
ON PRODUCT FUZZY LOGIC WITH TRUTH CONSTANTS ∗

Roberto Cignoli1 Francesc Esteva2 Llúıs Godo2 Carles Noguera2
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ABSTRACT: In this paper we investigate expan-
sions of Product logic by adding into the language a
countable set of truth constants and by adding the cor-
responding book-keeping axioms for the truth constants.
In particular we consider expansions with sets of truth
constants defined by the natural and rational powers of
an arbitrary real a ∈ [0, 1], for which we prove standard
completeness. Finite strong completeness results for
these logics are studied when we restrict ourselves to
formulas of the kind r → ϕ, where r is a truth constant
denoting the truth degree r and ϕ is a formula without
truth constants.
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1 INTRODUCTION

In the context of fuzzy logical systems, introducing truth
constants in the language is an elegant means to be able
to explicitely reasoning with partial degrees of truth.
This goes back to Pavelka [13] who built a propositional
many-valued logical system over Lukasiewicz logic by
adding into the language a truth constant r for each real
r ∈ [0, 1], together with a number of additional axioms.
Although the resulting logic is not strong complete (like
Lukasiewicz logic), Pavelka proved that his logic, call it
PL, is complete in a weaker sense. Namely, by defining
the truth degree of a formula ϕ in a theory T as

|| ϕ ||T= inf{e(ϕ) | e evaluation model of T}
and the degree of provability of ϕ in T as

| ϕ |T= sup{r | T �PL r→ ϕ},
Pavelka proved that these degrees coincide. This
kind of completeness, is usually known as Pavelka-style
completeness, and strongly relies in the continuity of
Lukasiewicz truth functions. Novák extended Pavelka
approach to Lukasiewicz first order logic.
Later, Hájek [10] showed that Pavelka’s logic PL could

be significantly simplified while keeping the completeness
results, indeed it is enough to extend the language only
by a countable number of truth constants, one per each
rational in [0, 1], and by two additional axiom schemata,
called book-keeping axioms:

r&s ↔ r ∗ s
r → s↔ r⇒ s

∗Authors have been partially supported by a bilateral project
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where ∗ and ⇒ are Lukasiewicz t-norm and its residuum
respectively. He denoted this new system Rational
Pavelka Logic, RPL for short. Moreover he proved that
RPL is strong complete for finite theories.
Similar rational extensions for other popular fuzzy log-

ics can be obviously defined, but remark that Pavelka-
style completeness cannot be obtained since Lukasiewicz
is the only fuzzy logic with continuous truth functions
in the real unit interval [0, 1]. Among different works
in this direction we may cite [10] where an extension of
G∆ (the extension of Gödel logic with Baaz’s Delta op-
erator) with a finite number of rational truth constants,
and [7] where the authors define logical systems obtained
by adding (rational) truth constants to G∼ (Gödel logic
with an involutive negation) and to Π (Product logic) and
Π∼ (Product logic with an involutive negation). More re-
cently, in [8] the authors consider the extension of Gödel
and Weak Nilpotent Minimum logics (and some of its ex-
tensions) with rational truth constants. Standard (weak)
completeness is shown for those logics as well finite strong
completeness when restricted to formulas of the kind
r → ϕ, where r is a truth constant denoting the truth
degree r and ϕ is a formula without truth constants. Ac-
tually, this kind of formulas have been extensively con-
sidered in other frameworks for reasoning with partial
degrees of truth. Indeed, these formulas correspond to
a particular class of Novák’s evaluated formulas in the
setting of graded formal logical systems [12]. Evaluated
formulas are expressions a/A where a is a truth value
(from a given algebra) and A is a formula of a language
built using truth constants. Our formula r→ ϕ would be
expressed as r/ϕ in Novák’s syntax. They also appear in
the framework of abstract fuzzy logics developed by Gerla
[9] based on the notion of fuzzy consequence or deduction
operators over fuzzy sets of formulas, where the member-
ship degree of formulas are interpreted as lower bounds
on their truth degrees.
In this paper we present preliminar results on expan-

sions à la Pavelka of another popular fuzzy logic, the
Product fuzzy logic Π [11, 10]. In particular we consider
expansions with sets of truth constants defined by the
natural and rational powers of an arbitrary real a ∈ [0, 1],
for which we prove standard completeness. After some
preliminaries in Section 2, this is done in Section 3. In
Section 4, strong completeness of these logics are stu-
died when we restrict ourselves to formulas of the kind
r → ϕ. We conclude with some final remarks on open
problems and future research. Notice that, in contrast to
the above other logics, to prove standard completeness of
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the expansion of Π with a truth constant for each rational
in [0, 1] remains as an open problem.

2 PRELIMINARIES

Our general logical framework is the Product fuzzy logic
Π defined in [11] and further studied in e.g. [10, 1, 3, 5] as
a propositional logic in the language L = {&,→, 0}. We
will denote by FmL the set of well-formed formulas built
over the language L and a countable set of propositional
variables. Other connectives are defined as follows: 1 is
ϕ → ϕ, ¬ϕ is ϕ → 0, ϕ ∧ ψ is (ϕ&(ϕ → ψ)), ϕ ∨ ψ
is ((ϕ → ψ) → ψ) ∧ ((ψ → ϕ) → ϕ), and ϕ ≡ ψ is
(ϕ→ ψ) ∧ (ψ → ϕ).
Axioms of Π are:

(A1) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))
(A2) (ϕ&ψ) → ϕ
(A3) (ϕ&ψ) → (ψ&ϕ)
(A4) (ϕ&(ϕ → ψ))→ (ψ&(ψ → ϕ))
(A5a) (ϕ→ (ψ → χ))→ ((ϕ&ψ) → χ)
(A5b) ((ϕ&ψ) → χ)→ (ϕ→ (ψ → χ))
(A6) ((ϕ→ ψ)→ χ)→ (((ψ → ϕ)→ χ)→ χ)
(A7) 0→ ϕ
(A8) ϕ ∧ ¬ϕ→ 0
(A9) ¬¬ϕ→ [((ϕ&ψ) → (ϕ&χ))→ (ψ → χ)]

The rule of inference of Π is modus ponens.
The notion of (finitary) proof is as usual from the above

axioms and inference rule. If T is an arbitray theory we
shall write T �Π ϕ to denote that there exists a proof of
ϕ from T .
The algebraic counterpart of Π logic are the so-called

Product algebras. A product algebra A = (A,∧,∨,�,⇒
, 0, 1) is a BL-algebra satisfying two further conditions:

• x ∧ ¬x = 0

• if x �= 0 then x ∗ y = x ∗ z implies y = z

Product algebras (or Π-algebras) form a variety, which
is a subvariety of BL-algebras. The so-called standard
Π-algebra is the product algebra on the unit real inter-
val defined by the algebraic product and its residuum,
[0, 1]Π = ([0, 1],min,max, ·,⇒Π, 0, 1), where · denotes
the algebraic product and x ⇒Π y = 1 if x ≤ y and
x⇒Π y = y/x otherwise.
Given a product algebra A = (A,∧,∨,�,⇒, 0, 1) an

A-evaluation e is a mapping e : V ar→ A which extends
to arbitrary formulas by means of the algebra operations:

e(0) = 0

e(ϕ&ψ) = e(ϕ) � e(ψ)

e(ϕ→ ψ) = e(ϕ)⇒ e(ψ)

An A-evaluation e is an A-model of a formula ϕ if
e(ϕ) = 1. ϕ is an A-tautology if e(ϕ) = 1 for all A-
evaluation e. If T is a theory, we write T |=A ϕ when
e(ϕ) = 1 for all A-evaluation e which is model of all
formulas in T .
Completeness results for Π logic [11, 10] read as fol-

lows. For any finite theory T and formula ϕ the following
conditions are equivalent:

(i) T �Π ϕ

(ii) T |=A ϕ for all product algebra A

(iii) T |=A ϕ for all linearly ordered product algebra A

(iv) T |=[0,1]Π ϕ

3 EXPANDING PRODUCT LOGIC WITH
TRUTH CONSTANTS

Let C be a countable subset of [0, 1] such that C =
(C,min,max, ·,⇒Π, 0, 1) is a (product) subalgebra of
[0, 1]Π. Relevant examples of sets C are:

(i) the set Q ∩ [0, 1] of rational numbers in [0, 1],

(ii) the sets NP [a1, . . . , am] = {an1
1 · . . . · anmm |

n1, . . . , nm ∈ N} ∪ {0, 1} for any reals 0 < a1 <
. . . < am < 1,

(iii) the sets RP [a1, . . . , am] = {ar11 · . . . · armm |
r1, . . . , rm ∈ Q+} ∪ {0, 1} for any reals 0 < a1 <
. . . < am < 1,

To simplify notation, we will simply write Na for NP [a]
and Ra for RP [a].
Given such a C, one can define the logic Π(C) as

the expansion of Product logic Π with the countable set
C = {c | c ∈ C} of truth constants and by adding the
corresponding book-keeping axioms, i.e., for all r, s ∈ C,
the axioms

r&s ≡ r · s
r→ s ≡ r ⇒Π s

The only inference rule is always modus ponens. The
notion of proof is as in Π logic. We will use the notation
�Π(C) to refer to proofs in Π(C).
A Π(C)-algebra is a structure A = (A,∧,∨,�,⇒

, {rA}r∈C), where A = (A,∧,∨,�,⇒, 0A, 1A) is a prod-
uct algebra, satisfying the following book-keeping equa-
tions:

rA � sA = r · sA
rA → sA = r⇒Π sA

for any r, s ∈ C.
Given a Π(C)-algebra A, an A-evaluation e is just an

A-evaluation which further satisfies e(r) = rA for all
r ∈ C. The notions of A-model, A-tautology and log-
ical consequence |=A are then as in the case of Π logic.
One can check that the logic Π(C) is algebraizable in

the sense of [2] (cf. [8]) and its equivalent algebraic se-
mantics is given by the variety of Π(C)-algebras. More-
over, as in the case of Π-algebras, Π(C)-algebras also de-
compose as subdirect products of linearly ordered ones.
As a consequence we have the following general complete-
ness results.

Theorem 1 (General Completeness). Let ϕ be a for-
mula of Π(C). Then the following conditions are equiva-
lent:

• �Π(C) ϕ

• |=A ϕ for all Π(C)-algebra A



• |=A ϕ for all linearly ordered Π(C)-algebra A

The standard Π(C)-algebra is the algebra [0, 1]Π(C) over
the unit real interval [0, 1] where the truth constants are
interpreted by their own values, i.e.

[0, 1]Π(C) = ([0, 1],min,max, ·,⇒Π, {r}r∈C)

The following are some general results about the struc-
ture of linearly ordered Π(C)-algebras.

Lemma 1. Let A = (A,∧,∨,�,⇒, {rA}r∈C} be a Π(C)-
chain. Then:

• Either rA < sA for any r, s ∈ C such that r < s, or
rA = 1A for all r > 0. Algebras of the first kind will
be called type I algebras, while algebras of the second
kind will be called of type II.

• A is finite iff A = {0A, 1A} and rA = 1A for all
r > 0.

The standard Π(C)-algebra [0, 1]Π(C) is of type I. The
Π(C)-chain of type II over the unit interval [0, 1] will be
denoted as [0, 1]∗Π(C).

Lemma 2. Let A be a Π(C)-algebra over [0, 1] of type I,
where C = Na or C = Ra. Then A is isomorphic to the
standard algebra [0, 1]Π(C).

Proof. Let α = aA. There exists a real β such that
αβ = a. Then the mapping f : [0, 1] → [0, 1] defined
by f(x) = xβ is a Π(C)-product algebra isomorphism
such that f(rA) = r for all r ∈ C.

Let us consider an interesting linearly ordered Π(C)-
algebra, which is not Archimedean, that we will use later.
Let R+ ×lex R+ = (R+ × R+, (1, 1), ·,≤lex) denote the
l.o. abelian group defined by the lexicographic product
of two copies of the multiplicative group of positive reals.
Then, let [0, 1]lexΠ be the product algebra defined as the
negative cone of R+ ×lex R+ adding a bottom element
(0, 1). Namely,

[0, 1]lexΠ =
(Cone−(R+ ×lex R+) ∪ {(0, 1)},  ,⇒�, (0, 1), (1, 1))

where Cone−(R+ ×lex R+) = {(1, y) | y ∈ (0, 1]} ∪
{(x, y) | x ∈ (0, 1), y ∈ R+}, and the operations are de-
fined for all (x, y), (x′, y′) ∈ Cone−(R+ ×lex R+) by:

(x, y)  (x′, y′) = (x · x′, y · y′)

(x, y)⇒� (x′, y′) =
{
(1, 1), if (x, y) ≤lex (x′, y′)
(x⇒Π x′, y′/y), otherwise

together with (0, 1)  (x, y) = (x, y)  (0, 1) = (0, 1), and
(x, y) ⇒� (0, 1) = (0, 1), (0, 1) ⇒� (x, y) = (1, 1) for
all (x, y) ∈ Cone−(R+ ×lex R+) and (0, 1) ⇒� (0, 1) =
(1, 1). Clearly, [0, 1]lexΠ is a non-Archimedean product al-
gebra, indeed, it has two Archimedean components, F =
{(1, y) | y ∈ (0, 1]} and the rest Cone−(R+ ×lex R+)\F .
Moreover F is in fact a filter.
It is clear that the mapping f : x �→ (x, 1) embedds

the standard product algebra [0, 1]Π into [0, 1]lexΠ .

For a givenC, we can define several Π(C)-algebras over
the product algebra [0, 1]lexΠ , depending on how truth
constants are interpreted. Let us consider these ones (we
omit superscripts in the constants for a ligther notation):

(i) The algebra [0, 1]lexC,1 where c = (1, c), for all c ∈ C,
c �= 0, and 0 = (0, 1).

(ii) The algebra [0, 1]lexC,2 where 1 = (1, 1) and c = (c, 1)
for all c ∈ C, c �= 1.

(iii) The algebra [0, 1]lexC,∗where c = (1, 1) for all c ∈ C,
c �= 0, and 0 = (0, 1).

Lemma 3. The following statements hold:

(i) The standard algebra [0, 1]Π(C) belongs to both to
V([0, 1]lexC,1) and to V([0, 1]lexC,2), the varieties gene-
rated by [0, 1]lexC,1 and by [0, 1]lexC,2 respectively.

(ii) The algebra [0, 1]∗Π(C) belongs to V([0, 1]
lex
C,1), the va-

riety generated by [0, 1]lexC,1

Proof. (i) On the one hand, [0, 1]Π(C) is isomorphic to the
subalgebra of [0, 1]lexC,1 consisting of F ∪ {(0, 1)}. On the
other hand, [0, 1]Π(C) is also an homomorphic image of
[0, 1]lexC,2, namely it is isomorphic to the quotient algebra
[0, 1]lexC,2/F .
(ii) In a similar way, [0, 1]∗Π(C) is isomorphic to the

quotient algebra [0, 1]lexC,1/F .

In the sequel we investigate the issue of standard com-
pleteness of the logics Π(C) for different sets of truth
constants C.

Theorem 2 (Standard Completeness of Π(Ra)).
For any 0 < a < 1, the logic Π(Ra) is weak standard
complete, that is, for any formula ϕ, �Π(Ra) ϕ if and
only if |=[0,1]Π(Ra)

ϕ.

Proof. Soundness is obvious. Suppose ��Π(Ra) ϕ. Then,
by general completeness, there is a linearly ordered
Π(Ra)-algebra A and an A-interpretation e such that
eA(ϕ) < 1. We have to prove that there exists a
[0, 1]Π(Ra)-evaluation e′ such that e′(ϕ) < 1 as well. We
will distinguish two cases:
(1) Suppose A is of type I, that is, the interpretation

of the truth constant a in A, aA, is different from 1A.
Take X = {e(ψ) | ψ subformula of ϕ} ∪ {0A, 1A, aA}.

As the set X is finite, let k = l.c.m.{q ∈ N | for all
irreducible fraction r = p/q such that arA ∈ X}, and let
k′ ∈ N the minimum number such that k′/k ≥ r for all r

such that arA ∈ X. Take now Y = X ∪{an/k
A
| n ≤ k′}.

Considering A as the Π-algebra reduct of A, by
Gurevich-Kokorin’s theorem, there is a partial embed-
ding h from Y into the standard Π-algebra [0, 1]Π. Note

that, if h(aA) = c, then h(ap/k
A
) = cp/k. In fact, let-

ting h(a1/k
A
) = d, we have h(ap/k

A
) = h(a1/k

A
� p. . .

�a1/k
A
) = d· p. . . ·d = dp. In particular, h(aA) = dk = c,

hence d = c1/k and thus h(ap/k
A
) = cp/k. Moreover,

h(e(ϕ)) < 1.



Finally we can consider an isomorphism of Π-algebras
f : [0, 1] → [0, 1] defined by f(x) = xβ, where β is such
that cβ = a. Note that f ◦ h is a partial embedding
from Y ⊂ A to [0, 1]Π such that (f ◦ h)(rA) = r for all
rA ∈ X and (f ◦ h)(e(ϕ)) < 1. Hence f ◦ h ◦ e can be
easily extended to a full [0, 1]Π(Ra)-evaluation e′ and still
e′(ϕ) < 1.
(2) Suppose A is a Π(Ra)-algebra of type II, i.e. aA =

1A. Take again X = {eA(ψ) | ψ is a subformula of ϕ} ∪
{0, 1}. Then there is a partial isomorphism (as Product
algebras) h of X into the standard Π-algebra [0, 1]Π, and
since h(1A) = 1, h ◦ e can be easily extended to a full
[0, 1]∗Π(Ra)

-evaluation e′ such that e′(ϕ) < 1. This means
that ϕ is not valid in [0, 1]∗Π(Ra)

. Since, by (ii) of Lemma
3, [0, 1]∗Π(Ra)

∈ V([0, 1]lexRa,1), ϕ is not valid in [0, 1]lexRa,1
either.
Now we reason as follows. Notice that in the previous

part (1) we have actually proved that any equation which
is not valid in a Π(Ra)-algebra of type I, hence in par-
ticular in the algebra [0, 1]lexRa,1, it is also not valid in the
standard algebra [0, 1]Π(Ra). In other words [0, 1]

lex
Ra,1

∈
V([0, 1]Π(Ra)), which together with (i) of Lemma 3, it
amounts to establish that V([0, 1]Π(Ra)) = V([0, 1]lexRa,1).
Therefore, ϕ is not valid either in the standard algebra
[0, 1]Π(Ra). This ends the proof.

Corollary 4. V([0, 1]Π(Ra)) = V([0, 1]lexRa,1) =
V([0, 1]lexRa,2).

Theorem 3 (Standard Completeness of Π(Na)).
For any 0 < a < 1, the logic Π(Na) is weak standard
complete, that is, for any formula ϕ, �Π(Ra) ϕ if and
only if |=[0,1]Π(Na)

ϕ.

Proof. The proof is analogous (in fact simpler) to the
previous case, hence it is ommitted.

The question whether Π(Q) is standard complete re-
mains open.

4 FINITE STRONG COMPLETENESS RE-
SULTS

Similarly to the case of Lukasiewicz, Gödel or Nilpotent
Minimum logics, the expansion of Product logic with
truth constants is not strong complete, the same counter-
examples apply (p∨ r |=[0,1]Π(C)

p while p∨ r ��Π(C) p, for
any propositional variable p).
However, we want to show that, analogously again to

the above mentioned cases, Π(C) is strongly standard
complete if we restrict ourselves to formulas of the type
r → ϕ, where ϕ is a formula without rational truth con-
stants (a formula of Π), and expressing that ϕ is true
at least to the degree r. This type of formulas, that we
will call graded formulas, are also commonly expressed in
different fuzzy logic settings as pairs (ϕ, r). Making use
of this notation, the finite strong completeness for Π(C)
we want to show reads as follows:

{(ψi, ri) | i = 1, 2, .., n} �Π(C) (ϕ, s)
if and only if

{(ψi, ri) | i = 1, 2, .., n} �[0,1]Π(C)
(ϕ, s)

where ψ1, . . . , ψn, ϕ are formulas without truth constants
and Π(C) is any expansion of Π which is (weak) standard
complete, for instance for C = Ra and C = Na.
Actually, as always, one direction is easy:

Lemma 5. If {(ϕi, ri) | i = 1, 2, .., n} �Π(C) (ψ, s) then
{(ϕi, ri) | i = 1, 2, .., n} |=[0,1]Π(C)

(ψ, s) .

The rest of the section is devoted to prove the converse
direction:

If {(ϕi, ri) | i = 1, 2, .., n} |=[0,1]Π(C)
(ψ, s) then

{(ϕi, ri) | i = 1, 2, .., n} �Π(C) (ψ, s) (FSC)

Lemma 6. Let α ∈ R+ and define a mapping fw :
[0, 1]→ [0, 1] as follows:

fα(x) = xα

Then fα is a morphism with respect to the standard Prod-
uct truth functions. Therefore, if e is a Π-evaluation of
formulas, then eα = fα ◦ e is another Π-evaluation.

Lemma 7. If {(ϕ1, r1), . . . , (ϕn, rn)} |=[0,1]Π(C)
(ψ, s)

with s > 0 then {ϕ1, . . . , ϕn} |=[0,1]Π ψ, and hence
{ϕ1, . . . , ϕn} �Π ψ as well.

Proof. Asumme {ϕ1, . . . , ϕn} �|=[0,1]Π ψ. Then there ex-
ists an evaluation e such that e(ϕ1) = . . . = e(ϕn) = 1
and e(ψ) < 1. If e(ψ) = 0 the result is obvious. As-
sume e(ψ) > 0. Let α ∈ R+ such that (e(ψ))α < s.
Then e′ = fα ◦ e is such that e′((ϕi, ri)) = 1 for all i but
e′((ψ, s)) < 1.

Lemma 8. If {ϕ1, . . . , ϕn} �Π ψ iff there exists k such
that {p1 → ϕ1, . . . , pn → ϕn} �Π (p1& . . .&pn)k → ψ.

Proof. The following are theorems of Π logic:
- ((p1 → ϕ1)& . . .&(pn → ϕn)) → ((p1& . . .&pn) →

(ϕ1& . . .&ϕn))
- ((p1 → ϕ1)& . . .&(pn → ϕn))k → ((p1& . . .&pn) →

(ϕ1& . . .&ϕn))k

- ((p1& . . .&pn) → (ϕ1& . . .&ϕn))k →
((p1& . . .&pn)k → (ϕ1& . . .&ϕn)k)
Now, if {ϕ1, . . . , ϕn} �Π ψ then, by the deduction theo-
rem, there exists k such that �Π (ϕ1& . . .&ϕn)k → ψ.
Combining this with the above theorems, we have that

�Π ((p1 → ϕ1)& . . .&(pn → ϕn))k&(p1& . . .&pn)k → ψ

from where it easily follows that

(p1 → ϕ1), . . . , (pn → ϕn) �Π (p1& . . .&pn)k → ψ

Conversely, taking pi = ϕi, it follows that �Π

(ϕ1& . . .&ϕn)k → ψ, and hence {ϕ1, . . . , ϕn} �Π ψ .

Lemma 9. If {ϕ1, . . . , ϕn} �Π ψ then
{(ϕ1, r1), . . . , (ϕn, rn)} �RΠ (ψ, (r1 · . . . · rn)k0 ), where
k0 = min{k ∈ N | �Π (ϕ1& . . .&ϕn)k → ψ}.

Proof: By Lemma 8, it is easy to see that taking pi = ri
we can still prove over Π that

{r1 → ϕ1, . . . , rn → ϕn} �Π (r1& . . .&rn)k0 → ψ,



and over RΠ (hence using the book-keeping axioms) we
have

{r1 → ϕ1, . . . , rn → ϕn} �Π (r1 · . . . · rn)k0 → ψ.

✷

Now, using Lemma 7 and reformulating the above two
lemmas by using the following version of the deduction
theorem

{ϕ1, . . . , ϕn} �Π ψ iff there exist k1, . . . , kn such that
�Π ϕk1& . . .&ϕkn → ψ

we can formulate the following result.

Theorem 10. Assume {(ϕ1, α1), . . . , (ϕn, αn)} |=[0,1]RΠ

(ψ, s) with s > 0, and hence {ϕ1, . . . , ϕn} �Π ψ. Let
I = {(i1, . . . , in) | �Π ϕi1& . . .&ϕin → ψ}. Then
{(ϕ1, α1), . . . , (ϕn, αn)} �RΠ (ψ, β), where β = max{αi11 ·
. . . · αinn | (i1, . . . , in) ∈ I}.

5 EXPANDING Π∆ WITH TRUTH CON-
STANTS

A natural extension of the considered logical framework
is to introduce the well-known Baaz’s ∆ connective into
the logic. In such a case, instead of the Product logic Π,
we take now as starting point the logic Π∆, the extension
of Π with the ∆ connective as done in [10].
As before, given a countable subset C of [0, 1]

such that C = (C,min,max, ·,⇒Π, 0, 1) is a (prod-
uct) subalgebra of [0, 1]Π, then we define a Π∆(C)-
algebra as a structure A = (A,∧,∨,�,⇒,∆, {rA}r∈C ),
where (A,∧,∨,�,⇒, {rA}r∈C ) is a Π(C)-algebra and
(A,∧,∨,�,⇒,∆, 0A, 1A) is a Π∆ algebra, satisfying fur-
ther these additional book-keeping axioms:

∆r = ∆r

where the second ∆ is meant as the standard truth func-
tion in [0, 1], i.e. ∆x = 1 if x = 1 and ∆x = 0 otherwise.
It is clear then that if A is a linearly ordered Π∆(C)-

algebra, ∆r = 0 for all 1 > r ∈ C.
One can check again that the logic Π∆(C) is also al-

gebraizable with equivalent algebraic semantics given by
the variety of Π∆(C)-algebras and that Π∆(C)-algebras
still decompose as subdirect product of linearly ordered
ones.

Theorem 4 (General Completeness). Let ϕ be a for-
mula of Π(C). Then the following conditions are equiva-
lent:

• �Π∆(C) ϕ

• |=A ϕ for all Π∆(C)-algebra A

• |=A ϕ for all linearly ordered Π∆(C)-algebra A
The standard Π∆(C)-algebra is the algebra [0, 1]Π∆(C)

over the unit real interval [0, 1] where the truth constants
are interpreted by their own values, i.e.

[0, 1]Π(C) = ([0, 1],min,max, ·,⇒Π,∆, {r}r∈C)

Contrary to Π(C)-chains, truth constants cannot col-
lapse.

Lemma 11. Let A = (A,∧,∨,�,⇒,∆, {rA}r∈C} be a
Π∆(C)-chain. Then rA < sA for any r, s ∈ C such that
r < s. Hence, A cannot be finite.

Proof. Let r < s. If rA = sA, then sA ⇒ rA = 1A,
hence t

A = 1A, where t = r/s, hence ∆(tA) = 1A. But,
since t < 1, this is in contradiction with the fact that
∆(tA) = 0A for all t < 1.

Lemma 12. Let A be a Π∆(C)-algebra over [0, 1], where
C = Na or C = Ra. Then A is isomorphic to the stan-
dard algebra [0, 1]Π∆(C).

Proof. Let α = aA. There exists a real β such that αβ =
a. Then the mapping f : [0, 1]→ [0, 1] defined by f(x) =
xβ is a Π(C)-algebra isomorphism such that f(rA) = r
for all r ∈ C.

Theorem 5 (Standard Completeness). For C = Na

and C = Ra (and for any 0 < a < 1), the logic Π∆(C)
is weak standard complete, that is, for any formula ϕ,
�Π∆(C) ϕ if and only if |=[0,1]Π∆(C)

ϕ.

Proof. Analogous to the proof of T heorem 2, taking into
account the simplification due to the fact that there are
no Π∆(C)-algebra of Type II.

The issue of (finite) strong completeness now is easier.
Indeed, recalling the form of local deduction theorem for
Π∆, ψ �Π∆ ϕ iff �Π∆ ∆ψ → ϕ, one can easily prove the
following.

Corollary 13 (Finite strong standard Complete-
ness). For any formulas ϕ and ψ of Π∆(C), it holds
that ψ |=[0,1]Π∆(C)

ϕ iff ψ �Π∆(C) ϕ.

6 FINAL REMARKS

After the study of Lukasiewicz logic and Gödel logic with
truth constants in [13, 10] and in [8], in this paper we
have started the study of the expansion of Product logic,
the other main fuzzy logic based on a continuous t-norm,
with truth constants. We have done some first steps for
the case where the set of truth constants correspond to
powers (either natural or rational) of a given real value
in [0, 1]. Nevertheless, it is a matter of current research
the case where truth constants correspond to the set of
all rationals in [0, 1], which was the case studied for the
expansions of Lukasiewicz and Gödel logics. In addition,
we have considered the expansions of those product logics
with Baaz’s ∆ connective, obtaining finite strong stan-
dard completeness. In fact, this result could be proved
in an analogous way for the corresponding expansions of
Lukasiewicz and Gödel logics with ∆. Finally, let us re-
mark that a recent result by Cintula [4, Lemma 3.4.4] im-
plies that if a logic L (without addtional truth constants)
is standard complete, then its expansion with some suit-
able set of truth constants C is complete with respect
to the class of L(C)-algebras whose reduct is a standard
L-algebra. This may shed new light on getting standard
completeness for L(C) logics, in particular, it seems in-
teresting to be investigated for the case of L = Π∆ and
C = Q ∩ [0, 1].
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