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Abstract. This paper introduces the Approximate Multi-Agent Ethical Embed-
ding Process, an algorithm to ethically design reinforcement learning environments
where agents learn behaviours aligned with a moral value, while pursuing their own
goals. Building on Multi-Objective and Deep Reinforcement Learning, it extends
a previously theory-driven method limited to small-scale problems. The new ap-
proach is tested in a scaled-up, ethically augmented version of the gathering game,
demonstrating its effectiveness in managing increased complexity.
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1. Introduction

Autonomous artificial agents are becoming increasingly prevalent [1,2]. However, as we
delegate more tasks, such as autonomous driving or healthcare, to artificial agents [3],
we must also be aware of the possible risks or negative ethical effects that may arise.
Thus, it is imperative to develop systems to ensure that these agents will always make
decisions in alignment with human values [4].

A common approach in decision making is to let agents learn to behave using rein-
forcement learning (RL). Multi-agent reinforcement learning (MARL) algorithms have
found application in diverse domains, exhibiting a notable capacity for acquiring profi-
ciency in intricate tasks [5]. As a consequence, works focusing on applying RL to ensure
value alignment have recently begun to appear from the fields of Machine Ethics [6] and
AI Safety [7].

While the literature has largely focused on developing specific learning algorithms
for value alignment problems, little attention has been given to the design of value-
aligned environments, both single-agent and multi-agent, where agents learn to behave
ethically regardless of the learning algorithm used. In [8], Rodriguez-Soto et al. pro-
posed an Ethical Embedding algorithm that computes how to set ethical rewards neces-
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sary for guaranteeing the learning of an ethically-aligned behaviour for all agents within
a multi-agent system. Although their algorithm is theoretically guaranteed to succeed, it
is based upon strict theoretical assumptions, such as that all agents have full observability
of the whole environment or that an optimal behaviour exists for every agent indepen-
dently of what the other agents are doing. These assumptions are hardly true in large and
more realistic environments than those studied in [8]. Moreover, the ethical embedding
algorithm requires RL algorithms with convergence properties to maintain its theoretical
guarantees. To our understanding, no deep RL (DRL) algorithm preserves such guaran-
tees. Thus, even if we found a large environment for which such theoretical assumptions
held, the computational cost of computing an ethical embedding without DRL would
make it unfeasible in practice.

Against this background, this work first aims to design an approximate version of
the Ethical Embedding algorithm suitable for large, partially observable environments.
A new method is introduced to compute the ethical embedding in multi-agent systems
using DRL, allowing application in environments with more agents, larger state spaces,
and partial observability. Unlike the original algorithm, this approach does not guarantee
a perfectly ethical environment, leading to a second objective: defining a quality measure
for value alignment.

In line with these objectives, we present our primary contribution: the Approxi-
mate Multi-Agent Ethical Embedding Process (AMAEEP) algorithm, extending the orig-
inal Multi-Agent Ethical Embedding Process (MAEEP). AMAEEP transforms a multi-
objective environment, where value alignment is treated independently, into a single-
objective environment where agents are incentivised to behave ethically. The shift from
classical RL to DRL enhances scalability but sacrifices convergence guarantees. There-
fore, the resulting environment is not theoretically guaranteed to generate perfectly ethi-
cal agents. Nevertheless, our experiments empirically demonstrate that AMAEEP gener-
ates ethical joint policies in the Ethical Gathering Game environment, using the original
map size, partial observability, and up to five agents, surpassing the reduced settings in
prior work and illustrating a significant scalability improvement through DRL methods.

2. Background

This section introduces the necessary background and related work in MARL and the
design of ethical environments.

The MARL literature formally defines a multi-agent environment as a Markov game
(MG) [9]. An MG characterises an environment in which multiple agents can repeatedly
act upon it to modify it, and immediately, each one receives a reward signal after each
action. Formally:

Definition 1 (Markov game). A (finite) Markov game of n agents is defined as a tu-
ple M = 〈S,Ai=1,··· ,n,Ri=1,··· ,n,T,γ〉 containing two sets, two functions, and a constant.
Here, S is a finite set of states, and Ai represents the set of actions available to agent i.
The transition function T : S×A1×·· ·×An×S → [0,1] defines the probability of moving
from state s to the next state s′, given the joint action a = 〈a1, . . . ,an〉 of all agents. For
each agent i, the reward function Ri : S×A1 × ·· ·×An × S → R specifies the received
reward ri after applying joint action a to state s and transitioning to state s′. Finally,
γ ∈ (0,1] is the discount factor.
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In RL, an agent’s behaviour is defined by its policy π i : S → A, mapping each state
s to an action a. Each agent i seeks a policy π i that maximises the expected discounted
sum of rewards, based on its reward function Ri and discount factor γ . The combined
behaviour of all agents is denoted as the joint policy π = 〈π1, . . . ,πn〉.

Since it is often impossible to find a joint policy that maximises all agents’ rewards
simultaneously, agents in MARL typically learn a Nash equilibrium (NE), a stable joint
policy where no agent can unilaterally improve its outcome. Formally:

Definition 2 (Nash equilibrium). Given a Markov Game M , a Nash equilibrium is a
joint policy 〈π i∗,π−i∗ 〉 satisfying that for every agent i and every state s ∈ S, the policy
π i∗ of agent i is a best-response against π−i∗ (s), that is, it maximises the accumulation of
rewards against the joint policy π−i∗ :

V i
〈π i∗,π−i∗ 〉(s)≥V i

〈π i,π−i∗ 〉(s), for every π iand ∀s ∈ S, (1)

where V i
π(s) is the expected discounted accumulation of rewards defined as Eπ i [∑∞

t=0 γ t ri]
of agent i if all agents follow the joint policy π = 〈π i,π−i〉.

The notion of a Nash equilibrium can be relaxed by including an ε > 0 in Eq. 1.
When the benefit for each agent i of unilaterally modifying its policy π i∗ is at most ε > 0,
we say that agents are in an ε-Nash equilibrium. This relaxed version of the NE is often
used when computing an optimal policy is not feasible, and instead, approximations
computed with algorithms without convergence guarantees are used.

Computing equilibria in an MG is a complex task that has been extensively explored
by the game theory and RL literature [10]. When no specific assumptions about the game
are made, employing DRL single-agent algorithms, such as Proximal Policy Optimisa-
tion [11], independently for each agent, may lead to an equilibrium [12]. However, such
an approach does not have theoretical guarantees of convergence for general MGs, which
might lead to suboptimal policies.

In this work, we use the term NE to refer to the joint policy obtained through a
deep MARL algorithm such as Independent PPO (IPPO), while we acknowledge that the
convergence to suboptimal policies of such algorithms is more accurately captured by
the definition of an ε-NE.

To ensure that RL agents learn to behave ethically, we need to incorporate ethical
knowledge into their environment. A typical way to aggregate ethical information is to
include an ethical reward function Re [13,8]. In this work, we focus on the approach of
Rodriguez-Soto et al. in [8] because it has been shown to work for multi-agent environ-
ments.

In more detail, [8] considers a subclass of Markov games in which agents have two
different reward functions Ri

0 and Ri
e. The authors formalise such a Markov game as an

Ethical Multi-Objective Markov game:

Definition 3 (Ethical MOMG). An Ethical Multi-Objective Markov game is defined as
a tuple M = 〈S,Ai=1,...,n,Ri=1,...,n

0 ,Ri=1,...,n
e ,T,γ〉 such that for each agent i:

• Ri
0 is the original reward function of agent i, defined as reward functions in Markov

games.
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• Ri
e : S ×A i →R rewards performing actions ethically-aligned and punishes per-

forming actions ethically-misaligned. To truly incentivise moral values, this re-
ward function should be designed using principles of ethics literature, i.e utilitar-
ianism.

The remaining elements of M are defined identically to Markov games.

Ethical MOMGs consider alternative equilibrium concepts focusing on the differ-
ent reward functions of each agent. The first of these equilibrium concepts are ethical
equilibria, which are NE π∗ with respect to the ethical reward functions Ri

e.
The second equilibrium concept of Ethical MOMGs is best-ethical (BE) equilib-

rium. Best-ethical equilibria represent joint policies in which all agents behave ethically
aligned and also try to fulfil their respective individual objectives, without compromis-
ing the ethical objective. They are defined as those joint policies π∗ that, among ethical
equilibria, are also a NE concerning the agents’ original reward function Ri

0.
The goal of the authors of [8] is to design, from a given Ethical MOMG M , an

alternative Ethical Markov game M∗ that provides enough incentives to the agents to
learn to behave ethically. The way of providing incentives is by designing a (single-
objective) Markov game that aggregates the two reward functions of the agents Ri

0 +we ·
Ri

e in such a way that ethical rewards Ri
e are multiplied by an ethical weight we > 0.

Formally:

Definition 4 (Ethical Markov Game). Let M be an Ethical Multi-Objective Markov
Game with reward functions Ri

0,R
i
e for each agent i. We refer to the Ethical Markov game

M∗ associated with M to a Markov game with reward function Ri
0 +we ·Ri

e and we > 0,
where at least one Nash Equilibrium of M∗ is a best-ethical equilibrium in M .

Rodriguez-Soto et al. provided a process in [8] to compute such an environment,
called the multi-agent ethical embedding process (MAEEP).

MAEEP offers convergence guarantees under restrictive conditions, notably the
availability of a single-agent RL algorithm that reliably finds the best response in single-
agent (n = 1) Markov games, or Markov Decision Processes. Algorithms with such guar-
antees, like Q-Learning [14], enable a reliable ethical environment design. However,
these algorithms struggle to scale, limiting MAEEP’s applicability to larger and more
realistic environments.

3. Approximate Ethical Embedding

This section introduces the Approximate Multi-Agent Ethical Embedding Process
(AMAEEP), which designs environments that promote ethical behaviour by guiding
agents towards approximate best-ethical equilibria.

The process transforms a MOMG (multi-objective Markov game) into a single-
objective MG by combining individual and ethical rewards through scalarisation. This
is done using the minimal ethical weight that still ensures ethical behaviour. The mini-
mal weight is sought for three reasons: (1) to reduce deployment costs linked to reward
shaping, (2) to align with AI Safety principles by limiting design impact [15,16], and
(3) to avoid learning instability effects such as exploding gradients in DRL algorithms
that may cause agents to ignore their individual goals. The original MAEEP computes
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the exact minimum ethical weight required to incentivise ethical behaviour in an ethi-
cal MG. However, this necessitates the exact computation of NE, which is impractical
for large state spaces. In this work, we relax this requirement by using approximations
of NE through DRL algorithms that may converge to suboptimal policies but are capa-
ble of learning in large state-action spaces. As a result, the computed ethical weight is
an approximation rather than the exact minimum, and the environment lacks theoreti-
cal guarantees for ensuring ethical behaviour. Despite this, experiments show that DRL
converges to policies that effectively produce environments that are empirically ethical.2

The remainder of this section explains our approximate multi-agent ethical embed-
ding process (AMAEEP) for designing ethical MGs. This process consists of three steps:

1. Reference policy computation. We compute a so-called reference joint policy
πr, wherein all agents behave ethically. The computation is performed by apply-
ing any algorithm to compute NE.

2. Ethical weight computation. We propose an iterative algorithm to find an ap-
proximation of the minimal ethical weight we for which the reference policy πr
is also a Nash equilibrium in an ethical MG M∗ with associated ethical weight
we.

3. Build approximately an ethical environment. We build the ethical MG M∗
using the ethical weight we to scalarise and embed into a single reward function
both reward functions of the original environment.

3.1. Reference policy computation

The initial phase of the AMAEEP involves identifying a best-ethical NE in the ethical
MOMG M that will serve as the reference policy. Our way of computing this reference
policy is by computing an NE in an auxiliary ethical Markov game, which we call a
strong ethical Markov game Ms. In a strong ethical MG, its associated ethical weight
we is large enough we >> 1 to incentivise agents to always prioritise the ethical objec-
tive over the individual objective (without completely disregarding it). Thus, agents will
behave ethically for any NE of a strong ethical MG. Formally:

Definition 5 (Strong ethical Markov Game). Let M be an Ethical Multi-Objective
Markov Game with reward functions Ri

0,R
i
e for each agent i. We define a strong eth-

ical Markov game Ms associated with M as a Markov game with reward function
Ri

0 +ws ·Ri
e with weight vector ws >> 1 significantly larger than 1 (assuming Ri

0 and Ri
e

are normalised or in a similar scale), such that every Nash equilibrium in Ms is also a
best-ethical equilibrium in M .

Although a strong ethical Markov game Ms incentivises agents to learn to behave
ethically, for the three reasons exposed at the beginning of Section 3, we cannot consider
Ms as the final environment where agents will learn to behave. At this point, we know a
best-ethical NE πr where agents behave ethically.

To finish this Subsection, we highlight the inputs of this step of the AMAEEP:
an ethical MOMG M , a weight ws large enough, and any algorithm to compute NE
SolveMG. If SolveMG is guaranteed to find a Nash equilibrium, the obtained reference
policy will be an exact best-ethical equilibrium. Otherwise, the obtained reference policy
will be an approximate best-ethical equilibrium.

2Even without guarantees, agents do learn ethical policies.
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3.2. Minimum weight computation

After obtaining the reference policy πr, the second step of the AMAEEP consists of
finding a weight we ∈ (0,ws] that makes πr the NE of a scalarised environment built with
R = R0 +we ·Re. With such an ethical weight we, we will be able to design a (single-
objective) ethical MG wherein at least one Nash equilibrium (the reference joint policy)
is an NE.

Our ethical weight computation algorithm can be found in Algorithm 1. Our algo-
rithm considers as input: an ethical MOMG M , the reference joint policy πr, a small pos-
itive number δ > 0, and any algorithm to compute equilibria in a Markov game SolveMG.

Our ethical weight computation algorithm works as follows. First, we know that we
is greater than 0 and smaller than or equal to ws (because we already know that πr is an
approximate NE for the ethical weight ws). Thus, the ethical weight we we seek belongs
to the interval [0,ws]. To obtain such weight, we iteratively select specific points w′

e of
the interval w′

e ∈ [0,ws] following a heuristic. For each weight w′
e, we build an associated

MG Mw′
e
. Thereafter, we compute a NE ρ within such environment Mw′

e
. If, for a given

ethical weight we, the computed equilibrium π is identical to the reference policy πr, our
algorithm finishes and returns we as the minimal weight.

The ethical weight computation begins by computing a NE for weight w′
e = 0 (lines

1-3 of Algorithm 1). That is, we run the SolveMG algorithm on an MG with reward
function Ri

0 +0 ·Ri
e.

The algorithm finishes if the resulting NE obtains the same returns as πr (line 4
of Algorithm 1). Otherwise, the algorithm proceeds if a different equilibrium π 
= πr is
obtained. Figure 1 illustrates an example environment in which, for a given agent, the
reference policy (depicted in green) and the policy associated with w′

e = 0 have different
scalarised returns. If these two policies differ for a single agent, the algorithm needs to
compute a different candidate weight.

The algorithm continues by heuristically selecting a new candidate weight w′
e inside

the interval (0,ws]. This new candidate weight w′
e is the point at which, for every agent

i, the scalarised value of the reference policy πr is at least as high as the value of the
equilibrium π of environment Mwe (lines 5-8 of Algorithm 1):

V i
0〈πi

r ,π
−i
r 〉

(s)+w′
e ·V i

e〈πi
r ,π

−i
r 〉

(s)≥V i
0〈πi,π′−i〉

(s)+w′
e ·V i

e〈πi,π′−i〉
(s),∀agents i. (2)

Notice that such a new weight w′
e is precisely the point at which the scalarised values

of π i
r and π i intersect for all agents i. For instance, back to Figure 1 example, assuming

there is only one agent, the new candidate ethical weight w′
e is selected by comparing

the point at which the blue line and the green line intersect. In this case, it is the point
w′

e = 1.59.
Consequently, our algorithm proceeds by computing a NE for the w′

e + δ (line 9 of
Algorithm 1). Recall that, for the found w′

e, both the ethical reference policy πr and the
equilibrium ρ might obtain the same scalarised value. This δ > 0 is a small number to
guarantee that πr is prioritised over ρ .

Again, we build the Markov game Mw′
e

associated with the new weight w′
e (line

10 of Algorithm 1), and compute an equilibrium for Mw′
e

using SolveMG (line 11 of
Algorithm 1). If SolveMG finds πr, the algorithm finishes and returns the found weight
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Algorithm 1 Minimum Weight Computation
Input: Ethical MOMG M , SolveMG, δ , πr ,
1: Set the ethical weight we ← 0.
2: Set Mwe a single-objective Markov game associated to ethical weight we.
3: ρ ← SolveMG(Mwe ).
4: while ρ 
= πr do

5: for every agent i do

6: Set w′
e ← V ρi

0 −V πi
r

0

V πi
r

E −V ρi
E

.

7: Set we ← max(we,w′
e).

8: end for

9: Set the ethical weight we ← we +δ
10: Set Mwe a single-objective Markov game associated to ethical weight we.
11: ρ ← SolveMG(Mwe ).
12: end while

13: return ethical weight we ← we +δ .

(line 12 of Algorithm 1). Otherwise, we compute a new ethical weight again by applying
Eq. 2 and repeat until convergence.

To guarantee that the algorithm always converges, the ethical weight must increase
at every iteration. To guarantee that, we set the following ethical weight as the maximum
among w′

e +δ and we +δ .

Figure 1. Representation in weight space of the scalarised values that the
three policies of Table 1 obtain when scalarising their respective value vectors
with an ethical weight on the weight interval [0, 10].

Training
w V0 Ve

ws -250.134 20.1
0 -170.557 0.5257

1.6 -180.3455 20.72

Table 1. MO values obtained
by agent i trained with differ-
ent weights.

4. Experiments and results

Our experimental evaluation aims to experimentally validate our approximate multi-
agent ethical embedding process with a Markov game from the literature, the Ethical
Gathering game [17,8]. In particular, we evaluated the degree of ethical alignment of the
learnt policies of the agents in the environment designed by MAEEP with two metrics:

1. For each agent, we compared their accumulation of ethical returns V i
e with respect

to the reference policy applied by our AMAEEP.
2. For each agent, we registered the number of unethical actions that they performed

(i.e., actions that provide a negative ethical reward ri
e < 0).
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Environment description All experiments were conducted in an extended ver-
sion of the Ethical Gathering Game (EGG) [8], a grid world where agents collect apples
to survive. The EGG introduces inequality by assigning different gathering efficiencies
to agents, making some more likely to survive. To promote beneficence, a donation box
mechanism is added, allowing agents with surplus apples to donate and others to retrieve
them.

While [8] worked in an EGG with a grid-map of 3×4, thus limiting the state space,
we performed our experiments in the original Gathering Game [17] grid map (16×32).
The size of our state space makes the original Ethical Embedding impractical. In addi-
tion to the augmented map size, we included 5 agents in the environment, in contrast to
the two agents of [8]. Our environment has the following parameters: survival thresh-
old thd = 15, donation box capacity dbc = 10, and partial observability of a 9×9 area.
Agents can move up, down, right and left; and donate, or retrieve apples from the do-
nation box. Agents must step on apples to collect them. Efficient agents always succeed
in gathering apples while inefficient ones often fail (the apple gets lost, and they do not
receive it). This results in the efficient agents achieving survival in most episodes, while
the inefficient agents usually die. In our environment, only agents i = 3 and i = 5 are
efficient.

Environment rewards In the EGG, agents pursue both an individual goal (max-
imising apple collection) and an ethical goal (supporting beneficence via donations), each
defined by a distinct reward function:

Individual reward function Ri
0 : Agents receive Ri

0 = −1 per time-step until reaching
their survival threshold. Gathering an apple (from the ground or donation box) grants
+1, while donating an apple incurs a penalty of −1.

Ethical reward function Ri
e : Donating an apple after reaching survival threshold yields

a reward of Ri
e = 0.7, while unjustified withdrawals from the donation box are penalised

with Ri
e =−1.

4.1. Algorithm architecture

We have used an Independent PPO [12] architecture as the Markov game solver with
three hidden layers of 256 units each for both the actor and the critic neural networks.
To select the hyperparameters of IPPO, we applied Optuna [18], a hyperparameter op-
timiser. Specifically, we used it to set each agent’s learning rate (for actors and critics)
and global entropy annealing parameters. We set IPPO to do 80000 episodes of 500 time
steps for all the training instances done on the experiments. Updating parameters every
five episodes.

4.2. Applying the AMAEEP

Here we detail the steps of applying our ethical embedding process for our EGG.

Reference Policy Computation. The initial step in executing AMAEEP involves
computing a reference policy by learning an approximate equilibrium within a strong
ethical MG, denoted as Ms. For this experiment, we selected ws = 10 to construct Ms,
thus prioritising the ethical objective tenfold over the individual objective. Table 2 (row
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Agent 1 (ineff.) Agent 2 (ineff.) Agent 3 (efficient) Agent 4 (ineff.) Agent 5 (efficient) Global statistics
Experiment V 1

0 V 1
e V 2

0 V 2
e V 3

0 V 3
e V 4

0 V 4
e V 5

0 V 5
e Survival Rate Full DB

large we = ws −319.85 0.47 −335.38 0.00 −137.98 20.92 −265.34 0.00 −164.65 15.33 100% 96%
large we = 0 −498.88 0.00 −499.51 0.00 −92.82 −0.53 −498.55 0.00 −125.33 −0.28 0% 0%

large we = 2.6 −294.13 0.53 −323.51 0.00 −124.56 20.93 −261.98 0.00 −138.02 15.95 100% 95%

Table 2. Individual returns V i
0 and ethical returns V i

e obtained by each agent during the different steps of our
AMAEEP in both the medium and large configurations and their ethical weight we. The two last columns show
the percentage of simulations where all agents survive and the percentage of simulations where the donation
box is full by the end of the simulation.

1) shows that, in our instance of the EGG environment, policies trained in Ms result in
significantly higher ethical returns for efficient agents compared to inefficient agents. We
can also see how the percentages regarding the survival of all agents and donation box
filling are high. Furthermore, there are 0 unethical actions. This suggests that the learning
algorithm effectively computed an approximation of the best-ethical equilibrium.
Minimum Weight Computation The subsequent step involves identifying the near-
minimum ethical weight. Initially, it is necessary to determine the NE for the environ-
ment when the ethical weight is 0. Row 2 in Table 2 shows that the values for the indi-
vidual objective V0 for efficient agents are high, whereas those for inefficient agents are
significantly low. Given that the ethical weight is zero, no agent receives a positive eth-
ical return, as ethical actions have not been rewarded during training. Additionally, we
observe there is no simulation in which all the agents survive, nor the donation box ends
up full at the end of the simulation. We refer to this kind of policy as unethical policy.

To find the next candidate weight w′
e, we apply equation 2 with the value vectors

corresponding to scalarised environments we = 0 and we =ws (rows 1 and 2). To maintain
brevity, we do not describe the computations for all agents; we focus only on agent i = 5
(columns 10, 11). The intersection (Eq. 2) of −164+15.33w and −125.33−0.28w is in
w = 2.51 which will be or the next candidate weight w′

e = 2.51
To clarify, as stated in subsection 3.2, we select the maximum weight from the out-

comes of intersecting the two policies for each agent. Additionally, we add a small δ
to select a weight to the right of the intersection. Then our next candidate weight is
w′

e = 2.51+δ = 2.6.
We can again build a Markov game for the obtained ethical weight w′

e and compute
an equilibrium. In Table 2, the third row shows the value vector obtained in the new
approximate equilibria found for w′

e = 2.6. We observed almost no difference in the
ethical returns of the policies of efficient agents between having trained applied weights
ws or w′

e. Additionally, as the reference policy, the approximate equilibrium found for
the new ethical weights commits exactly 0 unethical actions in 1000 simulations of 500
time steps. Overall, we consider that the algorithm has converged on iteration one. Thus,
AMAEEP has found the best-ethical equilibrium with ethical weight set to 2.6. With
such weight, we can build the final ethical MG, which the algorithm will return.

Following the procedure depicted in subsection 4.2, we have designed an ethical
MG. Note that after the AMAEEP is done, there is no need to compute the NE on the
resulting environment, as we obtained it as the last step of the process.
4.3. Results
In light of our experiments, we consider that the ethical design of an EGG environment
using our new AMAEEP is possible. Thus, we fulfilled our primary research objective.
Furthermore, to cope with the second objective we provide distinct metrics to asses that
our results are indeed ethical. The similarity of the value vectors and in the EGG specific
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metrics (survival and filling of the donation box) empirically proves that even when using
approximations of equilibria that are as ethical as the reference policy computed.

5. Conclusions and future work

Based on the MORL literature, we tackle the open problem of building an ethical envi-
ronment for large multi-agent systems wherein all agents in the system learn to behave
ethically while pursuing their individual objectives. We call our method Approximate
Multi-Agent Ethical Embedding Process (AMAEEP), and we empirically evaluated it in
an ethical extension of the gathering game where agents needed to consider the moral
value of beneficence. As future work, we plan to develop methods for aligning a multi-
agent system with multiple moral values.

References

[1] Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein
structure prediction with AlphaFold. Nature. 2021;596(7873):583-9.

[2] Wurman PR, Barrett S, Kawamoto K, MacGlashan J, Subramanian K, Walsh TJ, et al. Outracing cham-
pion Gran Turismo drivers with deep reinforcement learning. Nature. 2022;602(7896):223-8.

[3] Boada JP, Maestre BR, Genı́s CT. The ethical issues of social assistive robotics: A critical literature
review. Technology in Society. 2021;67:101726.

[4] Gabriel I. Artificial Intelligence, Values, and Alignment. Minds and Machines. 2020 09;30:411-37.
[5] Casas-Roma J, Conesa J. Towards the design of ethically-aware pedagogical conversational agents. In:

Advances on P2P, Parallel, Grid, Cloud and Internet Computing: Proceedings of the 15th International
Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC-2020) 15. Springer; 2021.
p. 188-98.

[6] Yu H, Shen Z, Miao C, Leung C, Lesser VR, Yang Q. Building Ethics into Artificial Intelligence. In:
IJCAI; 2018. p. 5527–5533.

[7] Amodei D, Olah C, Steinhardt J, Christiano P, Schulman J, Mané D. Concrete problems in AI safety.
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