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Abstract. In this paper we propose the use of case-based reasoning techniques to
improve the navigation of an autonomous robot in unknown semistructured envi-
ronments. At the moment the current goal is to identify problematic situations (such
as dead ends or obstacle layouts that the robot is not able to avoid) and take the
proper actions in order to avoid them. As the first steps we propose a similarity
function to retrieve similar past cases. We integrate a CBR agent into an existing
multiagent navigation system in order to evaluate the performance of the CBR sys-
tem. The results obtained through simulation show that the new system not only
prevents the robot from getting blocked in certain situations, but also improves the
performance in terms of time and distance of the path taken to reach the target.
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1. Introduction

One of the main issues to solve when designing a navigation system for autonomous
robots in unknown environments is the lack of a priori information about them. This
lack of information impacts on many tasks like building maps, localise the robot, route
planning, obstacle avoidance, etc. In this paper we report on the use of CBR techniques
to reuse previous navigation experiences. These experiences can play the role of the
missing a priori information needed to solve some of the above mentioned tasks.

Some researches have focussed their work on learning the environment map using
probabilistic methods ([8,9]). However, we are not interested in learning the current map
which only would be useful if the robot always navigates through the same environment.
We propose to learn the different situations a robot encounters as it navigates through sev-
eral environments. We aim at representing these situations by means of certain features
that permit to characterise, for instance, dangerous situations that could lead the robot to
a failure, or safe situations which may guarantee a successful performance. Completely
structured environments are not too adequate for learning because it is possible to build
a domain model that might be enough to determine navigation strategies. On the other
hand, no learning could ever be done over an environment where objects and landmarks
are randomly distributed because the probability that previous experiences could be use-
ful is too low. Therefore, we propose to apply learning over a semi-structured world with
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Figure 1. Semistructured environment with landmarks (circles) and linear obstacles between them forming
some shapes.

landmarks and linear obstacles forming different types of shapes (Figure 1). The idea is
to determine whether the current situation in the neighbourhood of a robot (landmarks
and obstacles layouts) is similar to a previous situation already navigated by the robot.
If this is the case, then similar actions to those executed in that previous situation might
be performed now, but possibly with slight modifications, to pass through the current
situation. For example, imagine a situation where the robot enters a dead end and that it
is the first time this situation happens. After a while the robot will figure out that it has
to go backwards only after reaching the end of the dead end. However, if this situation
has been experienced, next time it encounters a similar situation, it should not enter the
dead end and instead aim at finding another way to avoid the dead end. In order to model
the system we will refer to two goals: global and local. The global goal is the whole
navigation task, that is, reaching a given target in an unknown environment. The local
goal is to successfully navigate through the local environment in the neighbourhood of
the robot.

The problem now is thus how and what to learn. A first option could be just to select
a number of physical layouts (landmarks and obstacles) and let the robot learn a general
model of environments using some adequate machine learning technique so the model
can be later used when navigating an unknown environment. An alternative is to take a
lazy learning approach where for each new local environment the system is able to (i)
identify similar previously navigated local environments, and (ii) exploit the decisions
made in those identified local environments. That is, the two basic steps of case-based
reasoning (CBR) [3].

CBR has already been used in robotics to perform different tasks. Zita and Shewchuk
[2] solve a path planning problem with a system that plans a route using a city map. The
global path is created using different cases from the case base. Kruusmaa [4] develops a
system to choose routes in a grid-based map that are less risky to follow and lead faster to
the goal based on previous experience. Ram and Santamaría [7] and Likhachev and Arkin
[5] focus their work on a CBR approach to dynamically select and modify the robot’s
behaviours as the environment changes during navigation. Micarelli et al. [6] address
indoor navigation using sonar maps. Urdiales et al. [10] present a reactive navigation
system for indoor environments that learns how to avoid obstacles during navigation.

In contrast to the above previous work, in our approach we have no initial map, the
map built along the navigation is a topological one, our environment is static, we use
vision and finally we do not focus just on obstacle avoidance but also consider more
general situations that should be avoided (e.g. dead ends).



This paper describes the initial results of a case-based reasoning system aiming to
guide a robot through local environments in order to improve its navigation performance.
In Section 2 we present an overview of our current navigation system. Then, in Section 3
we explain the similarity function used to identify past cases corresponding to navigation
experiences. At this stage we centre our research on negative situations. That is, dan-
gerous situations that the robot must avoid (e.g. dead ends, blocking situations, etc.). In
Section 4 we report on initial experimental results. Finally, we outline some conclusions
and future work.

2. Robot architecture

We introduce case-based reasoning on top of an already existing multiagent navigation
system for autonomous robots [1]. The main task of this system is to navigate through
an unknown environment, avoiding obstacles, and reach a target indicated by a human
operator. The architecture consists of three main sub-systems:

• Pilot: is able to safely control the motors that move the robot in a given direction
while avoiding obstacles using a potential field technique.

• Vision: its main tasks are to identify new landmarks in the view field of the cam-
eras and to recognise previously identified landmarks.

• Navigation: leads the robot to the target. Its behaviour is the result of the interac-
tion among several agents, each in charge of a concrete task:

∗ Map Manager: is responsible of maintaining the information of the explored
environment in the map.

∗ Target Tracker: keeps the goal located with minimum imprecision and guides
the robot towards it.

∗ Risk Manager: keeps the risk of losing the target as low as possible.
∗ Rescuer: recovers the robot from blocked situations.
∗ Communicator: arbitrates the above agents.

To represent the environment the system computes a topological map1 as it discovers
obstacles and landmarks during the robot’s navigation. A landmark is a distinguishable
object which the vision system is able to identify and is used as a reference point. Obsta-
cles are identified when the robot bumps against them. There are two types of obstacles:
point obstacles and linear obstacles. The first ones are easy to avoid by slightly modify-
ing the robot’s trajectory. The Pilot can tackle them alone and they are not stored in the
map. The second ones are long obstacles that block the path of the robot. In this case, the
navigation system must compute an alternative route to avoid the obstacle and reach the
target. Hence, they are represented in the map. To drive the robot to an alternative route
the Rescuer agent computes a diverting target. Thus, the robot changes the current route
and reaches the target following an alternative path.

In the next section we describe a new agent, CBR agent, that complements the pre-
vious ones in the navigation subsystem in order to improve the overall navigation be-
haviour. This agent will detect dangerous situations and ask the Rescuer to set a divert-

1That is, a partition of the environment into a set of triangular regions determined by three non collinear
landmarks [1].
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Figure 3. Similarity between two fuzzy dis-
tances.

ing target to avoid this identified dangerous situation. The integration between the CBR
agent and the navigation system is described in section 3.3.

3. The CBR agent

The first fundamental decision to make when designing a CBR system is to determine
what to represent in a case. In our setting the case should describe the local environment
near a robot. A case will thus contain information about the location of landmarks and
obstacles in the neighbourhood of the robot as well as distance and angular relations
between them. Formally, a case is a particular type of graph described as:

case = 〈L, O, δ, α, a〉

where:

1. L: set of graph nodes representing landmark identifiers noted as li. |L| ≥ 2
2. O: set of obstacles O ⊆ L × L.
3. δ: total labelling function setting the distance between two landmarks, that is

δ : L × L → R̃ .
4. α: total labelling function setting the angle of the line between two landmarks, li

and lj , and the reference axis xli (the line passing through landmark li with the
same direction as the x axis of the robot). That is, α : L × L → R̃ .

5. a represents the taken action.

Where R̃ is the set of triangular fuzzy numbers defined over R (see Figure 3). In Figure
2 a graphical example of a case with three landmarks is given.

3.1. Landmark Similarity Function

Given a current local environment and a memorised case, A = 〈LA, OA, δA, αA, aA〉
and B = 〈LB, OB , δB , αB , aA〉, we need a measure indicating how similar they are.
This measure is reduced to finding the similarity between two graphs whose nodes are
landmarks. That is, the degree of similarity between two cases is to be based on the
mapping between the nodes of the two graphs. We select two landmarks (one for each



case) as the reference landmarks to compute distances and angles to the remaining ones.
We note these reference landmarks as l̄A and l̄B. Once the reference points are selected
we consider that the degree of matching between any two landmarks, lA and lB , depends
on the distance to their reference landmarks and the angle between the line connecting
the landmark to the case’s reference landmark and their respective reference axes, x l̄A

and xl̄B
. Thus, we have:

sim(lA, lB) =
simδ(δ(l̄A, lA), δ(l̄B , lB)) + simα(α(l̄A, lA), α(l̄B , lB))

2

The function evaluates the degree of similarity in the interval [0, 1], 0 meaning no simi-
larity and 1 meaning perfect match.

The simδ and simα functions evaluate the degree of similarity of both distances
and angles. Since there is unavoidable imprecision in the measuring of distances and an-
gles, we use triangular fuzzy numbers in the representation of these measures. Then, the
similarity between distances and angles becomes the similarity between fuzzy numbers.
We define the degree of similarity between two fuzzy distances, d̃1 and d̃2, as the maxi-
mum value of the intersection of their triangular fuzzy numbers as Figure 3 shows. The
similarity between two fuzzy angles, ã1 and ã2, is computed similarly:

simδ(d̃1, d̃2) = max(min(d̃1, d̃2))

simα(ã1, ã2) = max(min(ã1, ã2))

3.2. Similarity Between Cases

Given two cases, A and B, with the same number of landmarks, LA = {l1, l2, ..., ln}
and LB = {l′

1
, l′

2
, ..., l′n}, we aim at obtaining the best possible match, that is, the match-

ing between landmarks that maximises the similarity function. We therefore propose a
Branch&Bound algorithm that, given the reference points l̄A, l̄B , finds the optimal match
between landmarks. In order to apply the algorithm we need to define a heuristic func-
tion to estimate the bound and to set the constraints that restrict the configurations in the
nodes of the B&B algorithm (in our case just one):

• heuristic: the maximum similarity of all possible matches will always be larger
than the actual similarity of a concrete mapping between the nodes of the two
cases.

h(l̄A, l̄B , A, B) =
∑

li∈LA,li 6=l̄A

max
l′
j
∈LB ,l′

j
6=l̄B

(sim(li, l
′
j))

• constraint: if there is an obstacle between li and lj , and li matches l′k, and lj
matches l′m, then there must be an obstacle between l′k and l′m (Figure 4).

3.3. Integration into the navigation system

We define the current problem-case as the set of landmarks and obstacles in the neigh-
bourhood in front of the robot (Figure 5). The CBR system compares this problem-case
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Figure 4. There is an obstacle between landmarks l1 and l2. Thus, the match l1− l′
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Figure 5. Landmarks l1, l2 and l3 are in the
region used to retrieve cases.

Scenario 1 Time Distance
No CBR 162.36 802.13

CBR 147.87 648.13

Scenario 2 Time Distance
No CBR - -

CBR 205.03 921.51

Figure 6. Average time (seconds) and dis-
tance (cm) of the path in both scenarios.

with the cases in the case base. The system retrieves those cases whose similarity is
greater than a minimum similarity threshold, simThr. From those over the threshold (if
any) the most similar is selected and its associated action is performed. In the current
implementation the action is just sending a message to the Rescuer agent of the naviga-
tion system to compute a diverting target so that the robot avoids the current problematic
situation. Once the robot gets to the diverting target, the original target is set again and
the robot continues navigating through the environment as usual. During the avoiding
situation phase (beginning when a diverting target is set and finishing when the robot
reaches it), the CBR is inhibited to refrain from sending the same message repeatedly to
the Rescuer agent.

4. Experiments

This section reports on initial experiments designed to compare the performance of the
robot with and without the CBR system. The objective is to verify that the use of CBR
would improve the navigation behaviour by decreasing the running time and distance
travelled to reach targets. We have used a robot simulator to perform the experiments.

We designed two different scenarios to run the experiments and to compare the re-
sults obtained. A trial begins with the robot positioned at the initial point (point A) and
finishes when the robot reaches the target (represented by a star). If the robot does not
reach the target before a given time, the trial also finishes and it is considered as a failure.
For each scenario, 100 trials were performed using the CBR system and without using
it. Figure 6 shows the average of the results obtained.
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Figure 7. Path without the CBR system (dashed line), and path with the CBR system (solid line). On the left,
scenario 1, and on the right, scenario 2. The target is represented by a ‘*’.

As we can see in the first scenario (Figure 7, left), the CBR system improved both
time and distance measures required to reach the target. Without using the CBR system
the robot goes straight ahead until point B where the pilot agent begins avoiding the
linear obstacle between l1 and l2. Once the obstacle is passed, the robot heads towards
the target. On the other hand, using the CBR system, at point A the robot retrieves a
previous case formed by the landmarks l1, l2 and the linear obstacle. Thus, a message
is sent to the Rescuer agent to compute a diverting target in order to avoid the current
situation. The landmark l2 is set as the diverting target. Once the robot gets there (point
C), the initial target is reset and the robot continues navigating as usual. The pilot avoids
landmark l2 and finally the robot reaches the target. Comparing both experiments, we
can see that the CBR system deviates the former trajectory preventing the robot from
reaching the linear obstacle. As the results show, when using the CBR system the average
time spent to complete the trial is reduced by almost a 10% with respect to the time
employed by the original navigation system. Moreover, the distance is also reduced by a
20%. The optimal distance to reach the target avoiding the obstacle is 539.82 cm and the
optimal time is 107 sec. (as the robot’s average velocity is 5 cm/sec).

The second scenario (Figure 7 right) consists of a more difficult layout of linear
obstacles. Actually, the current system (without CBR) is not able to finish any trial. As
mentioned before, the pilot system of the robot uses a potential field technique to avoid
obstacles. Due to the layout of the obstacles, the computed forces of the linear obstacles
lead the robot from side to side in an infinite loop (point B). Thus, the robot stays there
until the timeout is reached. Using the CBR system instead, at the initial point A a case
formed by the landmarks l1, l2, l3 and both linear obstacles between them is retrieved.
Then a diverting target is computed (l3) leading the robot to point C. Once it gets there,
the pilot prevents the robot from getting closer to the linear obstacle and eventually the
robots ends the trial. In this case, the optimal distance to the target is 868.46 cm and
173.69 sec., the optimal time.

5. Conclusion and future work

In this paper we have proposed a system able to distinguish problematic situations a
robot encounters as it navigates through an unknown environment. To this end, we have
used a case-based reasoning approach as it covers the main features expected for our
system: identification, reuse and learning of cases. As the first steps we have designed
the similarity function to retrieve, if any, the most similar cases from the case base. We



have integrated our system in the current navigation system to evaluate its performance
with simple experiments. As we could observe, the CBR system greatly improves the
performance of the robot in terms of time and distance of the path used to reach the
target. With these positive results we are ready now to continue completing the system,
with the adaptation and learning modules of the CBR system. We also plan to study
the actions the CBR system should perform to guide the robot avoiding the situations it
encounters, based on the decisions made in previous situations. Besides, more complex
scenarios must be tested to evaluate the performance of the CBR system. Finally, it will
be interesting to include positive cases representing situations that ensure safe paths for
the navigation of the robot.
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