alphabet
sizes |�| ∈ {36, 52}, where GREEDY is able to provide better results than the ILP models.

� Concerning the comparison of CMSA with RVNS, we can state that CMSA consistently outperforms
RVNS for instances with |�| = 4, while the opposite is the case for instances with |�| = 52. For
the instances with intermediate alphabet sizes, CMSA outperforms RVNS for the larger problem
instances, whereas the opposite is the case for the smaller problem instances. The reason for this
behavior might be explained as follows. In a previous study (see Lizárraga et al., 2017), it was
shown—in the context of the multidimensional knapsack problem—that CMSA has advantages
over large neighborhood search (LNS) for problem instances in which the size of a solution is
rather small with respect to the total problem size, while the opposite was the case for problem
instances with large solutions with respect to the total problem size. Hereby, the size of a solution
refers to the number of variables with a nonzero value. The authors of Lizárraga et al. (2017)
came up with the hypothesis that the above-mentioned behavior is due to the fact that CMSA
generates, at each iteration, solutions potentially from all over the search space, while LNS is
restricted to generate solutions locally around the currently best solution. Rather small solutions
cause a disadvantage of LNS, due to the resulting difficulties to perform larger jumps in the
search space. The same seems to hold for RVNS, which also generates solutions locally around
the currently best solution. Moreover, note that—when alphabet sizes are small—solutions are
rather small with respect to the total problem size, while the opposite is the case when alphabet
sizes are rather large. In addition to the numerical results in Table 4, these findings are also shown
in a graphical way in Fig. 3. The boxplots show for each combination of |�| and n the differences
of the objective function values obtained by CMSA with the objective function values obtained
by RVNS (in percent). Accordingly, negative values indicate that CMSA has obtained better results
than RVNS, and the other way around.

Finally, with the aim of detecting statistical differences (if any) between the studied techniques
for subsets of the problem instances, first, all techniques were compared simultaneously using
the Friedman test. As the test rejected the hypothesis that all the techniques perform equally,

C© 2018 The Authors.
International Transactions in Operational Research C© 2018 International Federation of Operational Research Societies

108 C. Blum / Intl. Trans. in Op. Res. 27 (2020) 91–111

Table 4
Numerical results obtained by GREEDY, CMSA, and RVNS

ILP models GREEDY CMSA RVNS

|�| n Best result avg. t (s) avg. t (s) avg. t (s)

4 2000 467.4 527.4 0.3 459.6 2564.6 474.1 2600.3
4000 978.1 968.4 1.4 862.0 3163.9 894.8 3331.3
6000 1394.9 1379.7 3.0 1237.2 3272.4 1292.3 3227.4
8000 1805.8 1791.5 5.9 1634.0 2933.5 1678.1 3314.1

10,000 2192.0 2177.7 12.7 1996.3 2934.2 2052.6 3290.8
12,000 2582.7 2562.8 14.8 2361.6 3297.7 2421.6 3118.2
14,000 2952.7 2934.3 22.8 2730.9 3193.1 2797.0 2965.7
16,000 3332.1 3300.2 27.5 3105.7 3327.4 3147.6 3048.3
18,000 3713.3 -m- -m- 3434.7 3231.4 3511.0 3052.0
20,000 4067.3 -m- -m- 3776.5 3293.5 3908.7 2459.2

20 2000 986.0 1111.9 <0.1 1002.0 2109.7 991.7 1654.8
4000 1798.3 2031.6 <0.1 1824.6 2209.3 1817.0 3102.7
6000 2575.1 2908.1 <0.1 2662.7 2898.8 2611.6 3517.7
8000 3474.8 3751.4 0.2 3408.2 2364.9 3386.4 3513.2

10,000 4309.3 4566.0 0.2 4112.8 3285.5 4153.6 3545.8
12,000 5178.8 5372.0 0.3 4838.9 3434.3 4894.5 3575.7
14,000 6011.8 6167.5 0.4 5598.8 3411.9 5637.5 3555.1
16,000 7073.9 6939.7 0.5 6326.9 3022.6 6360.5 3550.9
18,000 7852.6 7708.6 0.7 7008.3 3403.6 7076.4 3560.2
20,000 8628.7 8468.9 0.9 7715.0 3498.0 7785.7 3599.4

36 2000 1221.8 1328.6 <0.1 1235.0 359.9 1223.8 1135.6
4000 2180.2 2431.6 <0.1 2200.6 1207.6 2182.9 1202.9
6000 3119.1 3478.9 <0.1 3137.8 2434.8 3122.5 2467.9
8000 4052.1 4492.9 <0.1 4057.3 2628.6 4045.1 3074.9

10,000 4969.8 5474.8 <0.1 4944.0 3274.9 4931.3 2982.9
12,000 5853.1 6432.6 <0.1 5822.5 2914.6 5837.6 3139.5
14,000 6837.0 7414.9 0.1 6685.4 3183.2 6738.4 3172.8
16,000 7581.1 8331.0 0.2 7542.8 2871.1 7585.5 3328.3
18,000 8511.4 9241.5 0.2 8387.0 3183.3 8380.1 3607.5
20,000 9468.1 10,170.8 0.2 9226.4 3188.9 9225.4 3557.9

52 2000 1412.8 1469.6 <0.1 1417.4 1.6 1412.8 4.1
4000 2476.5 2691.5 <0.1 2497.1 303.9 2480.5 653.5
6000 3479.4 3841.4 <0.1 3500.3 1956.3 3479.7 2064.7
8000 4467.5 4969.5 <0.1 4479.9 2974.9 4456.9 1622.8

10,000 5462.7 6056.2 <0.1 5431.4 3118.1 5403.4 3000.9
12,000 6420.1 7113.1 <0.1 6382.6 3490.6 6355.7 3289.7
14,000 7478.9 8174.0 <0.1 7340.8 2433.2 7312.2 3231.1
16,000 8494.4 9200.3 <0.1 8289.5 3050.4 8279.6 3517.3
18,000 9352.2 10,215.6 0.1 9223.5 3135.4 9188.2 3364.5
20,000 10,424.2 11,252.0 0.1 10,185.2 2673.6 10,142.5 3316.4

C© 2018 The Authors.
International Transactions in Operational Research C© 2018 International Federation of Operational Research Societies

C. Blum / Intl. Trans. in Op. Res. 27 (2020) 91–111 109

Fig. 3. Improvement of RVNS over CMSA (in percent).

Fig. 4. Critical difference plots.

all pairwise comparisons were performed using the Nemenyi post hoc test (Garcı́a and Herrera,
2008). The corresponding results are shown in Fig. 4 by means of so-called critical difference (CD)
plots. In these plots, each considered technique is positioned on the horizontal axis according
to its average ranking concerning the considered subset of instances. The CD is then computed
(significance level of 0.05) and the performance of those techniques that have a difference lower
than CD are regarded as statistically equivalent. This is indicated by bold horizontal bars joining
the respective techniques. Note that all the tests and the plots have been generated using R’s scmamp
package (Calvo and Santafé, 2016), available at https://github.com/b0rxa/scmamp. Concerning
the outcome, while there is no statistical difference between CMSA and RVNS when considering all
400 problem instances together (see Fig. 4a), there are significant differences between these two
techniques for instances with |�| = 4 and with |�| = 52.

C© 2018 The Authors.
International Transactions in Operational Research C© 2018 International Federation of Operational Research Societies

110 C. Blum / Intl. Trans. in Op. Res. 27 (2020) 91–111

6. Conclusions and future work

In this paper, we have adapted the current state-of-the-art algorithm—CMSA—to be able to solve
large-scale instances of the MCSP problem. This was achieved via a modification of the existing
ILP models that allows application of general purpose ILP solvers such as CPLEX to much larger
problem instances than has been possible so far. Moreover, on the basis of the modified ILP models,
we introduced an ILP-based RVNS technique for the considered problem. By means of an exhaustive
experimental study, it was shown that CMSA consistently outperforms RVNS in the context of
problem instances based on small alphabets, while the opposite is the case for problem instances with
large alphabets. For instances of intermediate alphabet sizes, CMSA generally performs stronger
than RVNS for longer input strings, while the opposite is the case for instances with shorter input
strings.

Concerning future work, we plan to combine the complementary strengths of CMSA and RVNS
in order to obtain an algorithm that performs equally well for problems based on rather small
alphabets and, at the same time, for problems based on rather large alphabets. One way to achieve
this would be to add explicit mechanisms for allowing RVNS to perform larger jumps in the search
space. Moreover, we plan to study the application of algorithms similar to CMSA and RVNS to
related problems such as sorting by reversals, finding the edit distance when moves are allowed, and
block edit problems, just to name a few.

References

Blum, C., 2018. ILP-based reduced variable neighborhood search for large-scale minimum common string partition.
Electronic Notes in Discrete Mathematics 66, 15–22.

Blum, C., Festa, P., 2016. Metaheuristics for String Problems in Bio-informatics, Computer Engineering Series—
Metaheuristics Set, Vol. 6. John Wiley & Sons, Hoboken, NJ.

Blum, C., Lozano, J.A., Pinacho Davidson, P., 2014. Iterative probabilistic tree search for the minimum common string
partition problem. In Blesa, M.J., Blum, C., Voss, S. (eds), Proceedings of HM 20104—9th International Workshop
on Hybrid Metaheuristics, Springer, Berlin, pp. 154–154.

Blum, C., Lozano, J.A., Pinacho Davidson, P., 2015. Mathematical programming strategies for solving the minimum
common string partition problem. European Journal of Operational Research 242, 3, 769–777.

Blum, C., Pinacho, P., López-Ibáñez, M., Lozano, J.A., 2016. Construct, merge, solve and adapt: a new general algorithm
for combinatorial optimization. Computers & Operations Research 68, 75–88.

Blum, C., Raidl, G.R., 2016. Computational performance evaluation of two integer linear programming models for the
minimum common string partition problem. Optimization Letters 10, 1, 189–205.

Calvo, B., Santafé, G., 2016. scmamp: statistical comparison of multiple algorithms in multiple problems. The R Journal
8, 1, 248–256.

Chen, X., Zheng, J., Fu, Z., Nan, P., Zhong, Y., Lonardi, S., Jiang, T., 2005. Computing the assignment of orthologous
genes via genome rearrangement. Proceedings of the Asia Pacific Bioinformatics Conference 2005, Singapore, pp.
363–378.

Chrobak, M., Kolman, P., Sgall, J., 2004. The greedy algorithm for the minimum common string partition problem. In
Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds), Proceedings of APPROX 2004—7th International Workshop
on Approximation Algorithms for Combinatorial Optimization Problems, Lecture Notes in Computer Science, Vol.
3122. Springer, Berlin, pp. 84–95.

Coelho, V.N., Coelho, I.M., Souza, M.J.F., Oliveira, T.A., Cota, L.P., Haddad, M.N., Mladenovic, N., Silva, R.C.P.,
Guimarães, F.G., 2016. Hybrid self-adaptive evolution strategies guided by neighborhood structures for combinato-
rial optimization problems. Evolutionary Computation 24, 4, 637–666.

C© 2018 The Authors.
International Transactions in Operational Research C© 2018 International Federation of Operational Research Societies

C. Blum / Intl. Trans. in Op. Res. 27 (2020) 91–111 111

Consoli, S., Stilianakis, N.I., 2017. A quartet method based on variable neighborhood search for biomedical literature
extraction and clustering. International Transactions in Operational Research 24, 3, 537–558.

Cormode, G., Muthukrishnan, S., 2007. The string edit distance matching problem with moves. ACM Transactions on
Algorithms 3, 2, 1–19.

Ferdous, S.M., Sohel Rahman, M., 2013. Solving the minimum common string partition problem with the help of ants.
In Tan, Y., Shi, Y., Mo, H. (eds), Proceedings of ICSI 2013—4th International Conference on Advances in Swarm
Intelligence, Lecture Notes in Computer Science, Vol. 7928. Springer, Berlin, pp. 306–313.

Ferdous, S.M., Sohel Rahman, M., 2015. An integer programming formulation of the minimum common string partition
problem. PloS One 10, 7, e0130266.

Ferdous, S.M., Sohel Rahman, M., 2017. Solving the minimum common string partition problem with the help of ants.
Mathematics in Computer Science 11, 2, 233–249.

Garcı́a, S., Herrera, F., 2008. An extension on “statistical comparisons of classifiers over multiple data sets” for all pairwise
comparisons. Journal of Machine Learning Research 9, 2677–2694.

Goldstein, A., Kolman, P., Zheng, J., 2005. Minimum common string partition problem: hardness and approximations.
In Fleischer, R., Trippen, G. (eds), Proceedings of ISAAC 2004—15th International Symposium on Algorithms and
Computation, Lecture Notes in Computer Science, Vol. 3341. Springer, Berlin, pp. 484–495.

Goldstein, I., Lewenstein, M., 2011. Quick greedy computation for minimum common string partitions. In Giancarlo,
R., Manzini, G. (eds), Proceedings of CPM 2011—22nd Annual Symposium on Combinatorial Pattern Matching,
Lecture Notes in Computer Science, Vol. 6661. Springer, Berlin, pp. 273–284.

Gusfield, D., 1997. Algorithms on Strings, Trees, and Sequences, Computer Science and Computational Biology. Cambridge
University Press, Cambridge.

He, D., 2007. A novel greedy algorithm for the minimum common string partition problem. In Mandoiu, I., Zelikovsky, A.
(eds), Proceedings of ISBRA 2007—Third International Symposium on Bioinformatics Research and Applications,
Lecture Notes in Computer Science, Vol. 4463. Springer, Berlin, pp. 441–452.

Jiang, H., Zhu, B., Zhu, D., Zhu, H., 2012. Minimum common string partition revisited. Journal of Combinatorial
Optimization 23, 4, 519–527.

Kocatürk, F., Özpeynirci, Ö., 2014. Variable neighborhood search for the pharmacy duty scheduling problem. Computers
& Operations Research 51, 218–226.

Kolman, P., 2005. Approximating reversal distance for strings with bounded number of duplicates. In Jedrzejowicz, J.,
Szepietowski, A. (eds), Proceedings of MFCS 2005—30th International Symposium on Mathematical Foundations
of Computer Science, Lecture Notes in Computer Science, Vol. 3618. Springer, Berlin, pp. 580–590.

Kolman, P., Waleń, T., 2007. Reversal distance for strings with duplicates: linear time approximation using hitting set. In
Erlebach, T., Kaklamanis, C. (eds), Proceedings of WAOA 2007—4th International Workshop on Approximation
and Online Algorithms, Lecture Notes in Computer Science, Vol. 4368. Springer, Berlin, pp. 279–289.

Lizárraga, E., Blesa, M.J., Blum, C., 2017. Construct, merge, solve and adapt versus large neighborhood search for
solving the multi-dimensional knapsack problem: which one works better when? In Hu, B., López-Ibáñez, M.
(eds), Proceedings of EvoCOP 2017—17th European Conference on Evolutionary Computation in Combinatorial
Optimization, Springer, Berlin, pp. 60–74.

Manning, C.D., Raghavan, P., Schütze, H., 2008. Introduction to Information Retrieval. Cambridge University Press,
Cambridge.

Mišković, S., 2017. A VNS-LP algorithm for the robust dynamic maximal covering location problem. OR Spectrum 39,
4, 1011–1033.

Mladenović, N., Hansen, P., 1997. Variable neighborhood search. Computers & Operations Research 24, 11, 1097–1100.
Shapira, D., Storer, J.A., 2002. Edit distance with move operations. In Apostolico, A., Takeda, M. (eds), Proceedings

of CPM 2002—13th Annual Symposium on Combinatorial Pattern Matching, Lecture Notes in Computer Science,
Vol. 2373. Springer, Berlin, pp. 85–98.

Xiao, Y., Kaku, I., Zhao, Q., Zhang, R., 2011. A reduced variable neighborhood search algorithm for uncapacitated
multilevel lot-sizing problems. European Journal of Operational Research 214, 2, 223–231.

C© 2018 The Authors.
International Transactions in Operational Research C© 2018 International Federation of Operational Research Societies

