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1 INTRODUCTION

Artiicial Intelligence (AI) is at the core of recent scientiic and industrial advances, such as Autonomous Driving
(AD) [Chen et al. 2021; Grigorescu et al. 2020; Kiran et al. 2021] and Unmanned Aerial Vehicles (UAVs) [Liu et al.
2020; Torens et al. 2022]. AI technology is a cross-domain innovation driver for numerous novel application use
cases [ISO 2021] and embedded intelligence-driven solutions [Jenn et al. 2020; Serpanos et al. 2020]. In some
speciic high-integrity application scenarios, AI is increasingly łused to support safety-critical decisions where
errors can lead to catastrophic and fatal consequences” [Castelvecchi 2016; ISO 2021b; Perez et al. 2021] (e.g., AD
[Koopman and Wagner 2016; Riedmaier et al. 2020; Salay et al. 2018], railway interlocking [Athavale et al. 2020a;
Klein 1991; Nordland 2004; Perez et al. 2021], aircraft collision avoidance [Julian et al. 2019], UAVs [Dill et al. [n.
d.]; Sarathy et al. 2019; Schirmer et al. [n. d.]; Torens et al. 2022]).
In this line, it is acknowledged that AI is łone of the only technically and economically viable” technologies

for developing autonomous systems [Jenn et al. 2020]. Driven by AD and UAV engineering challenges and the
associated economic investment, there is a signiicant research and engineering efort to deine novel technical
solutions for developing AI-based autonomous systems [Grigorescu et al. 2020; Hand and Khan 2020; Koopman
and Wagner 2016; Rajabli et al. 2021; Riedmaier et al. 2020; Salay et al. 2018], neaten with the updating and
deinition of novel safety standards [ARP 2023; ISO 2019; ISO 2021b; ULSE 2020] to deal with AI-speciic traits.
These solutions are also of interest for multiple transportation domains such as avionics [Athavale et al. 2020b;
Harrison et al. 1993], railway [Athavale et al. 2020b,a; Nordland 2004; Perez et al. 2021] and automotive [Salay and
Czarnecki 2018; Tabani et al. 2019], and industrial domain applications such as robotics [Täubig et al. 2012] and
driverless industrial trucks [ISO 2020a, 2021]. In all of these domains, AI technologies can be used to develop both
traditional functional safety systems, as well as next-generation autonomous safety-critical systems [Berghof
et al. 2020; ISO 2021b; Jenn et al. 2020; VDE 2021].

However, existing AI software technologies have several generic limitations related to compliance with current
safety standards [Berghof et al. 2020; Jenn et al. 2020]. The most notorious include the ’black box’ nature of
AI solutions causing limitations regarding their explainability and analyzability [Ackerman 2017; Castelvecchi
2016; Guidotti et al. 2018; Salay et al. 2018; Torens et al. 2022; Ward and Habli 2020], and compliance limitations
concerning software development lifecycle phases, such as speciication correctness and completeness, design,
testing, veriication and validation [Hand and Khan 2020; Koopman and Wagner 2016; Mainzer 2020; Menzies
and Pecheur 2005; Nordland 2004; Pereira and Thomas 2020; Rajabli et al. 2021; Torens et al. 2022; Vassev
2016]. Due to these limitations (challenges), AI techniques have not been recommended for use in safety-critical
systems [CENELEC. 2020; IEC 2010; Nordland 2004]. In fact, nowadays, there are still no structured development
approaches, methods and tools with generic acceptance for developing AI-based safety-critical systems [Berghof
et al. 2020; Putzer et al. 2021]. The evolving normative landscape also attests to this with the recent AI [ARP
2023; CENELEC 2020; ISO 2021b], Safety Of The Intended Functionality (SOTIF) [ISO 2019] and autonomous
systems safety standards [ULSE 2020; VDE 2021] that are in development (drafts) or recently published with
limited consolidation of industry best practices [Berghof et al. 2020; Feth et al. 2018; Jenn et al. 2020].

These complexities are compounded by a signiicant fragmentation of the research contributions targeting the
use of AI for developing autonomous systemswith [Tiusanen et al. 2020] andwithout speciic safety considerations
[Mainzer 2020], diferent safety AI challenges [Amodei et al. 2016; He et al. [n. d.]; Jenn et al. 2020], multiple use
cases [Athavale et al. 2020b; ISO 2021], multiple types of AI [Feldt et al. 2018], diferent lifecycle phases (e.g., design
[Perez et al. 2021; Varadaraju 2007], test [Čegiň 2020; Hourani et al. 2019; Huang et al. 2020], veriication [Akella
et al. 2020; Ehlers 2017; Huang et al. 2017]), generic AI solutions (e.g., reinforcement learning [Arulkumaran et al.
2017]) and safety adaptations (e.g., safe reinforcement learning [García and Fernández 2015]), with references to
multiple existing [IEC 2010; ISO 2018] and novel domain-speciic safety standards [Chemweno et al. 2020; ISO
2019; Putzer et al. 2021; Tiusanen et al. 2020; ULSE 2020; VDE 2021].
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Trust becomes paramount in paving the way for the industrial development, commercialization and societal
adoption of AI-based safety-critical systems such as AD systems [Widen and Koopman 2022] and UAVs [Torens
et al. 2022]. AI trustworthiness spans several dimensions, such as engineering, ethics and legal, and this survey
focuses on the safety engineering dimension. This survey provides an overview and categorization of the vast and
fragmented research contributions that target the development of AI-based safety-critical systems for industrial
and transportation domains, from traditional Functional Safety (FuSa) to autonomous safety-critical systems.
This survey targets researchers and safety engineers concerned with the diligent development of AI-based
safety-critical systems in a context where the technology novelty leads to a lack of consolidated industry best
practices, and available safety standards have little or no consideration for AI technology [Erben et al. 2006].
Figure 1 provides a graphical representation of the survey structure in which we categorize and summarize

selected key research contributions toward using AI technology for (i) the development of AI-based safety-critical
systems (product) in Section 4, (ii) runtime learning/adaptation of AI-based safety-critical systems (runtime) in
Section 5, and (iii) the development process of safety-critical systems in Section 6. Previous Sections 2 and 3
describe the basic concepts, terminology and taxonomy used in the remainder of this work. Section 7 discusses
trustworthiness as a multidimensional (e.g., engineering, ethics, legal) and multidisciplinary foundation for
developing and adopting AI-based safety-critical systems. Lastly, Section 8 summarizes the overall conclusion
and outlines future research directions.

Product (ğ4) Runtime (ğ5) Process (ğ6)

AI Safety Engineering (ğ6.2)

Traditional Safety Eng. (ğ6.1)

AI System (ğ4.1)
AI Item (ğ4.2)

Execution Platform (Inference) (ğ4.3)
Tools and Training Platform (ğ4.4)

Runtime Learning/Adapt. (ğ5.1)

Trustworthiness (ğ7)

Engineering Dimension (ğ7.1)
Ethical Dimension (ğ7.2)
Legal Dimension (ğ7.3)

Fig. 1. Diagram summarizing the structure of this survey

2 BACKGROUND

We next summarize basic concepts and terms used in the survey like AI (ğ2.1), FuSa standards (ğ2.2) and ML
properties (ğ2.3). This survey uses existing dependable and secure computing terminology [Avižienis et al. 2004],
the AI terminology deined in ISO 22989 [ISO 2021], and the FuSa terminology deined by safety standards IEC
61508-4 [IEC 2010] and ISO 26262-1 [ISO 2018]. This survey also integrates terminology from various research
ields as described in the referenced survey publications.

2.1 Artificial Intelligence (AI)

As stated in the VDE-AR-E 2842-61 standard, łthere is no generally accepted deinition of artiicial intelligence”
[VDE 2021]. Furthermore, Feldt et al. [Feldt et al. 2018] claim that łthere is not even a consensus around what AI
is” (referring to the scope of types of algorithms and models). Nonetheless, ISO 22989 provides an ’engineering
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system’ oriented deinition of AI used in this survey [ISO 2021]: łset of methods or automated entities that
together build, optimize and apply a model so that the system can, for a given set of predeined tasks, compute
predictions, recommendations, or decisions”.
The term AI safety [Amodei et al. 2016; Everitt et al. 2018] is commonly used in the literature to describe

techniques andmethods that aim to avoid or mitigate the potential harm that developed AI technology applications
could produce to humanity. However, within this survey, the term AI safety refers to AI-related techniques,
processes, and methods that aim to comply with applicable safety standards (ğ2.2, ğ3.3). Thus, this is a narrower
and more focused deinition.
Finally, Machine Learning (ML) is łthe art and science of letting computers learn without being explicitly

programmed” [Henriksson et al. 2018]. It is a subield of AI that uses algorithms to learn from example training
data sets that implicitly specify the intended functionalities, features, rules and constraints. The learning process
can be, for instance, supervised (using labelled data), unsupervised (not using labelled data), semisupervised (using
both labelled and unlabelled data) and reinforcement learning (ła machine learning agent(s) learns through an
iterative process by trial and error”) [Arulkumaran et al. 2017; García and Fernández 2015; ISO 2021]. When
the learned ML solution executes on an embedded system (electronics/software implementation with model

parameters), it performs inferences in which the ML solution provides online actionable outputs based on the
inputs provided. Finally, the generic statement that most of the contributions labeled as AI are in fact ML
contributions [Jordan 2019] is also extensible to the research contributions analyzed in the scope of the given
survey.

2.2 Functional Safety (FuSa) Standards

The development of safety-critical systems follows stringent certiication or assessment processes in accordance
with generic and domain-speciic safety standards deined by national and international standardization or-
ganizations (e.g., ISO) and associations (e.g., Verband Deutscher Elektrotechniker (VDE)). FuSa is deined as
łpart of the overall safety” of a system that assures the łfreedom from unacceptable risk” [IEC 2010], through
safety functions embedded in programmable electronics systems (electronics/software). IEC 61508 [IEC 2010] is a
reference generic FuSa standard for industrial (e.g., industrial machinery [ISO 2015], robotics [ISO 2011], tractors,
machinery for agriculture [ISO 2018c]) and ground transportation domains (automotive [ISO 2018], railway
[CENELEC. 2020]). Notably, FuSa standards from the air transportation domain (e.g., avionics [RTCA 2011; SAE
2010], space [Pelton and Jakhu 2010]) łdo not consider IEC 61508 as a reference safety standard” [Perez-Cerrolaza
et al. 2022]. Yet, they also focus on risk mitigation due to failures in safety functions embedded in programmable
electronic systems. Further information concerning FuSa standards and associated certiication or assessment
processes can be found elsewhere [Machrouh et al. 2012; Martinez et al. 2018].

Among all FuSa standards, there is signiicant variability in terms, deinitions and requirements. For example,
IEC 61508 deines the Safety Integrity Level (SIL) with a range of discrete values from lowest to highest integrity
(SIL1 - SIL4). And the equivalent in the automotive industry is Automotive Safety Integrity Level (ASIL) (ASILA
- ASILD) and in avionics Design Assurance Level (DAL) (DAL E - DAL A). In this survey, we use the generic
IEC 61508 as the reference safety standard and take into technical consideration the ground transportation and
industrial domains listed above. We also use automotive ISO 26262, given that automotive AD challenges have
attracted a signiicant number of research publications.

For the most critical systems (SIL4, DAL A), łthe probability of a dangerous failure is in the range of 10−9 per
hour of operation, that is, approximately one dangerous failure every 114.155 years” [Perez-Cerrolaza et al. 2022].
Thus, the associated error rate is multiple orders of magnitude smaller than the error rate considered excellent
for generic AI solutions (e.g., 99% accuracy) [Koopman et al. 2021]. Attaining such an extremely low probability
of dangerous failures requires handling systematic errors (e.g., human error, tool error) and random errors (e.g.,
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memory bit lip) according to strict safety methods, processes, and techniques. FuSa standards are denoted in
the survey as traditional because the irst versions were deined decades ago, and the referenced techniques
and methods are based on best practices consolidated in the industry over the last decades. Nonetheless, FuSa
standards are also updated to accommodate novel and evolving technologies (e.g., ISO 26262-11 for semiconductors
technology).

2.3 ML Properties

Due to the intrinsic stochastic nature of ML training and associated epistemic uncertainties [Varshney 2016;
VDE 2021], the achievable conidence usually depends on "complex hypotheses" [Jenn et al. 2020] related to
the diferent properties of the training and inference input data (e.g., data drift, distribution, correlation), their
coverage (e.g., edge/corner cases, hidden variable) and metrics [VDE 2021]. In this vein, the safety argumentation
of systematic errors management is commonly based on high-level AI-related properties adapted to the context
of safety systems [Jenn et al. 2020]. For example, as deined by [Jenn et al. 2020]:

• Auditability: łExtent to which an independent examination of the development and veriication process of
the system can be performed”.

• Data Quality: łExtent to which data are free of defects and possess desired features”.
• Explainability/Interpretability: łExtent to which a ML system can provide an explanation about a decision
in a form understandable by a human” (e.g., see surveys [Adadi and Berrada 2018; Barredo Arrieta et al.
2020; Guidotti et al. 2018]).

• Monitorability: łExtent to which a system provides information that allows to discriminate a correct behavior
from an incorrect behavior”.

• Provability: łExtent to which mathematical guarantees can be provided that some functional or non-
functional properties are satisied” (e.g., formal veriication).

• Robustness: łAbility of the system to perform its intended function in the presence of: a) Abnormal inputs
(e.g., sensor failure), b) Unknown inputs (e.g., unspeciied conditions)”.

Nonetheless, several research initiatives aim to mitigate this stochastic nature and simplify the safety argument
by enforcing deterministic training processes [Nagarajan et al. 2019]. Furthermore, the ML model implementation
can be either deterministic (e.g., a Neural Network (NN) produces the same outputs given the same inputs [VDE
2021]) or stochastic [Cummings and Bauchwitz 2022] if the implementation includes techniques that rely on
internal random variables.

3 TAXONOMY

This section summarizes the taxonomy used in the survey to classify Types of AI (TAIs) (ğ3.1), levels of automation
(ğ3.2), heteronomous and autonomous safety standards (ğ3.3), point of application of AI technology (ğ3.4), and
AI safety engineering (ğ3.5). This taxonomy aims to provide neutral classiication criteria and deinitions of
terms, reconciling the high variability of terms and concepts from research contributions and safety standards.
For instance, the proposed taxonomy can potentially map to domain-speciic terms and concepts such as VDE-
AR-E2842-61 standard terms [VDE 2021], e.g., AI-based system (’system level’), AI item (’AI element’), AI safety
engineering (’AI-blueprint’).

3.1 Type of AI (TAI)

There is a lack of consensus about TAIs in the research community [Feldt et al. 2018; Jordan 2019]. Some works
propose as a starting point the ’ive tribes of AI’ [Domingos 2018], on which this section builds on and adds
optimization algorithms to classify the TAIs used in referenced research publications within the survey scope.
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(1) Connectionists are design learning algorithms based on optimization techniques such as gradient descent,
where models are represented as Neural Networks (NNs) and specialized Deep Learning (DL) models
[Grigorescu et al. 2020; Pouyanfar et al. 2018] such as Deep Neural Networks (DNNs) [Liu et al. 2017],
Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs) and autoencoders.

(2) Bayesians are probabilistic outcome-based graphical model representations for probabilistic inference such
as Bayesian and Markov networks.

(3) Symbolists are logic-focused algorithms such as rule-based programming (e.g., łalways stop in front of
a stop sign”), Constraint Programming (CP), decision trees (e.g., random decision forest [Törnblom and
Nadjm-Tehrani 2018]), fuzzy logic [Kurd and Kelly 2004] and rational agents [Kamali et al. 2017].

(4) Analogizers are similarity-based classiication algorithms (e.g., Support Vector Machine (SVM)).
(5) Optimization algorithms aim to discover optimum or satisfactory solutions performing iterative updates

and comparison procedures (e.g., Genetic Algorithm (GA)).

And as summarized in Table 1 and the white paper on auditable AI systems [Berghof et al. 2020], connectionist
is the most common TAI embedded in safety-critical systems (product, runtime), and it is commonly used in the
development process (e.g., DL-driven test scenario generation for DL-based products).

Table 1. Types of AI (TAIs) per point of application analyzed in the survey

Type of AI (TAI) Point of Application (PA)

Product Runtime Process

Analogizers - - [Daramola et al. 2013]
Bayesians - - [Akella et al. 2020; Fan et al. 2020; Gal

2016; Gangopadhyay et al. 2019; Hutter
et al. 2019; Jesenski et al. 2019; Jha et al.
2019; Kendall et al. 2015; Kendall and
Cipolla 2016; Simon et al. 2019; Wang and
Zhao 2018]

Connectionits [Ackerman 2017; Al-Khoury 2017; Al-
Sharman et al. 2021; Beglerovic et al. 2018;
Borg et al. 2018; Bosio et al. 2019; Chen
et al. 2021; Corsi et al. 2020; Ehlers 2017;
Geißler et al. 2021; Grigorescu et al. 2020;
Hains et al. 2018; Harel-Canada et al. 2020;
Henriksson et al. 2018; Huang et al. 2020;
Jacobsson 2005; Jäger et al. 2018; Julian
et al. 2019, 2016; Katz et al. 2017; Kendall
et al. 2015; Kendall and Cipolla 2016; Ki-
ran et al. 2021; Kurd et al. 2007; Li et al.
2017; Lisboa 2001; Liu et al. 2017; O’Brien
et al. 2020; Parisi et al. 2019; Pouyanfar
et al. 2018; Pulina and Tacchella 2012; Pul-
lum et al. 2007; Rahman et al. 2021; Ru-
ospo et al. 2020; Schuman et al. 2017; Schu-
mann and Liu 2010; Sun et al. 2019a; Ta-
bani et al. 2020; Taylor 2006; Taylor et al.
2003b; Yurii and Liudmila 2017; Zhang
and Li 2020]

[Johnson et al. 2001; Kurd and Kelly 2005;
Osborne et al. 2021; Taylor et al. 2003b]

[Beglerovic et al. 2018; Čegiň and Rás-
točný 2020; Daramola et al. 2013; Jenkins
et al. 2018; Krajewski et al. 2018]

Optimization [Klein 1991; Theuretzbacher 1987] [Trojaola et al. 2020] [El-Serafy et al. 2015; Gheraibia et al. 2018;
Perez et al. 2021; Tuncali et al. 2020]

Symbolists [Kamali et al. 2017; Törnblom and Nadjm-
Tehrani 2018]

[Kurd and Kelly 2004, 2005] [Bagschik et al. 2018; Daramola et al. 2013;
Godboley et al. 2021; Jacobsson 2005, 2006;
Kruber et al. 2019; Kurd and Kelly 2004; Li
et al. 2020; Ouazraoui and Nait-Said 2019;
Sallak et al. 2006; Waymo 2019]

3.2 Autonomous, Heteronomous, Automation, Automatic and Collaborative Systems

There is a high diversity of taxonomies to classify autonomous systems and levels of automation, from generic
taxonomies [Frohm 2008; ISO 2021; Kugele et al. 2021; Sheridan and Verplank 1978] to domain-speciic taxonomies
such as automotive AD [SAE 2014], avionics [Clough 2002; EASA 2021], railway [IEC 2009, 2014] and robotics
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[Beer et al. 2014; Guiochet et al. 2017; SPARC 2016]. Hence, as for the AI term deinition, there is a lack of cross-
domain deinition consensus for these terms. However, ISO 22989 [ISO 2021] provides basic generic deinitions
adaptable to the scope of the survey:

• Autonomous systems operate in an ’open environment’ (e.g., AD systems operate in an łopen parameter
space in which an ininite number of diferent traic situations can occur” [Riedmaier et al. 2020]) without
human-in-the-loop control and supervision (e.g., AD SAE level 5 [SAE 2014], avionics 3B [EASA 2021],
generic levels 7-10 [Sheridan and Verplank 1978]). As deined by ISO 22989, autonomy constitutes the
highest level of automation in which łthe system is capable of modifying its operating domain or its goals
without external intervention, control or oversight” [ISO 2021].

• The term heteronomous system [ISO 2021] encompasses diferent levels of automation that must operate in
a ’(semi-)open environment’ with varying degrees of human collaboration, control and supervision, and
integrates the generic term ’semi-autonomous’. For example, AD SAE levels 1-4 [Ma et al. 2020; SAE 2014],
avionics levels 1A-1B-2-3A [EASA 2021], railway systems Grade of automation (GoA) 1-4 [IEC 2009, 2014]
and generic levels 2-6 [Sheridan and Verplank 1978]. Automation/automated is deined as łpertaining to a
process or system that, under speciied conditions, functions without human intervention” [ISO 2021].

• Automatic systems operate in a ’closed environment’ with well-deined safety rules and constraints known
at design time [Guiochet et al. 2017]. Thus, the system is neither autonomous nor heteronomous. It simply
executes an automation of safety functions without human intervention (e.g., railway interlocking system
[Klein 1991]) in compliance with applicable FuSa standards.

• Collaborative robot refers to diverse robot-human collaborative working models ranging from automatic

(e.g., safety-rated monitored stop) to heteronomous and autonomous working models [ISO 2016; Rodríguez-
Guerra et al. 2021], and combinations of the previous.

3.3 Heteronomous and Autonomous Safety Standards

Table 2 classiies the most relevant FuSa, heteronomous and autonomous safety standards (draft standards are
represented in parentheses and standards that explicitly consider AI technology are underlined), and identiies
among the dozens of AI standardization initiatives [CENELEC 2020] those that target the development of AI-
based safety-critical systems. The recommended ’reading map’ for AI practitioners/professionals not specialized
in safety-critical systems is the reading of generic and automotive domain FuSa (IEC 61508; ISO 26262), het-
eronomous/autonomous (VDE-AR-E2842-61; ISO/PAS 21448, UL 4600), and AI standards for safety systems (ISO
5469; ISO/AWI PAS 8800).

3.3.1 Heteronomous Safety Standards. The development of novel types of safety-related systems, such as
Advanced Driver-Assistance Systems (ADAS) [Mainzer 2020], led to a novel scenario where safety-critical
systems could fail even in the absence of an electronic/software failure. For example, the intended safety function
fails due to unexpected operating conditions not considered in the perception ML algorithm training [Koopman
et al. 2019]. Thus, there was a need for a novel type of safety standards, complementary with FuSa standards,
such as the automotive domain SOTIF [ISO 2019]. For example, the development of an ML algorithm-based safety
perception function integrated into a safety ADAS, requires compliance with the associated SOTIF (e.g., ISO/PAS
21448), applicable AI standards (e.g., ISO 5469, ISO/AWI PAS 8800), and the embedded implementation should
comply with the associated FuSa standard (e.g., ISO 26262). Some transportation and industrial domains have
already deined domain-speciic safety standard drafts [Rodríguez-Guerra et al. 2021; Sarathy et al. 2019; Tiusanen
et al. 2020] (e.g., automotive SAE levels 3-4 [ISO 2020b, 2021a]; mining and earth moving machinery [ISO 2017,
2018b], autoguidance systems for tractors and machinery for agriculture [ISO 2009], highly automated agricultural
machines [ISO 2018a], collaborative robots [ISO 2016], aircraft systems with complex functions [ASTM 2021]).
And some of these standards do not mention or consider AI, as they could potentially be implemented with
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Table 2. Summary of selected FuSa, AI, heteronomous and autonomous safety-critical systems standards

Domains Safety Standards AI standards for Reviews /
FuSa Heteronomous Autonomous safety systems Surveys

T
ra
n
sp
. Space ECSS-Q-ST-30C/40C - - [Machrouh et al.

2012; Martinez
et al. 2018]

Railway EN 5012x IEC 62290, IEC 62267 - [Machrouh et al.
2012; Martinez
et al. 2018;
Tiusanen et al.
2020]

Avionics ARP4754, DO-178C ASTM F3269-21 (ARP6983) [Machrouh
et al. 2012;
Martinez et al.
2018][Torens
et al. 2022]

Automotive ISO 26262 ISO/PAS 21448 ISO 4804, ISO 5083, (UL 4600) (ISO/AWI PAS 8800) [Koopman et al.
2019; Machrouh
et al. 2012; Mar-
tinez et al. 2018]

In
du

st
ri
al Robotics ISO 10218-1 - - [Rodríguez-

Guerra et al.
2021]

Mining & earth
moving machinery

EN ISO 19014 ISO 17757, ISO 16001, ISO 18758-2 - -

Ind. Machinery ISO 13849-1 (ISO/TR 22100-5), (ISO 3691-4) - [Anastasi et al.
2021]

Agriculture ISO 25119 ISO 10975, ISO 18497 - -
Generic IEC 61508 VDE-AR-E2842-61 (ISO 5469) [Machrouh et al.

2012; Martinez
et al. 2018]

diferent technologies. For example, the machinery domain ISO 22100 technical report [ISO 2021] describes risk
reduction approaches for driverless industrial trucks implemented with or without AI technology. But, within
the scope of the survey, we only consider the scenarios where the system is developed with AI technology.

3.3.2 Autonomous Safety Standards. The development of autonomous safety systems leads to a novel scenario in
which the safety systemmakes autonomous decisions without human control/supervision in an open environment.
For these novel types of safety systems, which can not be developed and certiied with previously described
standards (only), the automotive industry has deined several speciic standards, such as UL 4600 [ULSE 2020].
Regarding industrial domains, some authors provide an overview and review of industrial safety standards
[Tiusanen et al. 2020], such as autonomous machine systems [ISO 2019] and driverless industrial trucks [ISO
2020a].

Finally, the VDE-AR-E2842-61 [VDE 2021] (łdevelopment of trustworthiness of autonomous/cognitive systems”)
is a generic standard (draft) for developing Autonomous/Cognitive (AC) systems. This standard combines SOTIF,
heteronomous and autonomous system considerations with AI technology.

3.4 Point of Application, Usage Level (UL) and Class

This Section briely reconciles research [Feldt et al. 2018] and ISO 5469 standard taxonomies [ISO 2021b]
concerning the AI technology usage type, class and characteristics. The point of application taxonomy proposed
by Feldt et al. [Feldt et al. 2018] deines both ’when’ and ’on what’ an AI technology is applied using three
categories that can be adapted to the survey scope as follows.

(1) Product: A safety-critical system (the product) relies on oline embedded AI technology to perform one or
more safety functions. As summarized in Figure 3, the AI-based safety-critical system is composed of one
or more AI-based systems that integrate one or more AI items. The AI item embeds the AI technology in
an electronic/software component [EASA 2021] with required model parameters, and it is deployed and
executed on a given execution platform (e.g., GPU).
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(2) Runtime: The AI-based safety-critical system integrates AI technology with runtime ield learning capability
(online). A runtime can also be considered a product variant that integrates dynamic reconiguration (IEC
61508-7 C.3.10) and becomes a ’one of a kind’ system.

(3) Process: AI technology can support and facilitate the oline development of a safety function (safety
engineering) in compliance with the techniques, methods and processes required by applicable safety
standards. This is applied during the system development process, but the used AI technology itself is not
embedded into the system (unlike a product/runtime).

The ISO 5469 Usage Level (UL) taxonomy [ISO 2021b; Schneider 2021] classiies the use of AI technology
using four basic levels (A-D) that can be related to the previously described point of application taxonomy. In a
product/runtime, a safety function can be implemented using AI technology (A), or a non-safety-related function
that could interfere with safety function(s) (C) or be interference-free (D). Furthermore, AI technology can also
be used in the safety-critical development process (B). UL A and B are further classiied based on whether the
AI performs automated decisions (A1, B1) or not (A2, B2). Based on this, AI-based diagnostic functions can be
classiied as A2 or C. And, as a rule of thumb, the UL of AI-items performing autonomous safety functions is A1,
while AI-items for automatic, heteronomous and collaborative safety-critical systems may be A1 or A2.

Finally, the ISO 5469 class I-II-III taxonomy [ISO 2021b; Schneider 2021] deines whether a given AI technology
can be used for the development of a given safety-critical system (product/runtime/process) in compliance
with previously described safety standards (see ğ2.2, ğ3.3). Class I solutions can be developed and reviewed in
compliance with safety standards (e.g., use of formal veriication [Perez et al. 2021]). Class II solutions cannot
be developed and reviewed in compliance with safety standards, but the proposed compensation measures are
suicient for that purpose. For example, the safety bag/diverse monitor (C.3.4 IEC 61508-7) technique (a.k.a.,
run-time checker), safely monitors that the results provided by an AI item are safe [IEC 2010; Theuretzbacher
1987]. So, the safety bag becomes the safety function that prevents unsafe states, and the AI item does not require
safety standard compliance. Finally, Class III solutions cannot be developed and reviewed in compliance with
safety standards, and compensation measures are insuicient. For example, AI-based ADAS using class III AI
technology are not considered safety-critical systems, and the driver itself is responsible for driving the vehicle,
monitoring the ADAS operation and taking vehicle control in a short time if the ADAS detects and notiies that
can no longer provide the intended functionality [Cummings and Bauchwitz 2022; Koopman et al. 2021; Widen
and Koopman 2022]. And if suicient compensation measures are deined (e.g., human expert veriication, safety
bag) a Class III solution becomes a Class II solution.

3.5 Traditional Safety Engineering and AI Safety Engineering

The traditional safety engineering of a safety-critical system follows a V-model development lifecycle as mandated
by safety standards (e.g.,’realization’ phase IEC 61508 [IEC 2010], ’product development’ ISO 26262 [ISO 2018])
with the following generic phases (see Figure 2a): speciication, design, implementation, Veriication, Validation
and Testing (VVT). The veriication activity must conirm that the result of all the development phases (i.e.
speciication, design, test, and validation) meets the assigned objectives and safety development requirements
(IEC 61508-4 ğ3.8.1). And the validation activity must conirm by examination of the evidence (e.g., test results)
that the speciication has been met (IEC 61508-4 ğ3.8.2) [IEC 2010].

VDE-AR-E2842-61-1 [VDE 2021] states that AI technology should be considered a third type of technology (in
addition to electronics and software) due to its unique characteristics (e.g., uncertainty-related failures). Thus, AI
safety engineering refers to the engineering lifecycle, processes, activities and techniques required to develop
AI-based (sub)systems and AI items [Putzer et al. 2021]. The ISO 5469 [ISO 2021b] standard deines a high-level
lifecycle that combines the V-model and ML lifecycle activities. Furthermore, the VDE-AR-E2842-61-5 [VDE
2021] standard states that diferent TAIs might require diferent processes and lifecycles (still to be deined).
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For example, while some optimization-based solutions can be developed using a V-model approach [Klein 1991;
Perez et al. 2021], most of the analyzed research contributions use a ML worklow [Ashmore et al. 2021; Rabe
et al. 2021] or hybrids [Kuwajima et al. 2020]. Also, Rabe et al. provide an automotive domain speciic survey of
ML development methodologies [Rabe et al. 2021]. In any case, a relevant diference between traditional safety

engineering and ML worklows is that the former is speciication-driven and the latter data-driven [Rabe et al.
2021].

Figure 2b shows the simpliiedML lifecycle based on Ashmore et al. [Ashmore et al. 2021] used in the survey that,
starting from a system speciication phase [Bencomo et al. 2022], follows a ML worklow with data management,
model learning and model veriication phases. The resulting veriied model is then deployed to an execution
platform. And the model execution can feed the data management phase with operational data for future model
releases.

Specification

Design

Implementation

Test (Unit, Integr.)

Validation

(a) Simplified V-model

Specification

Data
Managament

Model
Training

Model
Verification

ML workflow

(b) Simplified ML lifecycle [Ashmore et al. 2021]

Fig. 2. Simplified lifecyle for traditional safety engineering (V-model) and AI safety engineering for ML

4 PRODUCT - AI-BASED SAFETY-CRITICAL SYSTEM

This section describes the challenges, techniques, and methods used to develop AI-based safety-critical systems
(the product) from traditional FuSa to autonomous systems. The description structure follows the product layers
presented in Section 3.4 and summarized in Figure 3: AI system (ğ4.1), AI item (ğ4.2), and inference execution
platform (ğ4.3). We also provide a brief summary of tools and training platforms (ğ4.4).

Fig. 3. Product composition diagram (UML)

Table 3 summarizes selected AI safety techniques for the development of AI-based safety-critical products.
AI technology (Class I-II ) has already been used for the development of speciic FuSa compliant automatic

safety-critical systems (e.g., SIL4 railway interlocking [Klein 1991]). Basically, there are two basic approaches for
the development of AI-based FuSa systems: the safety veriication of all possible input and output combinations
either oline using formal veriication (class I ) [Vassev 2016] or online using a safety bag (class II ) [Henriksson
et al. 2021; IEC 2010; Klein 1991; Theuretzbacher 1987]. Regarding AI-based heteronomous and autonomous
systems, the generic application of oline formal veriication seems questionable due to limitations such as the
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uncertainty and diiculty of explicitly formalizing all safety speciications, rules and constraints required for
the safety veriication, and the potential high dimensional design space that limits the application of formal
veriication and brute-force testing approaches [Berghof et al. 2020; Luckcuck et al. 2019; Torens et al. 2022;
Vassev 2016]. A similar limitation applies to online approaches such as the safety bag technique, but in this
case, formally speciied operational rules can be used to specify safety envelopes (a.k.a., safety monitor, runtime
monitor, runtime veriication, supervisor, guardian agent, safety layer, safety net) [ASTM 2021; Cofer et al. 2020;
Dill et al. [n. d.]; Guiochet et al. 2017; Luckcuck et al. 2019; Rizaldi et al. 2017; Salay et al. 2018; Sarathy et al.
2019; Schirmer et al. [n. d.]; Terrosi et al. [n. d.]]. For example, model checking has already been applied in some
speciic applications (e.g., AD vehicle overtaking [Rizaldi et al. 2017]) for the development of formally deined
safety envelope software (runtime monitor/veriication) [Luckcuck et al. 2019; Rizaldi et al. 2017].
Safety bag and safety envelope type techniques provide a potentially generic safe approach for the adoption

of cutting-edge and state-of-the-art AI technology solutions (as a compensatory measure to adapt Class III AI
technology to Class II ). However, its use must consider the safety of the system as a whole because, for example,
excessive false alarms could lead to new system-level hazards (e.g., cascade errors in systems with multiple
safety functions) and should also consider human cognitive limitations (e.g., cognitive overload, oversight and
reaction time limitations) [Perez Cerrolaza et al. 2020; Terrosi et al. [n. d.]]. The avionics domain ASTM F3269
[ASTM 2021] standard describes a reference run-time assurance architecture to safely bound the behavior of
’complex functions’ integrated in aircraft systems such as UAVs and Unmanned Aircraft Systems (UASs). This
architecture implements a safety bag type technique where a safety monitor monitors the safe operation of a
’complex function’ (e.g., AI-based function) and activates the safe state or switches to a recovery control function
[ASTM 2021; Cofer et al. 2020; Dill et al. [n. d.]; Sarathy et al. 2019; Schirmer et al. [n. d.]; Torens et al. 2022] if
operating outside established safe operation constraints and rules.

Table 3. Selected product safety techniques (Class I, II) and example case-studies

Type UL Domain Description Class TAI Technique

Automatic A Automotive Brake pedal state estimation - Connectionist Not speciied [Al-Sharman et al.
2021]

Avionics Collision avoidance II Connectionist Simulation [Julian et al. 2019,
2016]

Industrial Diverse applications II Connectionist Not speciied [Lisboa 2001]
Railway Interlocking system (SIL4) II Optimization Safety bag [Klein 1991; Theuret-

zbacher 1987]
A2, C Industrial Sensor diagnostics - Connectionist Diagnostics [Jäger et al. 2018]

Heteronomous A Automotive Collision avoidance (ASIL-D) II Connectionist Safety monitor [Al-Khoury
2017]

and Au-
tonomous

Autonomous vehicles platoon
Vehicle collision detection

I Symbolists Formal veriication [Kamali
et al. 2017; Törnblom and
Nadjm-Tehrani 2018]

AD vehicle overtaking I Not speciied Formal veriication [Rizaldi
et al. 2017]

Avionics Generic safety pattern for complex func-
tions (e.g., navigation and control)

II Not speciied Safety monitor [ASTM 2021;
Sarathy et al. 2019]

UAVs and UASs II Not speciied Safetymonitor [Dill et al. [n. d.];
Schirmer et al. [n. d.]]

Connectionist Safety monitor [Cofer et al.
2020]

Industrial Perception-based solutions for robots II Connectionist Run-time monitor [Rahman
et al. 2021]

Autonomous robots (survey) I Not speciied Formal veriication [Luckcuck
et al. 2019]

Space On-board autonomous spacecraft II Generic Safety bag [Blanquart et al.
2004]

A2, C Automotive Vehicle self diagnostics - Connectionist Diagnostics [Yurii and Liudmila
2017]

In addition, Table 4 summarizes the systematic and random errors management techniques described in this
Section. At all levels, the overall AI-based safety-critical must comply with the required FuSa, heteronomous,
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autonomous and AI standards. At the highest AI system level, developers deine safety assurance cases with the
arguments and required evidence needed to justify that the system is safe for its purpose; developers identify
and manage uncertainty sources and successfully verify, test and validate the system. AI item developers control
and mitigate systematic errors using at least the appropriate development lifecycle and techniques, appropriate
tools and training platforms, and the obtained ML properties provide suicient evidence to justify the previous
assurance case argumentation. Finally, the underlying platform must avoid, control and mitigate systematic and
random errors providing suicient evidence to the previously deined assurance case argumentation.

Table 4. Product - Summary of techniques for systematic and random errors management

Error control and AI-based AI-item (ğ4.2)
mitigation techniques System (ğ4.1) Connectionist NN Connectionist DL Symbolists Optimization

S
y
st
e
m
a
ti
c
E
rr
o
rs

A
I
D
e
v
e
lo
p
m
e
n
t Design

Model Train-
ing

Safety assur-
ance case
[Abduljabbar
et al. 2019;
Alexander et al.
2020; Ashmore
et al. 2021;
Berghof et al.
2020; Birch
et al. 2013,
2020; Bloom-
ield et al. 2019;
Cârlan et al.
2021; ISO 2018;
Jenn et al. 2020;
Koopman
et al. 2019;
McDermid
and Jia 2020;
Picardi et al.
2020; Rudolph
et al. 2018;
Schwalbe and
Schels 2020;
Thomas and
Vandenberg
2019]
VVT [Guio-
chet et al.
2017; Kalra
and Paddock
2016; Kamali
et al. 2017;
Koopman and
Wagner 2016,
2018; Rajabli
et al. 2021;
Riedmaier et al.
2020]
Lifecycle [Ash-
more et al.
2021; Salay
et al. 2018]
Uncertainty
mgmt. [Alexan-
der et al. 2020;
Burton et al.
2020; Koop-
man and
Wagner 2018;
McDermid and
Jia 2020; Salay
and Czarnecki
2019; Schwalbe
and Schels
2020; Shafaei
et al. 2018;
Thomas and
Vandenberg
2019; Vassev
2016]

Design and lifecycle [Ashmore et al. 2021;
Hains et al. 2018]

Safety bag, adhoc
development [Jenn
et al. 2020]

Safety bag [Klein
1991; Theuret-
zbacher 1987],
adhoc development

VVT
Model Ver.

Generic [Jacklin et al. 2005; Pullum et al. 2007;
Schumann and Liu 2010; Taylor 2006; Taylor
et al. 2003b; Zhang et al. 2020]
Safety speciic [Borg et al. 2018; Huang et al.
2020; Salay et al. 2018; Schwalbe and Schels
2020; Zhang and Li 2020]
Formal methods [Huang et al. 2017; Zhu et al.
2021]
Metrics [Gharib and Bondavalli 2019; Harel-
Canada et al. 2020; O’Brien et al. 2020]

Implementation
(software,
elec.)

FuSa safety standards compliance (see ğ2.2), e.g., software: IEC 61508-3 7.4.5, 7.4.6

M
L
P
ro
p
e
rt
ie
s

Data Quality

Dataset properties [Ashmore et al. 2021; Rabe
et al. 2021]
Engineering requirements [Kuwajima et al.
2020]

Auditability Generic review [Berghof et al. 2020], Veriication [Huang et al. 2017; Kuper et al. 2018]
Explainability Generic surveys [Adadi and Berrada 2018; Barredo Arrieta et al. 2020; Guidotti et al. 2018] Explicit rules [Jenn

et al. 2020; Kamali
et al. 2017]

Monitorability

Safety bag, Safety envelope
[ASTM 2021; Guiochet et al. 2017; Henriksson
et al. 2021; Luckcuck et al. 2019; Rizaldi et al.
2017; Salay et al. 2018; Sarathy et al. 2019; Ter-
rosi et al. [n. d.]][ASTM 2021; Cofer et al. 2020;
Dill et al. [n. d.]; Sarathy et al. 2019; Schirmer
et al. [n. d.]; Torens et al. 2022]

Safety bag Safety bag [Klein
1991; Theuret-
zbacher 1987]

Provability

Formal veriication
[Corsi et al. 2020; Ehlers 2017; Hains et al. 2018;
Jenn et al. 2020; Katz et al. 2017; Pulina and
Tacchella 2012; Rudolph et al. 2018; Sun et al.
2019b; Vassev 2016]

Formal ver. [Törn-
blom and Nadjm-
Tehrani 2018]

Robustness Test and adversarial attacks [Akhtar and Mian 2018; Behzadan and Hsu 2019; Kuwajima et al. 2020]

Error avoidance, control AI-based Tools and training Execution platform (inference) (ğ4.3)
and mitigation techniques System (ğ4.1) platform (ğ4.4) Hardware Fwk. Software Frame-

work
AI Framework

S
y
st
.
&
R
a
n
d
o
m

E
rr
o
rs Syst. & Random Errors Safety assur-

ance case
[Cârlan et al.
2021; Jenn
et al. 2020;
Thomas and
Vandenberg
2019]

Generic (not quali-
ied) tools and train-
ing platforms

- Generic dev.:
Multicore [Mittal
and Vetter 2016;
Ottavi et al. 2018;
Perez Cerrolaza
et al. 2020], FPGA
[Bernardeschi et al.
2015; Grade et al.
2016] GPU [Perez-
Cerrolaza et al. 2022;
Santos et al. 2017,
2019]
- Specialized dev.
[Chen et al. 2019b;
Dally et al. 2020;
Jouppi et al. 2017;
Schuman et al.
2017]: e.g., TPU,
NPU, NPU, neuro-
morphic computing
- Custom-designed
dev.: e.g., Tesla FSD
[Talpes et al. 2020]
- Specialized accel.:
e.g., DNN [Li et al.
2017]

- Generic AD fwk.:
e.g., Apollo [Alcon
et al. 2020; Tabani
et al. 2019]
- Generic: Hyper-
visor [Burgio et al.
2016; Lampka and
Lackorzynski 2019;
Perez Cerrolaza
et al. 2020]; OS (e.g.,
Linux [Allende et al.
2021; Bruhn et al.
2020]); Middlewares
[Tabani et al. 2020]
(e.g., ROS [Luck-
cuck et al. 2019;
Macenski et al. 2022;
Tabani et al. 2019],
CyberRT [Baidu
2021; Tabani et al.
2019], AUTOSAR
[AUTOSAR 2022])

- Adapted / Ana-
lyzed / Improved:
DL [Biondi et al.
2019; Bosio et al.
2019; Fernandez
et al. 2021; Geißler
et al. 2021; Li et al.
2017; Ruospo et al.
2020], basic MxM
libraries [Fernandez
et al. 2021]
- Generic Low level
libraries: e.g., Ten-
sorRT, OpenBLAS,
cuBLAS, ATLAS,
cuDNN
- Safety GPU APIs:
OpenGL SC, Vulkan
SC [Perez-Cerrolaza
et al. 2022]

Safety standard compliance FuSa, heteronomous, autonomous and AI & safety standards (see ğ2.2,3.3)
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4.1 AI-based System

Safety assurance cases are commonly used in the development and certiication/assessment of traditional FuSa
systems to justify that a given safety-critical system is acceptably safe for its purpose, using a structured
and evidence-supported safety argumentation [Berghof et al. 2020; Birch et al. 2013; ISO 2018; Thomas and
Vandenberg 2019]. For example, the safety case provides a structured argumentation of systematic and random
errors management, from high-level architectural and lifecycle systematic aspects down to the underlying
execution platform (see Table 4).
Safety cases are also commonly used for the development and certiication/assessment of heteronomous,

autonomous, and AI-based safety-critical systems [Berghof et al. 2020; Bloomield et al. 2019; Jenn et al. 2020;
Koopman et al. 2019; McDermid and Jia 2020; Picardi et al. 2020; Rudolph et al. 2018; Thomas and Vandenberg
2019]. However, for the latter, the safety assurance case should also support the management of uncertainty-
related failures (see VDE-AR-E 2842-61 [VDE 2021]) inherent to heteronomous, autonomous and (non-trivial)
AI-based systems. This AI uncertainty management includes, among others, uncertainty sources identiication
and uncertainty reduction argumentation [Shafaei et al. 2018; Thomas and Vandenberg 2019]. For example, the
safety assurance case arguments of an AI-item (ğ4.2) can be built on claims of high-level properties [Ashmore et al.
2021; Jenn et al. 2020; Rudolph et al. 2018], such as the ML properties deined in Section 2.3 (e.g., explainability,
monitorability, auditability, provavility), arguments based on speciic methods used for uncertainty mitigation
during the development phases (e.g., data representativeness of requirements, input space coverage validation)
[Alexander et al. 2020; Schwalbe and Schels 2020] and adapt generic argument patterns [Picardi et al. 2020].
However, care must be taken to avoid oversimplifying the safety development challenge to achieving high-level
properties with numerical targets and mathematical formulations, without addressing the safety of the system as
a whole with associated system hazard elimination [Dobbe 2022; Gharib et al. 2021; Varshney 2016].

The uncertainty management required to reduce uncertainty-related failures becomes a key technical aspect to
be managed in all AI-related lifecycle phases from the speciication to the veriication, validation and testing
phases. For example, in the speciication phase of an AI-based heteronomous/autonomous system, the safety
functions (and previous safety goals) can only be speciied as ’intended functionality’ with a set of high-level
goals and objectives [Birch et al. 2020], or iterative partial speciications [Salay and Czarnecki 2019], because
it is not generally feasible to fully specify the safety functions (w.r.t. all possible scenarios) with a set of safety
requirements, rules, constraints (e.g., [Bergenhem et al. 2015]). This creates a ’semantic gap’ [Burton et al. 2020;
McDermid and Jia 2020] between the intended functionality and the speciied functionality, which sometimes is
based on examples where anomalous and edge/corner case examples are a minority. In this context, ensuring that
the provided speciication provides a correct, accurate and complete representation of the ’intended functionality’
is a challenge for the data management and model training [Burton et al. 2020]. This challenge can be mitigated
by means such as formal veriication of safety properties with some degree of uncertainty [Vassev 2016] and
safety runtime checkers that during runtime monitor that a set of required constraints are always met (safety
operational envelope) [Koopman and Wagner 2018].
On the other hand, the testing and validation of AI-based autonomous systems is still an unsolved key area

[Dahm 2010; Helle et al. 2016; Koopman and Wagner 2018; Torens et al. 2022; Weiss 2011], that limits the practical
deployment and commercialization of AI-based safety autonomous systems [Dahm 2010; Kalra and Paddock
2016; Koopman and Wagner 2016, 2018] for which current testing techniques designed for ’manned systems’
are not directly applicable and suicient [Thompson 2008], and ield testing only based evidences are generally
considered not feasible [Kalra and Paddock 2016; Riedmaier et al. 2020]. Therefore, as described by diferent
authors [Kalra and Paddock 2016; Kamali et al. 2017; Koopman and Wagner 2016, 2018] the validation should
consider the deinition of a strategy with a framework that combines multiple testing techniques and approaches,
with the adaptation of existing techniques and the deinition of novel techniques speciic for AI-based autonomous
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systems. In fact, the most relevant challenge in heteronomous and autonomous systems test and validation, is
the test and validation of the implemented AI solution itself. So, the most common approach for AI-based AD
[Kalra and Paddock 2016; Koopman and Wagner 2018; Rajabli et al. 2021; Riedmaier et al. 2020] and collaborative
robots [Guiochet et al. 2017] testing and validation relies on simulation frameworks where other AI technology
solutions facilitate and automatize the process of generating and classifying test scenarios and test cases (see
ğ6.2.3).
Finally, the safety case is not static or deined once, as it requires maintenance updates during the system

operational life. And this maintenance update requirement is even more crucial for autonomous systems as they
operate in complex and continuously evolving environments [Berghof et al. 2020; Cârlan et al. 2021].

4.2 AI Item

This section describes safety technical challenges, techniques, and methods associated with the development
of AI-based items using diferent TAIs abstracted from the application-speciic requirements and challenges:
connectionist NN (ğ4.2.1) and DL (ğ4.2.2), symbolists (ğ4.2.3), and optimization (ğ4.2.4). For all considered TAIs, AI
items are implemented as electronics, software, model coniguration and combinations of the previous using
traditional FuSa standard technical requirements (e.g., IEC 61508-3 software development guidelines) and deployed
on execution platforms (see ğ4.3).

4.2.1 Connectionist - Neural Network (NN). At the turn of the millennium, there was growing interest in using
NNs in safety-critical applications. In particular, the usage of NNs in aerospace applications and compliance with
the stringent aerospace safety standards was an active research area. In this section, we report key aspects to
consider when NNs trained using supervised learning enter the picture of safety assurance. Note that the content
largely applies also to the subsection on Deep Learning (ğ4.2.2), i.e., NNs for which hidden layers are stacked in
attempts to reach human-like performance for perception tasks (e.g., object detection).
Beyond light controllers, a 2001 review by Lisboa identiied a diverse set of industrial use of NNs in safety-

related areas [Lisboa 2001]. Examples include power generation and transmission, process industries and transport
industries. A common theme among many applications is that NNs were used for automatic control. While
Deep Learning (DL) has dominated among connectionists in the last decade, (non-deep) NNs remain a valid and
useful approach in many applications. Recent examples of NNs within the scope of this article are diagnostics
(e.g., sensor error detection [Jäger et al. 2018], vehicle self diagnostics [Yurii and Liudmila 2017]) and collision
avoidance systems in avionics [Julian et al. 2016].
Companies seeking to integrate NNs in safety-critical systems must evolve several practices throughout the

development lifecycle [Ashmore et al. 2021; Kurd et al. 2007; Schumann and Liu 2010]. Supervised learning relies
on data (formodel training andmodel veriication) being treated as irst-class citizens during software and systems
engineering. As a result, data management needs a rigorous process encompassing collection, augmentation,
preprocessing, analysis, andmaintenance.Conigurationmanagement needs to expand to cover the data and feature
engineering of the iterative work of NN development. And software architecture speciicationsmust also encompass
fundamental NN design elements and speciics such as activation functions and hyperparameters controlling the
learning process. Furthermore, speciications and the associated test speciications must be augmented to capture
the learning behavior of NNs. Lastly, processes must be adapted to align the highly iterative development of NNs

with the traditional safety engineering of AI-based systems (V-model).
Concerningmodel veriication, Taylor et al. analyzed early research in progress on the VVT of NNs, with a focus

on studies relevant for NASA applications [Taylor et al. 2003b]. There was substantial research funding assigned
to the topic in the early 2000s, and the research matured into several books on the topic, e.g., by Taylor [Taylor
2006], Jacklin et al. [Jacklin et al. 2005], Pullum et al. [Pullum et al. 2007], and Schumann and Liu [Schumann
and Liu 2010]. Menzies and Pecheur provided another early VVT survey in 2005 [Menzies and Pecheur 2005].
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While the research was conducted around 20 years ago, the main indings remain relevant today. Discussed
challenges of NN VVT include state-space explosion, robustness, explainability, co-engineering of NNs and
conventional software, and challenges in speciications of ML concepts. Early VVT solution proposals included
łformal methods, control theory, probabilistic methods” [Borg et al. 2018], and general process frameworks. Again,
several ideas from the early era remain relevant, although some do not scale to the DL approaches that will be
discussed in Section 4.2.2.
More recently, Zhang and Li provided a systematic literature review [Zhang and Li 2020] of testing and

veriication techniques for NN software-based safety-critical control systems. This review complements the
earlier work through its selection of 83 publications between 2011 and 2018. However, as this time interval
coincides with the breakthrough of DL, which Zhang and Li explicitly include, we highlight that the indings
partly it the next subsection of this paper ś the boundary between NN and DL is not sharp. Based on this analysis,
the authors identiied ive high-order themes, i.e., robustness testing, testing toward failure resilience, measuring
test completeness, testing for safety assurance, and testing for explainability. Example solution proposals for NN
VVT from the last years include: formal methods [Huang et al. 2017; Torens et al. 2022; Zhu et al. 2021] and novel
dependability metrics [Gharib and Bondavalli 2019; O’Brien et al. 2020].

4.2.2 Connectionist - Deep Learning (DL) models. The research community acknowledges the potential beneits
of using DL in safety-critical applications. In general, developing safety-critical systems that rely on DL shares the
same challenges as NNs ś as can be seen in Dey and Lee’s recently proposed three-layered conceptual framework
[Dey and Lee 2021]. However, the fact that contemporary deep NNs can be composed of billions of neurons,
organized into complex architectures, further ampliies all challenges. Several VTT practices mandated by FuSa
become less efective, e.g., code reviews matter less if the logic resides in the training data [Salay et al. 2018] and
the value of adequacy testing metrics is questionable [Harel-Canada et al. 2020].

Still, the representation learning ofered by DL has enabled several breakthroughs during the 2010s and trained
DL models have outperformed human performance in a range of restricted tasks. From the perspective of this
review, the use of DL has disrupted computer vision and enabled perception systems able to generalize to diverse
operational contexts. Advances in the automotive industry have been particularly prominent, with DL being a
key enabler for AD, and in various ADAS such as automatic emergency braking and lane keeping assistance
[Beglerovic et al. 2018; Chen et al. 2021; Kiran et al. 2021]. Examples of DL use in the aerospace sector include
collision avoidance systems [Julian et al. 2019].

Engineering a trustworthy DL-based system is largely about managing a dynamic ML worklow with iterative
updates. First, the development of a DL system is an experimental and highly iterative process where the
łChanging Anything Changes Everything” principle reigns [Sculley et al. 2015], i.e., all data science activities
are intertwined and implications of minor changes are hard to foresee. Second, DL-based systems are typically
deployed in dynamic operational environments in which conventional software systems would be insuicient.
Third, the AI systems themselves can be dynamic post-release if retraining of internal models is enabled (see
ğ5). Thus, integrating automated quality assurance throughout the product lifecycle is essential. Key automation
steps, sometimes explained in the context of ML operations (MLOps) tools [Borg 2022; Granlund et al. 2021],
include data version control and experiment tracking to support the iterative DL development and solutions for
runtime monitoring [Rahman et al. 2021], e.g., to support detection and management of data drifts.

Model veriication explicitly targeting DL-based systems is currently a highly active research topic. Borg et al.

provides an automotive domain-speciic review of veriication and validation of DL-based solutions [Borg et al.
2018]. A similar study was reported by Schwalbe and Schels [Schwalbe and Schels 2020]. Zhang et al. found that
most academic studies focused on testing the correctness and robustness, while qualities such as interpretability,
eiciency, and privacy are much less studied [Zhang et al. 2020]. Riccio et al. concluded in their systematic
analysis that test input and test oracle automated generation for DL systems was the most active research topic
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for DL model veriication [Riccio et al. 2020]. Huang et al. provided a DNN speciic survey [Huang et al. 2020]
covering veriication, testing, adversarial attack and defense, and interpretability aspects.
Regarding ML properties for the construction of safety assurance cases, there is a rich variety of research

contributions applicable to both NNs and DL models:

• Data Quality: The training data implicitly specify the intended functionality, rules and constraints. So data
quality is of paramount importance as described by Ashmore et. al [Ashmore et al. 2021], and the data
management phase must produce datasets that exhibit at least properties such as: relevance, completeness,
balance and accuracy [Ashmore et al. 2021; Rabe et al. 2021]. Training data is split for model training and
model veriication. In generic applications, the split (e.g., 80%-20%) can be performed randomly, but for
safety-critical systems the split shall consider aspects such as: the training data shall completely specify
the intended functionality, suicient representation of edge/corner cases in both training and test data, and
the deviation between training/test and operational data shall be minimized [Kuwajima et al. 2020].

• Explainability: Several surveys and reviews summarize the high research activity that addresses the NN
and DL models explainability challenge [Adadi and Berrada 2018; Barredo Arrieta et al. 2020; Guidotti et al.
2018; Torens et al. 2022]. One can argue that a model is explainable if it is interpretable, and Rudin [Rudin
2019] elaborates on why an interpretable model lowers complexity and thus are to be preferred compared
to a model that can not explain the behaviour of a NN or DL solution.

• Provability: Multiple research contributions address provability of NNs and DL models by means of formal
veriication [Corsi et al. 2020; Ehlers 2017; Hains et al. 2018; Jenn et al. 2020; Katz et al. 2017; Pulina
and Tacchella 2012; Rudolph et al. 2018; Sun et al. 2019b; Vassev 2016]. However, formal veriication is
(nowadays) limited to moderate size NNs and certain architectures [Jenn et al. 2020; Katz et al. 2017; Torens
et al. 2022]. For example, the Reluplex method has been used to formally verify ReLu (Rectiied Linear Unit)
activation properties of a NN with 300 nodes [Jenn et al. 2020; Katz et al. 2017].

• Robustness: Robustness and resiliency can not be evaluated in the model veriication with (only) test data
[Kuwajima et al. 2020]. Nonetheless, this is an active research area [Behzadan and Hsu 2019; Kuwajima
et al. 2020] under the topic of adversarial attacks (security) [Akhtar and Mian 2018]. The inal objective is
to analyze and develop solutions that are robust/resilient with respect to (adversarial) perturbations.

• Auditability: Huang et al. propose a framework for the automated safety veriication of DNNs made
classiication decisions [Huang et al. 2017]. Veriication is also put forward by Kuper et al. [Kuper et al.
2018] as a viable solution to conirming that NNs behave as intended. In addition, they further suggest
to create and use design principles for NNs that produce DNNs that are more amenable to veriication
[Kuper et al. 2018]. The European Union (EU) has proposed an AI act [EU 2021] that aims to propose a set
of harmonized rules on AI. Hence, the work by Kuper et al. [Kuper et al. 2018], as well as contributions by
other scholars presented in this survey, may become building blocks to conform with the proposed AI act.

4.2.3 Symbolists. Decision trees can provide explanations and understandability of decisions made by black-box
type AI-based items [Guidotti et al. 2018] so that the user is aware of the rationale for decisions and takes
control of the safety system if necessary [Jenn et al. 2020] (A2). For example, decision trees can provide runtime
explanations of decisions made by an ML-based co-pilot to an aircraft pilot, who must understand them and
react safely in case of wrong decisions [Jenn et al. 2020]. An equivalent approach can be used oline, during the
product development.
Random forests can also learn safe operation rules from training data to implement safety functions such

as vehicle collision detection (A2) [Törnblom and Nadjm-Tehrani 2018]. Furthermore, whenever feasible, safe
operation rules can also be explicitly expressed using formal symbolist languages in rationale agents (A1) for
diverse applications such as autonomous vehicle platooning [Kamali et al. 2017]. Both approaches provide
support for explainability (white-box), auditability and provability (formal veriication) requirements. Finally,

ACM Comput. Surv.



AI for Safety-Critical Systems in Industrial and Transportation Domains: A Survey • 17

Törnblon et al. analyze and propose a method and tool for the formal veriication of random forests [Törnblom
and Nadjm-Tehrani 2018].

4.2.4 Optimization. FuSa-compliant optimization algorithm-based safety-critical systems can be developed with
the safety bag compensation measure [IEC 2010] (Class II ). The optimization function executes a safety related
function that is not subject to a complete safety certiication process and development, because a run-time
safety bag is developed and certiied, which ensures that provided results are safe for its purpose and performs
associated safety actions if not (e.g., safe state activation). This approach can be used whenever the optimization
function cannot be formally veriied at design time, or whenever the safety development of optimization software
and tools in compliance with FuSa standards requirements is considered not feasible. For example, this safety
technique was already used in the 80s to develop a SIL4 railway signalling system that provides optimized and
safe results [Klein 1991; Theuretzbacher 1987].

4.3 Execution Platform (Inference)

The implementation of AI items as embedded software/electronic components with associated model conigura-
tions must follow traditional FuSa standard requirements (e.g., software: IEC 61508-3 7.4.5, 7.4.6). Nonetheless,
a common approach is to make use of existing execution platforms rather than developing complete ad-hoc
implementations. Execution platforms are commonly composed of a hardware platform with High Performance
Computing (HPC) capability (e.g., Graphics Processing Unit (GPU)), a software framework (e.g., hypervisor,
AUTOSAR, Robot Operating System (ROS)) and an AI software framework (e.g., YOLO, Tensor Flow). And this
execution platform is the safety computing channel, or one of the safety computing channels of the safety-critical
system architecture (e.g., [Yoshida 2020]), developed in compliance with applicable FuSa standard requirements.
Additionally, in some speciic applications, such as AD [Talpes et al. 2020] and UAV systems (e.g., drone) [Dill et al.
[n. d.]; Liu et al. 2020], execution platforms must meet Size, Weight, and Power (SWaP) constraints while providing
the required computing performance and FuSa compliance support [Perez-Cerrolaza et al. 2022; Perez Cerrolaza
et al. 2020].

As summarized in the survey by Perez-Cerrolaza et al. [Perez-Cerrolaza et al. 2022], the mitigation of random
errors by means of evaluation and deployment of diagnostics and fault tolerance mechanisms, is an active research
ield for DL software frameworks and high-performance computing devices such as GPUs [Santos et al. 2017,
2019], FPGAs [Bernardeschi et al. 2015; Grade et al. 2016], multi-core devices [Mittal and Vetter 2016; Ottavi et al.
2018; Perez Cerrolaza et al. 2020] and specialized accelerators (e.g., DNN [Li et al. 2017]). Or even the deinition
of specialized software architectures for the development of DL technology-based safety-critical systems [Biondi
et al. 2019] and built-in integration of diagnostics measures in software frameworks [Fernandez et al. 2021]. The
analysis and error mitigation in the DL algorithms and software implementation is also an active research ield
[Bosio et al. 2019; Geißler et al. 2021; Li et al. 2017; Ruospo et al. 2020]. Unlike non-DL software, for which fully
deterministic and accurate results are expected, DL items often deliver approximate and stochastic results. Hence,
error detection is a key challenge for DL items due to multiple challenges: (i) determining whether a result is
fault-free is convoluted for a stochastic item that may use also some random numbers as input and whose intrinsic
error rate is non-negligible (e.g., object misclassiication rates); and (ii) if the DL item inherits a high-integrity level
that cannot be diminished with item decomposition (e.g., using a non-DL item that inherits safety requirements
and relieves the DL item), then diverse redundancy may lead to diferent fault-free results owing to the source of
diversity (e.g., diferent random numbers, diferent training data, diferent order of computation causing diferent
rounding of results).
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4.3.1 Hardware Platform. As the computing power required to execute AI algorithms such as DL models
continues to increase, their deployment is commonly based on generic HPC devices (e.g., GPUs, FPGAs, multi-
core devices) [Ma et al. 2020], specialized accelerators (e.g., Tensor Processing Units (TPUs), Network Processing
Units (NPUs), neuromorphic computing) [Chen et al. 2019b; Dally et al. 2020; Jouppi et al. 2017; Schuman et al.
2017] and custom-designed devices (e.g., Tesla FSD [Talpes et al. 2020]) often including specialized accelerators
(e.g., DNN accelerator). With respect to FuSa-compliance, the deployment of safety AI items in generic HPC
devices is a feasible approach that needs to take into consideration several technical challenges (e.g., random
errors, systematic errors, common cause failures) required by associated FuSa standards (e.g., ISO 26262-11, IEC
61508-3 Annex F), as summarized in the specialized surveys for multi-core devices [Perez Cerrolaza et al. 2020],
GPUs [Perez-Cerrolaza et al. 2022] and FPGAs [Bernardeschi et al. 2015].

4.3.2 Sotware Framework. Available research and open-source AD speciic software frameworks (e.g., Apollo
[Alcon et al. 2020]), have some limitations with respect to FuSa compliance that limit their applicability, owing to
their use of middlewares and operating systems easing decoupling by means of interfaces to subscribe services to
events at the expense of an abuse of pointers, unobvious control low, and deep if-conditional nesting [Tabani
et al. 2019].

These specialized autonomous AD software frameworks, along with traditional FuSa and autonomous safety-
critical systems, can be built using generic software frameworks such as domain-speciic middlewares, hypervisors
and Operating Systems (OSs) [Burgio et al. 2016; Martinez et al. 2018; Perez-Cerrolaza et al. 2022; Perez Cerrolaza
et al. 2020]. For example:

• Middlewares and domain-speciic standard frameworks, including ROS [Luckcuck et al. 2019; Macenski
et al. 2022], Apollo’s CyberRT [Baidu 2021], and AUTOSAR [AUTOSAR 2022], enable the development
of AD frameworks and the use of HPC platforms. On the one hand, some frameworks such as ROS and
CyberRT, used along with diferent versions of Apollo, ease the implementation of AD frameworks, but are
not yet integrated with appropriate hypervisors, use interfaces challenging certiication (e.g., abundant use
of pointers, including function pointers) [Tabani et al. 2019], and do not provide native time predictability
[Alcon et al. 2020]. On the other hand, platforms such as AUTOSAR Adaptive are intended to enable the
deployment of automotive systems on HPC platforms, but, to our knowledge, they have not been used yet
as part of AD frameworks.

• Virtualization technology (e.g., hypervisors) supported by modern multi-core and GPU devices enable
the safety compliant integration of software partitions with even diferent safety criticality levels [Burgio
et al. 2016; Perez Cerrolaza et al. 2020]. However, to our knowledge, AD frameworks do not yet build on
hypervisors, partly because those frameworks require HPC devices that may miss the support needed by
hypervisors to efectively implement partitioning. Hypervisor technology is, however, planned to be used
in some forthcoming hardware platforms and use cases [Lampka and Lackorzynski 2019].

• There is an increasing interest in Linux for critical systems (e.g., Automotive Grade Linux) and multiple
research and industrial project initiatives aim to enable Linux for the development of safety-critical software
[Allende et al. 2021]. For example, Linux is assessed for space systems including HPC SoCs equipped with
ML accelerators [Bruhn et al. 2020].

4.3.3 AI Framework. A number of AI frameworks, Keras, Pytorch, TensorFlow, MXNet, Theano and Cafe, are
highly popular for generic AI applications. Often, DL models are mapped onto those generic frameworks, which
are often selected based on characteristics such as user friendliness (often related to the existence of a high-level
API), modularity, eiciency, and the like [Tabani et al. 2020].

AI frameworks may already use primitives for mathematical operations used for DLmodels, such as Generalized
Matrix-Matrix multiplication (MxM), among others. Those primitives are then instantiated for the speciic target
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platform using platform-speciic and/or low-level libraries such as TensorRT, OpenBLAS, cuBLAS, ATLAS, and
cuDNN, to name a few.
Whether AI frameworks implementation complies with domain-speciic standards relates to the speciic

implementation of the primitives used. Generally, those implementations do not provide any speciic safety
support, but some APIs and other works provide alternative implementations with safety requirements in mind
for CPUs [Fernandez et al. 2021] (e.g., embedded diagnostics) and GPUs [Perez-Cerrolaza et al. 2022] (e.g., with
speciic APIs such as OpenGL SC and Vulkan SC).

4.4 Tools and Training Platform

There is a rich and dynamic variety of generic frameworks (e.g., TensorFlow), infrastructure (e.g., GPU servers,
cloud infrastructure) and tools for the development of generic AI solutions (e.g., model training) [Borg 2022;
Granlund et al. 2021; Nguyen et al. 2019]. Nonetheless, these generic solutions were not designed with safety
standards compliance requirements such as tool qualiication. So, this is a potential source of systematic errors
(e.g., tool and process errors) and hardware random errors (e.g., training data corruption, GPU random error
during model training) not generally addressed in research contributions [Granlund et al. 2021; TUVR 2022].

5 RUNTIME - AI ONLINE LEARNING/ADAPTATION

This section describes selected techniques and methods for the AI online learning/adaptation of AI-based
safety-critical systems (runtime). By default, runtime adaptation leads to a ’one of a kind’ safety-critical system
instantiation that, if unconstrained, is beyond the scope of current and novel safety standards [Jacklin et al.
2005; Koopman and Wagner 2017]. For example, in this scenario, an AD system might adapt and learn new
behaviors [Ronald 2013] that were not considered, veriied and validated in the oline development and safety
certiication/assessment process [Koopman and Wagner 2017]. And this adaptation could even be implemented as
continuous [Alexander et al. 2020] and lifelong learning [Parisi et al. 2019]. Thus, the ’one of a kind’ safety-critical
system instantiation may difer from the originally certiied/assessed system.
However, as summarized in Table 5, it is feasible to consider constrained AI runtime learning/adaptation

approaches (ğ5.1), for which correctness and completeness of all possible variants is considered in the safety-
critical system development process and safety certiication/assessment.

Table 5. Selected runtime safety techniques and example case-studies

Type UL Domain Description Class TAI Technique

Automatic, C Avionics Intelligent Flight Control System II Connectionist Safety bag [Osborne et al.
2021; Taylor et al. 2003b]

Heteronomous or
Autonomous

A Avionics Gas turbine aero engine control
Generic adaptative control system

I
I, II

Connectionist, Symbolist
Generic, Connectionist

Safe adaptation [Kurd and
Kelly 2004, 2005]
Safe adaptation [Jacklin
et al. 2005]

A Aerospace Adaptative guidance I, II Connectionist Limited adaptation [John-
son et al. 2001]

A, C Industrial ILC-based hydraulic machinery I, II Optimization Limited actuation [Trojaola
et al. 2020]

5.1 Runtime Learning/Adaptation

Table 5 summarizes the most relevant techniques and methods selected from research contributions that focus
on AI runtime learning/adaptation approaches for developing dependable or safety-critical systems: safety bag
(ğ5.1.1), safe adaptation (ğ5.1.2), limited adaptation (ğ5.1.3), limited force (ğ5.1.4) and ‘library based oline’ (ğ5.1.5).
Some selected research contributions describe techniques for developing dependable systems and not explicitly
safety-critical systems. However, these techniques are adaptable to safety standard requirements; thus, this section
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describes and adapts them. Finally, it is assumed that the implementation of described techniques meets basic
safety assumptions [Alexander et al. 2020]: e.g., it is an authorized adaptation, the adaptation has a well-deined
process (e.g., trigger command, update time) and implements basic error detection/control measures.

5.1.1 Safety bag. The previously explained Class II safety bag technique (a.k.a., safety monitor), can also ensure
that the outputs provided by the AI-item subject to runtime learning/adaptation are safe. As previously explained,
the safety bag becomes the safety function and the AI-item becomes a non-safety function (C). For example,
the avionics Intelligent Flight Control System (IFCS) aims to safely optimize aircraft light performance with
two NNs, one trained oline and the second one while the aircraft is in operation (Online Learning Neural
Network (OLNN)) [Taylor et al. 2003a]. And the system runs two safety monitors, one for each NN, where the
OLNN safety monitor checks the safeness of the provided outputs. Another example is AI-generated online
trajectory monitor of (slow-dynamic) autonomous systems using techniques such as Nonlinear Model Predictive
Control (NMPC) [Osborne et al. 2021].

5.1.2 Safe Adaptation. The safe adaptation technique requires both theAI-item and the runtime learning/adaptation
algorithm to be safety-compliant. This is because both must perform safety functions, safe inference and safe
runtime learning/adaptation. For example, Kurd et al. [Kurd and Kelly 2004, 2005] describe a safety-critical ‘gas
turbine aero engine control’ based on a hybrid TAI (connectionist, fuzzy) that performs runtime adaptation to pro-
vide safe control while safely adapting to the engine degradation and environmental change. Additionally, Jacklin
et al. [Jacklin et al. 2005] describe challenges and example techniques for the development of safe adaptive control
solutions using learning algorithms such as NNs (e.g., learning convergence, speed of learning convergence,
learning algorithm stability).

5.1.3 Limited Adaptation. The limited adaptation technique safely constraints the internal runtime learn-
ing/adaptation, either through a safety compliant adaptation (Class I ) or a safety bag that checks the adaptation
outcome (Class II, see ğ5.1.1). For example, Johnson et al. [Johnson et al. 2001] describe using NNs to perform
adaptive control of an autonomous launch vehicle guidance system. The system uses an adaptive NN-based
error cancellation algorithm to cancel the control error due to diferences between the actual vehicle dynamics
and the design-time vehicle model, with a łbounded weight update law” that safely constrains the runtime
learning/adaptation.

5.1.4 Limited Actuation. The limited actuation technique ensures that the AI-item subject to runtime learn-
ing/adaptation cannot exceed given dangerous output actuation values (e.g., excessive force, energy, voltage).
This could be implemented in diferent ways, such as design-time constraints (e.g., limited input energy leads by
design to limited output energy), AI-based safety function that guarantees a limited actuation (A1, Class I ) or a
safety bag that monitors and ensures that output actuation values are within safe limits (C, Class II, see ğ5.1.1).
In particular, the Iterative Learning Control (ILC) approach is used in dependable industrial control systems

such as robots and machinery. ILC [Bristow et al. 2006] aims to optimize the execution of repetitive tasks by
learning from previous executions. For example, Trojaola et al. [Trojaola et al. 2020] propose an ILC algorithm
for hydraulic machinery systems that can be used online to adapt and learn the compensating force required
to reduce overshoot and settling time even with unknown knowledge of the valve dynamics. In this scenario,
a runtime monitor can be used to monitor and ensure that the learning/adaptation actuation results are safely
limited (e.g., compensatory force, dynamic behavior, settling time [Trojaola et al. 2020]).

5.1.5 Library-Based Ofline. The library-based oline technique deined for nonlinear control systems [Osborne
et al. 2021] can be translated in the safety-critical domain as a library of possible conigurations deined and
assessed oline, to which the system can transition during runtime (Class I ). This is the adaptation of a common
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approach used in the development of traditional safety-critical systems, where all possible coniguration and
operational modes are deined and assessed oline (e.g., normal and degraded modes of operation).

6 PROCESS - AI-BASED DEVELOPMENT ASSISTANCE

This Section describes AI-based oline techniques and methods that support and facilitate the traditional safety
engineering of safety-critical systems (ğ6.1) and theAI safety engineering ofAI items (ğ6.2). For the latter, developers
use AI-based solution(s) to develop AI item(s) (e.g., DL-based perception item tested using test scenarios deined
with Bayesian optimization).

There is a considerable amount of research contributions proposing AI-based techniques to support and assist
non-safety-related software developers [Feldt et al. 2018; Martínez-Fernández et al. 2022] (e.g., software test
automation [Hourani et al. 2019; Lima et al. 2020; Ramanathan et al. 2016; Salvado 2019]). However, these generic
contributions (Class III ) cannot be directly used to develop safety-critical systems because they do not comply
with the strict method, process and tool qualiication requirements imposed by safety standards. Nevertheless,
these contributions could complement traditional methods and techniques that already meet the requirements of
safety standards. But, the intended use of these contributions would not yet be safety-related and are considered
outside the scope of this survey.
On the other hand, as summarized in Table 6, there are multiple research contributions proposing AI-based

solutions to support and assist developers of safety-critical systems. It is worth noting that the amount of research
contributions focusing on AI safety engineering is higher than those focusing on traditional safety engineering, due
to the novelty of the challenge posed by the former and the diversity and rich variety of ’problems’ (challenges)
to solve (e.g., model veriication). Furthermore, this diversity and rich variety of challenges require the use of a
diverse and rich variety of AI-based solutions that cover all TAIs summarized in Section 3.1.
Finally, we should also mention that AI solutions are also commonly integrated into hardware ASIC design

tools, FPGA synthesis tools and software compilers [Huang et al. 2021; Leather and Cummins 2020; Wu and Xie
2022]. And manufacturers for safety-critical systems already address systematic errors through mass-produced
electronic integrated circuits requirements (e.g., IEC 61508-2 ğ7.4.6.1) and tool qualiication requirements (e.g.,
IEC 61508-4 ğ3.2.11, ISO 26262-8 ğ11.4.5/6).

6.1 Traditional Safety Engineering

Research contributions that focus explicitly on traditional safety engineering of safety-critical systems are frag-
mented and scarce (see Table 6a). This Section describes some selected example research contributions following
the V-model structure (see Figure 2a).

6.1.1 Specification, Design and Implementation. A single systematic error in the requirements, design or imple-
mentation phase could directly lead to a fatal consequence. So, safety standard requirements (e.g., tool qualiication)
are stricter and research contributions that explicitly target safety-related systems are fragmented and scarce
(both class I and class II ). For example:

• Speciication: Natural Language Processing (NLP) solutions can be used for safety assessment and analysis
of textual requirements (e.g., hazard identiication [Daramola et al. 2013]) with human safety expert
veriication of the proposed results as a compensation measure to become Class II.

• Design and implementation: Optimization algorithms and formal veriication techniques can be combined
to facilitate the design of FuSa-compliant safety functions [Perez et al. 2021]. The optimization algorithm
proposes an optimized design for a given criterion, and the formal veriication veriies compliance with all
applicable safety rules and constraints. To do this, the safety requirements that deine the safety rules and
constraints are expressed both formally for the formal veriication and semi-formally for the optimization
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Table 6. Summary of AI-based development assistance solutions for safety-critical systems (class I and II)

Lifecycle
(Phase)

Usage Purpose Type of AI (TAI)

Spec. Hazard identiica-
tion

Connectionist (NLP), symbolic
(ontologies) and analogizer (CBR)
[Daramola et al. 2013]

SIL evaluation Symbolic (Fuzzy [Ouazraoui and
Nait-Said 2019; Sallak et al. 2006])
Bayesian (DBN [Simon et al. 2019])

Design Design optimiza-
tion

Optimization (ACO, EDA, ILS
[Gheraibia et al. 2018; Perez et al.
2021])

Test
Validation

Test deinition
automation for
MC/DC coverage

Connectionist (NN [Čegiň and Rás-
točný 2020])
Optimization (GA [El-Serafy et al.
2015])
Symbolic [Godboley et al. 2021]

(a) Traditional safety engineering (V-model)

Lifecycle
(Phase)

Usage Purpose Type of AI (TAI)

Data Mgmt. See model veriication: test deinition automation
Model train-
ing

Design optimiza-
tion (AutoML)

Reinforcement learning [Hutter et al.
2019; Waymo 2019]
Bayesian [Hutter et al. 2019]

Model Veri-
ication

Test deinition au-
tomation

Connectionist (RNN [Jenkins et al.
2018], GAN [Krajewski et al. 2018], au-
toencoder [Krajewski et al. 2018])
Bayesian [Abeysirigoonawardena et al.
2019; Akella et al. 2020; Gangopadhyay
et al. 2019; Jesenski et al. 2019; Wang
and Zhao 2018]
Optimization [Albaba and Yildiz 2022;
Ben Abdessalem et al. 2018; Du and
Driggs-Campbell 2019; Mullins et al.
2018; Tuncali et al. 2020]
Symbolists [Bagschik et al. 2018; Li
et al. 2020]

Test classiication
automation

Connectionist (CNN [Beglerovic et al.
2018], RNN [Beglerovic et al. 2018])
Symbolic (random forest [Kruber et al.
2019])

Fault injection Bayesian [Jha et al. 2019]
Rule extraction Symbolist (fuzzy [Kurd and Kelly 2004],

tree [Jacobsson 2005, 2006])
Quantify uncer-
tainty

Bayesian [Fan et al. 2020; Gal 2016;
Kendall et al. 2015; Kendall and Cipolla
2016]

(b) AI safety engineering (for ML)

process. And, as the result is formally veriied (Class I ), state-of-the-art non-safety related AI software
tools, engineers and methods can be used for the design optimization proposal activity.

6.1.2 Verification, Validation and Testing (VVT). Software test automation is an active research area for non-
safety related systems [Hourani et al. 2019; Lima et al. 2020; Ramanathan et al. 2016; Salvado 2019]. Concerning
safety-critical systems, the most relevant challenge addressed is the generation of automated test data and test
cases to achieve the level of safety software test coverage requested by safety standards [IEC 2010], such as the
Modiied Condition/Decision Coverage (MC/DC) percentage levels. AI algorithms can facilitate achieving the
recommended 100% MC/DC criteria for software unit test activity (IEC 61508 Table B.2), reducing the safety
engineering efort required to perform a detailed analysis of all software code paths and test data combinations
that could lead to testing all software code statements and execution branches. To that end, symbolic [Godboley
et al. 2021], NN [Čegiň and Rástočný 2020] and GA [El-Serafy et al. 2015] solutions have been proposed for test
data generation and the achieved MC/DC value can be potentially veriied with Commercial Of-The-Shelf (COTS)
qualiied tools [Godboley et al. 2021] (class I ).

6.2 AI Safety Engineering

Concerning the AI safety engineering of AI-based (sub)systems and items, most research contributions describe
ML-based solutions for connectionist-based products. So this Section follows the ML worklow described in
Section 3.5 and Figure 2b. As summarized in Table 6b, research contributions that target the data management
and model learning phases are scarce, and solutions that target the model veriication phase are more abundant
specially for the VVT activities of heteronomous/autonomous systems.

6.2.1 Data Management. As stated in the generic survey of software engineering for the development of AI-
based systems, łdata-related issues are the most recurrent type of challenge” with limited mitigation techniques
described in the surveyed papers [Martínez-Fernández et al. 2022]. This generic statement can also be extended
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to the safety-critical and AI-based process niche, which primarily focus on the automated generation of test data
and scenarios as described for model veriication (see ğ6.2.3).

6.2.2 Model Learning. Automated ML (AutoML) refers to the methods, techniques, and processes that aim to
automate the development of ML models [Ashmore et al. 2021; Berghof et al. 2020; Hutter et al. 2019]. For
example, selecting optimal DL hyperparameters for developing ML models for autonomous driving tasks is
time-consuming for engineers. And autoML has been (functionally) evaluated as a successful approach for the
design automation of perception tasks ML models, with results that outperformed the ones obtained by trial-error
approaches by experienced engineers (higher accuracy, less latency) [Waymo 2019]. For that purpose, the autoML
can use a variety of technical approaches such as random search, reinforcement learning approaches and Bayesian
optimization to explore the design space [Hutter et al. 2019; Waymo 2019]. However, AutoML-based design space
exploration requires higher computational resources than human-guided designs and training infrastructure
scalability becomes a technical concern [Hutter et al. 2019]. Also, there is still a lack of both safety standard
requirements to guide the autoML systematic error reduction and research contributions proposing methods or
techniques in this line.

6.2.3 Model Verification. AI technology also plays a crucial role in the scalability, eiciency and automation of
AI-based items/systems’ testing and validation processes (see ğ4.1). The (pseudo) manual deinition of test scenarios
and test cases is considered not feasible or scalable for heteronomous/autonomous systems [Gangopadhyay et al.
2019; Wang and Zhao 2018]. Ma et al. [Ma et al. 2022] provide an up-to-date review of AI in the VVT of AD
systems, dividing the works into scenario-based testing, formal veriication and fault injection testing. This is an
active area of research [Rabe et al. 2021; Riccio et al. 2020], with a rich variety of TAIs that can be used for the
automation of these VVT tasks, and associated model veriication activities:

• Connectionist solutions: DL technologies can łdiscover intricate structures well in high-dimensional data
and learn the idea of correct representation of data” [Al-Sharman et al. 2021; Sun et al. 2019a]. Therefore,
they are commonly used for the unsupervised modeling and generation of test scenarios/cases, such as
vehicle maneuver modeling using autoencoder and Generative Adversarial Network (GAN) solutions
[Krajewski et al. 2018]. One advantage of this approach is that in both cases, the learned model has been
trained to generate trajectories that even the discriminator (for GAN) is not able to distinguish between
real life or synthetic trajectories [Krajewski et al. 2018]. Another common approach is the generation of
test scenarios using RNNs (e.g., accident scenarios [Jenkins et al. 2018]) or scenario classiication using
RNNs and CNNs [Beglerovic et al. 2018]. Furthermore, the number of scenarios explored can be increased
dramatically through the use of deep Q-learning [Albaba and Yildiz 2022].

• Bayesian solutions [Abeysirigoonawardena et al. 2019; Gangopadhyay et al. 2019; Jesenski et al. 2019;
Zhao et al. 2018] are also commonly used for the unsupervised generation of test data, test cases and test
scenarios using the learned probability distribution for the given problem to generate variants. For example,
generation of intersection scenes [Jesenski et al. 2019] and traic scenarios [Wang and Zhao 2018]. And for
a given test scenario, Bayesian optimization can be used to learn from observed system outputs and deine
test cases that could violate predeined safe operation boundaries [Gangopadhyay et al. 2019]. Furthermore,
Bayesian techniques can also be used for classiication (e.g., a nonparametric Bayesian approach has been
used to cluster adversarial policies [Chen et al. 2022]). Finally, Bayesian solutions have also been proposed
for fault injection (e.g., a Bayesian fault injection framework uses łcausal and counterfactual reasoning
about the behavior under a fault” to ind faults/errors) [Jha et al. 2019].

• Symbolic solutions: Ontology-based combination "is an essential approach to generate testing scenarios,
which combines scenario entities based on ontology theory for the primary goal of coverage" [Bagschik
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et al. 2018; Li et al. 2020]. And random forests are commonly used for unsupervised test scenario clustering
and classiication [Kruber et al. 2019].

• Optimization solutions: Search techniques have been widely applied for testing [Saeed et al. 2016], for
example multiobjective search [Ben Abdessalem et al. 2018], Monte Carlo Tree Search (MCTS) [Du and
Driggs-Campbell 2019], adaptive search [Mullins et al. 2018], and requirements-driven test generation
automation with simulated annealing [Tuncali et al. 2020]. Finally, Fan et al. [Fan et al. 2020] and Fisac et
al. [Fisac et al. 2019] describe Bayesian model learning solutions via Bayesian NNs or statistical Gaussian
processes, which support the optimization and safe control design of adaptable safety-critical systems with
control stability and safe limits.

As the available oline computing power continues to increase, the use of statistical testing approaches
supported by automated test scenarios/cases generation that obtain suicient statistical representativeness could
be a new approach to explore for AI-systems [Jenn et al. 2020], in analogy to probabilistic WCET [Cazorla et al.
2019] and probabilistic testing approaches for Linux-based safety systems [Allende et al. 2021]. AI technology
(process) can also be used for the veriication of AI-items. For example, symbolist trees can be used for rule
extraction of RNN-based items for both understandability and veriication purposes [Jacobsson 2005], and
Bayesianmethods are proposed for the uncertainty quantiication of DL-based safety applications [Fan et al. 2020;
Gal 2016; Kendall et al. 2015; Kendall and Cipolla 2016].

7 TRUSTWORTHINESS

As stated in the standard VDE-AR-E2842-61 [Putzer et al. 2021; VDE 2021], trustworthiness łhas not generally
accepted deinition” at least in the context of AI-based safety-critical systems. Nonetheless, if we analyze in
detail the standard VDE-AR-E2842-61 [Putzer et al. 2021; VDE 2021], technical reviews in the ield of safety
and AI [Burton et al. 2020; Dobbe 2022; Huang et al. 2020] and generic AI guidelines (e.g., łEthics guidelines
for trustworthy AI” [EU 2019]), we can identify at least three dimensions applicable to AI-based safety-critical
systems: engineering (ğ7.1), ethics (ğ7.2) and legal dimensions (ğ7.3). Thus there is a multidisciplinary collaboration
requirement to address all trustworthiness dimensions (e.g., engineering, philosophy, ethics, social sciences, law),
along with a multi-agent collaboration requirement among all relevant actors such as companies, governments,
legislators, regulators, standardization organizations, certiication bodies, academia and society in general.
Indeed, the increasing importance of trustworthiness in the development of AI-based safety-critical systems

is emphasized in the VDE-AR-E2842-61 standard with the Trustworthiness Performance Level (TPL) (TPL 0-4)
deinition that requires trustworthiness attributes traceability through the AI-based system development activities,
design patterns supporting the veriication of AI properties, and compliance with speciic techniques/measures
pending deinition details in the current draft [VDE 2021].

7.1 Engineering Dimension

The engineering dimension must cover at least non-functional properties such as robustness, dependability
(reliability, availability, maintainability, safety) [Avižienis et al. 2004], and cybersecurity [TUVR 2022; VDE 2021].
Previous sections (ğ4, ğ5, ğ6) have already addressed the safety engineering dimension of AI-based safety-critical
systems. And implicitly, to some extent, robustness and dependability aspects relevant to the scope of the given
survey. Also note that, the engineering trustworthiness relies on previously described safety assurance cases (see
ğ4.1) that provide a structured safety engineering argumentation with associated evidences and risk assessment
[Bloomield et al. 2019].
Concerning cybersecurity, the life cycle of AI is complex by nature, and it involves several phases such as

planning, data management, model training, model evaluation and operation. This represents a vast attack surface
that can take place in each phase, posing a threat to both security and safety (łno safety without security”). In
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the planning stage, developers are a candidate to sufer social attacks that can negatively inluence the whole
process. The data management and model training processes are the pillars for building models, and poison
attacks [Eicher et al. 2020; Quiring et al. 2020] can impact models in diferent and relevant aspects, such as
accuracy in operation [Biggio and Roli 2018]. In order to address these threats it is necessary to plan a defense
strategy at two levels: data and people. Concerning information, the defense aims to prevent information stealing
and adversarial attacks [Biggio et al. 2012] using strategies such as diferential privacy [Du et al. 2020], data
encryption, adversarial training, standardization and veriication of data quality, supply chain, and training
process [Madry et al. 2018; Metzen et al. 2017; Yang et al. 2020], among others [Chen et al. 2019a]. On the other
hand, regarding people, awareness and training programs for detecting social manipulations are recommended.
Finally, in evaluation and operation, several attacks can take place in diferent aspects, such as hardware level
attacks [Tran et al. 2018], adversarial attacks [Sharif et al. 2016], inference attacks [Shokri et al. 2017] and stealing
of models [Tramèr et al. 2016]. In order to address these threats, system developers can use diferent prevention
techniques, such as feature squeezing, compression, randomness, and multiple parallel AI systems [Sharif et al.
2016; Shokri et al. 2017; Tramèr et al. 2016; Tran et al. 2018; Xu et al. 2018].

7.2 Ethical Dimension

Several institutions and committees are currently developing AI ethical guidelines [Chatila et al. 2017; EU 2019]
and standards [ISO 2021], in addition to generic ethical standards for system designs such as IEEE 7000 [IEEE
2021; Widen and Koopman 2022]. Regarding AI-based safety-critical systems, at least two distinct ethical issues
must be addressed: engineering ethics and machine ethics [TUVR 2022].

Engineering ethics is linked to the organization’s safety culture and associated responsibility and accountability
towards the development of such systems [Burton et al. 2020; Dobbe 2022; TUVR 2022]. Engineering ethics

is also linked to the industry, societal, policymaker and regulatory consensus required to adapt the As Low
As Reasonably Practicable (ALARP) principle to these new types of AI-based safety-critical systems that can
potentially provide signiicant societal beneits (e.g., potential car accidents and fatalities reduction with AD
systems [Kalra and Paddock 2016; Riedmaier et al. 2020]) with new risks, e.g., which is the acceptable residual
risk? [Burton et al. 2020]. Moreover, as analyzed by Widen et al. [Widen and Koopman 2022] and Koopman et
al. [Koopman et al. 2021] for the automotive AD domain, the safety culture associated to the engineering ethics
should also encompass the overall business ethics considering aspects such as cooperation with governments for
the deinition of safe technology regulations, high safety requirements for road testing and deployment, safe
management of trade-of dilemmas between inancial risks and safety risks, marketing-engineering-regulation
coherency for delivered autonomy levels (e.g., L2+ [Cummings and Bauchwitz 2022; Koopman et al. 2021]) and
transparency.
On the other hand, machine ethics is associated with the moral and ethical decisions that an AI-based prod-

uct/runtime must make during operation. A rich body of research contributions addresses this challenge in the
form of dilemma analysis and experiments [Awad et al. 2018; Bonnefon et al. 2016; Burton et al. 2020; Goodall
2014]. In these dilemmas, the autonomous systems are faced with a catastrophic situation where one or several
people are in deadly danger in all possible scenarios, and the autonomous system must make a decision that leads
to one of these catastrophic scenarios. The key inal question is which catastrophic scenario is considered ethically
and morally acceptable. For example, in the łmoral machine experiment” [Awad et al. 2018], millions of people
from diferent countries provided 40 million decision answers to an autonomous vehicle driving morale dilemma
in which people of diferent ages, genders and professions are in deadly danger. The result of these experiments
conirmed that cultural variation and other variation sources (e.g., economic) lead to diferent moral and ethical
decision preferences, concluding that there is no single universal preference for machine ethics. However, the
German ethical guidelines strictly prohibits decisions made on human classiications (e.g., gender, age) [Koopman
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et al. 2021; Lütge 2017]. In any case, we should request AI-based safety-critical systems to anticipate and mitigate
dangerous situations to avoid such moral dilemmas (e.g., defensive driving strategies in AD system) [Koopman
et al. 2021; Lütge 2017].

7.3 Legal Dimension

The European Commission (EU) artiicial intelligence act aims to propose a łregulation laying down the set of
harmonized rules on artiicial intelligence” [EU 2021]. This act establishes that AI-based safety critical systems
shall be cataloged as ’high risk’ systems subject to speciic requirements, such as the conformity assessment
process involving notiied bodies [EU 2021; TUVR 2022]. That means AI-based safety-critical systems shall be
certiied/assessed according to applicable domain-speciic standards. This is a standardization challenge because
for that purpose the industry and standardization committees must irst deine, update and approve applicable
safety standards (see ğ2.2, ğ3.3). This also implies detailed technical challenges such as meeting the auditability
property to support the certiication/assessment. Moreover, additional regulations will impose additional speciic
technical challenges, such as providing explainability [McDermid and Jia 2020] to support łthe right to obtain
an explanation of the decision” made by AI-algorithms (łmeaningful information about the logic involved” [EU
2016]) on behalf of an individual, as established by the General Data Protection Regulation (GDPR) [EU 2016].
In addition to this, the legal dimension has also attracted multiple research contributions to address current

legal challenges, such as the liability for damages caused by an AI-based product/runtime [Burton et al. 2020;
Expert Group on Liability and New Technologies 2019; Čerka et al. 2015]. Although the operation of AI-based
products/runtime is not yet regulated by speciic legislation, legal norms require that the ofender causing damage
must indemnify (liability), or a łperson who is responsible for the actions of the ofender” [Čerka et al. 2015].
But, for example, if a level 5 autonomous driving system crashes due to decisions made autonomously by the
embedded AI technology, in a situation that the manufacturer could not reasonably have foreseen and with no
possibility for the passengers to avoid it, who is liable for the accident? Furthermore, łcould artiicial intelligence
become a legal person” with associated ofender liability? [Čerka et al. 2015]. The current recommendation of the
European Commission [Expert Group on Liability and New Technologies 2019] is that AI not be granted the
status of a legal person, as existing parties could instead be held liable in tort for the actions of an AI. However,
these and many other related issues remain open multidisciplinary challenges [Burton et al. 2020; Čerka et al.
2015].

Finally, there is also a multidisciplinary collaboration requirement between the legal and engineering dimension.
For example, in AD there is a need to translate traic rules written in human natural language into safety
engineering rules for the development and runtime veriication of AI-systems [Rizaldi et al. 2017]. This is required
for both łholding autonomous vehicles legally accountable” and provide formal safety requirements to reduce
the probability of systematic errors [Rizaldi et al. 2017].

8 CONCLUSION AND FUTURE RESEARCH DIRECTIONS

This section describes the overall conclusion (ğ8.1) and future research directions (ğ8.2).

8.1 Conclusion

This survey summarizes and categorizes a vast and fragmented literature addressing the usage of AI technology
for developing safety-critical systems for the industrial and transportation domains, from traditional functional
safety to next-generation autonomous systems. Speciic AI technology instantiations that perform automated

decision-making (A1) have already been used with compensatory measures (e.g., safety bag) for the development
and certiication of automatic safety-critical systems (e.g., railway interlocking [Klein 1991]). And the use of AI
technology for developing speciic heteronomous safety functions that require human supervision (A2) is also
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common in the latest ADAS systems. However, there is still a signiicant pending research efort and challenge to
deine generic AI methods, techniques and processes for developing AI-based safety-critical systems that cannot
oload safety management onto humans or non-AI systems. Moreover, there is still a considerable standardization,
industrial and research efort remaining to formalize applicable AI-related safety standards, settle best industry
practices and deine novel technical approaches. There may be a perception that the generic development and
certiication/assessment of AI-based autonomous safety-critical systems (A1) will be reached soon. However, we
could be at the beginning of the Pareto principle, where 20% of the technological development efort has led to
80% technical results, and AI-based autonomy might seem reasonably achievable soon. However, achieving the
following required 20% technical advance might require a considerable additional efort (+80%) due to the diiculty
of achieving the required extremely low probability of failure, the necessary systematic capability and providing
the supporting evidence as required by present and future safety standards. All in all, we must pave the way
toward the development and certiication/assessment of AI-based safety-critical systems due to their potential
advantages for society and overall industrial interest. So, we expect that the multidisciplinary combination of AI,
trustworthiness and safety-critical systems research ields will be an active and vibrant research area for the
years to come.

8.2 Future Research Directions

The applicability of AI-technology for developing safety-critical systems leads to multiple, diverse and multidisci-
plinary challenges. In this Section, we just summarize a set of relevant future research directions aligned with
the scope of the survey.
All in all, it is necessary to deine an AI safety engineering approach with a comprehensive set of generic

techniques, life cycles, methods and processes [Jordan 2019; Nordland 2004; Putzer et al. 2021] that could pave
the way toward the compliance of AI technology for developing traditional FuSa, heteronomous and autonomous
safety-critical systems (product, runtime, process). This is an engineering and academia research challenge with
two basic types of contributions: łhow things can be done” and łhow things should be done” [Perez-Cerrolaza
et al. 2022; Perez Cerrolaza et al. 2020]. The former refers to the safety adaptation of generic cutting-edge and
state-of-the-art AI technology (adapting Class III to Class I-II ). In contrast, the latter refers to a bottom-up
development of AI technology natively deined for developing safety-critical systems (Class I ). And both of them
should take into consideration the iterative and dynamic life cycle of AI-based systems (e.g., collect operational
data to update the ML model) in the context of industrial and transportation domain systems with long product
lifetimes (e.g., >= 30 years [Perez-Cerrolaza et al. 2022]).
As the ML worklow is data-driven, the data management must ensure the appropriate data quality (e.g.,

edge/corner cases, data distributional drift) for the safe model training and veriication. Data must provide a
complete, correct and representative speciication of the intended safety functionalities, rules and constraints.
Data management has recurrent challenges and limited research contributions. The systematic error management
of model training (e.g., AutoML) is also vital for developing safe models, but limited research addresses this
challenge. So, both are future research areas with potentially high impact and interest. Not only from a pure AI
safety perspective but also from a safety system perspective (e.g., model human driving vs. autonomous driving
to better identify representative edge cases and simulation scenarios).
Model veriication is an active research area where AI technology is commonly used for the veriication

process of AI-based safety-critical systems (product, runtime). There are multiple challenges (e.g., test scenar-
ios/case/generation, test classiication) and problems to be solved in order to provide technically compliant and
economically eicient solutions for the VVT of AI-based safety-critical systems.
System-level safety assurance cases use ML properties to justify that the system is safe for its purpose

(e.g., explainability, provability, robustness, auditability). So, research contributions that develop AI technology
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that natively provides these properties, or contributions that extract, measure and verify these properties
become crucial. All properties are important, but explainability is critical. From a safety engineering perspective,
explainability is a pivotal attribute in supporting an AI item’s understandability, veriiability and auditability.
And from a trustworthiness perspective, it is foundational to support the łright to obtain an explanation” and
support legal liability analyses providing explainability information for diferent actors (e.g., engineer, lawyer).

The training tools and platforms on which data is stored, and ML models are trained and veriied, are typically
based on state-of-the-art solutions with limited or no support for safety systems development (e.g., cloud
computing) and non-qualiied tools. While academia can provide research contributions, this challenge will likely
require an industrial engineering solution.
Additionally, inference execution platforms are an active research area for HPC devices, AI frameworks and

middlewares. The avoidance, control and mitigation of random hardware failures and systematic failures, along
with the spatial and temporal independence of execution, are common challenges that such execution platforms
must address (e.g., diagnostics, temporal predictability). While generic computing devices [Perez-Cerrolaza et al.
2022; Perez Cerrolaza et al. 2020] are already addressing these challenges, specialized devices (e.g., TPU) and AI
frameworks still have limited support. Furthermore, there are multiple specialized future research challenges,
such as portability and distribution of models among redundant and diverse computing platforms (e.g., FPGA
and GPU) [Perez Cerrolaza et al. 2020].

Finally, trustworthiness leads us to multiple, multidimensional and multidisciplinary future research directions
combining engineering, law and ethics disciplines, among others. For example, engineering and machine ethics,
liability considerations, explainability for diferent actors, analysis of human vs. autonomous system behaviors.
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