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ABSTRACT

In Electronic Institutions [1], agents may be prevented from
achieving their goals if other participants are not present in
a given scene. In order to overcome this situation we propose
the addition of an institutional agent in charge of dispatch-
ing agents to scenes through a participation request proto-
col. We further propose to endow this agent with the ca-
pability of instantiating new agents, thus providing grounds
for a self-optimization of the system. Advantages of our
proposal are illustrated with the implementation of an in-
formation auditing process.

Categories and Subject Descriptors

I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

Keywords

Multiagent systems development environments. Electronic
institutions. EIDE.

1. INTRODUCTION

The Electronic Institutions framework [1] developed in the
Artificial Intelligence Institute of the Spanish National Sci-
entific Research Council, (IIIA-CSIC), is a means to design
and implement regulated open multiagent systems. The
current framework is the outcome of more than a decade
of developments and has been used to implement regulated
MAS in several domains. For example, to support electronic
auctions, to establish supply-chain virtual organizations, to
agentify hotel and hospital management systems, to sup-
port participative experimentation, to model policy-making
or to simulate human activity in archaeological sites. The
framework has also served as a model-building environment
for the discussion of topics like agent-based simulation, ma-
chine readable normative languages or autonomic comput-
ing. But in spite of this considerable variety of modes of use
there have been very few published references to the under-
lying technology and, in particular, seldom any discussion of
its expressive limitations and ways to circumvent them [2,
4].

This paper is one such discussion. We address the prob-
lem of deadlocks induced by improper institutional support
in the follow-through of processes whose “most natural” rep-
resentation may be as goal-directed workflows. In fact, we
frame that problem in slightly more general terms: as the
breakdowns produced by stalling or absent agents; and we
advance a solution whose schema —an institutional agent

with particular functionalities— may be reused mutatis mu-
tandis to address similar problems and may also be coded
as a standard functionality in the framework infrastructure.
We believe that our solution should facilitate the adoption
of the electronic institutions metaphor for the design of con-
ventional MAS.

The structure of the paper is straightforward. The next
subsections provide terminological and conceptual background.
In Sec. 2 we present our proposal and in Sec 3 we describe a
case study on information auditing to illustrate our proposal
and present simple experimental results to back our claims.
We finish with a brief discussion and comments on future
work.

1.1 Electronic Institutions

For the purpose of this paper the EI framework may be
described in terms of a conceptual model, a computational
model and a software platform, EIDE, to specify and run
electronic institutions [1, 5].

The conceptual model for electronic institutions as-
sumes that the electronic institution determines a virtual
space where agents interact subject to explicit conventions,
so that institutional interactions and their effects count as
facts in the real world. Because of this virtuality, it is as-
sumed that all interactions within the electronic institution
are speech acts expressed as illocutionary formulae. The
electronic institution defines an open MAS in the sense that
(i) it makes no assumption about the architecture and goals
of participating agents (who may be human or software en-
tities); and (ii) agents may enter and leave the institution
at will, as long as the regimented conventions of the insti-
tution are met. Participating agents are subject to role-
based regulations whose specification is given in terms of
illocutions, norms and protocols. There are two classes of
agents, internal and external. Internal agents act on behalf
of the institution itself who is responsible for their behav-
ior. External agents act on their own behalf and their in-
ternal state is inaccessible to the institution. Interactions
are organized as repetitive activities called scenes. Scenes
establish interaction protocols describing agent group meet-
ings as transition diagrams whose arcs are labeled by valid
illocutions. The performative structure captures the rela-
tionships among scenes describing those transitions agents
playing certain role can make. Finally, normative rules de-
scribe the obligations an agent contracts while it participates
in the institution. Agents may move from one scene to an-
other, they may be active in more than one scene at a given
time and they may perform different roles in different scenes.

The computational model for EIs defines a social (in-
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stitutional) software layer between an agent communication
platform (e.g. JADE) and participating agents. All in-
stitutional communications among agents are mediated by
this platform. That institutional middleware is composed
by three types of infrastructure “agents”: (i) An institution
manager who centralizes valid communications and keeps
track of the state of the institution, which is a data struc-
ture that contains the current values of all variables involved
in the enactment of the institution. (ii) There are scene and
transition managers for each, scene and transition, who han-
dle the activation and persistence of scenes and transitions,
and give access and exit to participants according to the
local conventions; these managers mediate between the in-
stitution manager and the agent governors and keep track
of the state of the institution as it applies to their partic-
ular context. (iii) One governor is attached to each agent
and filters all communications between that agent and the
institution; in particular, it directs valid illocutions to the
corresponding scene managers and the institutional man-
ager. The governor keeps a copy of the evolving state of the
institution in order to apply regimented conventions on all
speech acts its agent utters, and communicates to other in-
frastructure agents only those speech acts that comply with
those conventions; thus the governor enables a change of the
institutional state if and only if it admits a valid illocution
from its agent.

The Electronic Institutions Development Environ-
ment, EIDE [5], consists of a graphical specification lan-
guage, ISLANDER, whose output is an XML specification of
an institution; a middleware AMELI [6], that takes an XML
specification and enacts a runtime version of the institution
with agents who run on a FIPA-compatible agent communi-
cation platform; a debugging and monitoring tool, SIMDEI,
that registers all communications to and fro AMELI and
displays and traces the evolution of the institutional state;
finally an agent-shell builder, ABuilder, that from the XML
specification produces an agent “skeleton” for each agent
role. The skeleton satisfies all the (uninstantiated) navi-
gation and communication requirements of the specification
thus leaving the agent programmer to deal only with the
implementation of the agent’s decision-making logic at com-
munication points.

The way these ideas are made operational in EIDE makes
it possible to build complex regulated MAS. However, that
operationalization corresponds more naturally to some types
of MAS functionalities than to others. In this paper we pro-
pose one mechanism to deal with a type of situation that
is currently difficult to handle in EIDE. Namely, the dead-
lock caused by the unavailability of an internal agent in a
scene. Such deadlocks may happen in processes (perfor-
mative structures) that require dedicated internal agents to
follow-through subprocesses that involve single agents. For
instance, the supervision of a patient’s treatment through a
medical protocol or, as exemplified in this paper, the audit-
ing of the dossier of an individual as part of the academic
evaluation process of a university. In general, this type of
individual follow-through processes tends to appear when-
ever institutional interactions are organized in terms of in-
dividual agents’ goals (e.g. each dossier has one agent who
“pushes” the dossier through the steps of a pre-established
workflow). Because in EIDE all agents that are present in
a given scene share the state of the scene, when there is a
process that involves private attention from the institution

to one agent, an internal agent that enforces institutional
conventions may be needed in all the scenes involved in the
process. Moreover, currently there is no standard way of cre-
ating new internal agents in a running EI and furthermore,
the current version of EIDE does not have the functionality
of forcing an agent to act at any point, in particular, thus, it
cannot force an agent to move from one scene to another, nor
to terminate an agent. Consequently, deadlocks may arise
when all available internal agents are already busy and also
when no available internal agent enters the stalled scene.

To overcome this hurdle, the current solution in EIDE
is to instantiate a new (sub) performative structure that
corresponds to the private process each time that process
needs to happen. In this solution, all the required internal
agents are created automatically for every scene or transition
in the process. However, the creation of substructures is
expensive and in most cases involve having agents active
in multiple scenes simultaneously, situation that is rather
complex to program. Furthermore, this mechanism does
not necessarily solve the deadlock induced by an available
agent who stalls.

In this paper we propose another way of addressing that
problem. It consists in the definition of a new internal Dis-
patcher agent, that keeps track of the need of internal agents
(of those roles that may become necessary) and when re-
quested by a scene manager, dispatches those that are avail-
able to the scenes that may need them, spawning new ones
whenever necessary.

1.2 Agent Platform Services
Multi-agent frameworks have solved the problem of man-

aging agent participation in several ways. For instance,
FIPA has proposed a low-level solution for peer-to-peer com-
munication based on services. On the other hand, multi-
agent frameworks like Moise+ [8], MadKit [7] and Electronic
Institutions have proposed upper-level solutions.1

The FIPA organization recommends a series of low-level
services that any agent platform must implement to pro-
vide peer-to-peer communication: Agent Management Sys-
tem (AMS), Message Transport System (MTS) and Direc-
tory Facilitator (DF). The main role of an AMS is managing
agent creation, deletion and migration on the agent plat-
form, as well as maintaining the index of all agents identifiers
in the platform. The MTS enables communication between
agents internally or across different agent platforms. On
the other hand, the DF functions as a yellow pages service
on the agent platform. The DF considers agents as service
providers and publishes the service descriptions provided by
them. Even when the DF is an optional component of the
agent platform, it is essential for finding the location of ser-
vices in the multi-agent system. JADE and FIPA-OS are
examples of frameworks that fulfill such recommendation.

In MOISE+ (ORA4MAS), organizations are modeled along
three dimensions: structural, functional and deontic. Agents
organize themselves in groups adopting roles that determine
those missions they can or must perform in order to achieve
the groupal goal. Social schemata allow to organize those
missions and partial goals that must be performed/achieved

1A thorough review of how stalling and deadlocks are ad-
dressed in other platforms is beyond the scope of this paper,
here we merely point towards the grounds that are common
to most approaches and two environments that use a notion
of interaction context assimilable to EI scenes.
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in order to reach a common goal. Similarly, in AGR (Mad-
kit) agents organize themselves in groups adopting one role
and are limited to communicate only with other agents in
the same group. Nevertheless, an agent can join multiple
groups simultaneously. In Electronic Institutions, once in-
side a scene, agents are allowed to exchange messages only
with other agents in that scene.

The three approaches propose a common space or context
on which agents interact in order to achieve a single common
goal, or multiple individual ones. Coordination requires con-
trolling the entrance and exit of participants as well as the
minimum/maximal number of agents playing certain role.
Agents are free to decide which space(s) to join as their own
goals dictate. However, none of the three approaches pro-
vides a solution for those cases when there are not enough
agents for starting a group or scene, or when a group or
scene is stalled waiting for one or more agents to continue.
Agents in the stalled group need to communicate with other
agents in order to invite them to join.

Our approach proposes the existence of a Dispatcher Agent
in charge of directing the invitations made by agents in
stalled groups/scenes. This agent optimizes the allocation
of resources instantiating new agents when necessary and
negotiating with available agents their participation.

2. REQUESTING AGENT PARTICIPATION

The context established by a scene in Electronic Institu-
tions makes it difficult for agents in the scene to reach other
agents. Such confinement creates a challenge: to warrant
that all required agents be present in the scene. We formal-
ize this problematic situation and propose a solution. We
propose to institute an agent in charge of dispatching agents
to scenes through a participation request protocol. This
agent makes use of the low-level services recommended by
FIPA and is coherent with the EI model and implementable
in the current EIDE version.

2.1 Missing agents in scenes

Assuming that agents decide freely to enter or not in a
scene, we may find two problematic situations in which par-
ticipants would not achieve their individual goals: 1) not
all the agents required for the scene are available, or 2) an
agent in the institution is not aware that its participation
is required in a particular scene. Both conditions can ap-
pear before the creation of the scene or during its execution.
In the following we will only deal with the case of ongoing
scenes.

Formally, the problematic situation would be defined as
follows. There is an agent A1 pursuing a goal G1 that is
currently playing role R1 in scene S. Scene S is in state W1

and the achievement of G1 requires reaching state Wn. To
do so, there is a sequence of illocutions (M1, ..., Mn) that
must be issued by A1 or by some other agent (A2, ..., An)
playing roles (R2, ..., Rn) in S. Nevertheless, at state Wj the
outgoing illocution Mj , 1 ≤ j ≤ n, has for sender or receiver
an agent playing role Rj for which there is no agent in the
scene. We assume that there exists a state Wk, 1 ≤ k ≤ j,
at which the entrance of agents playing role Rj is allowed
and in which A1 is capable of keeping the scene on hold.

In order to reach Wn, agent A1 sets meansFor(G3, G2)
and meansFor(G2, G1), where G3 = {holdAt(S, Wk)} and
G2 = {agentsP layingRole(Rj , S, Q)}. meansFor(G2, G1)
denotes that goal G1 is in stand-by until G2 is achieved.

Likewise, holdAt(S, W ) is a goal that is satisfied when scene
S reaches state W . Similarly, agsP layingRole(R, S, Q) is
satisfied once there are Q agents playing role R on scene
S, where the quantifier Q ∈ {ONE, ALL, N=n}, represents only
one agent, any available agent, or exactly n agents, respec-
tively.

In order to achieve the goal agsP layingRole(R, S, Q), the
agent A1 must request the participation of other agents
through some protocol P . Such protocol P must achieve
the agreement of Q agents to participate in S with role R.
Protocol P might include agent selection and negotiation,
that may be performed by A1 itself or by another agent.

2.2 A Dispatcher Agent

We introduce the notion of Dispatcher agent as an in-
termediary agent that facilitates the achievement of those
agsP layingRole(R, S, Q) goals owned by other agents. Let
us represent the Dispatcher agent with the symbol AD and
denote its attributions with the role RD. This agent keeps
track of all agents on the institution through the Agents
relation. Besides, AD maintains the three following rela-
tions: AgClasses, hasType and canP lay. The set of agent
classes AgClasses = {C1, ..., Cn} represent the software im-
plementation of any participant, denoted by a source code
class. Through hasType ⊂ Agents× AgClasses, AD keeps
track of the agent class of every agent in the institution; it is
assumed that every agent belongs to a single agent class. Fi-
nally, canP lay ⊂ AgClasses×Roles is used to know which
roles may be played by an agent according to its agent class.
The canP lay set may be built and updated by keeping track
of participants in the institution, or may be known a priori.

AD is capable of creating new instances of the agent class
Ci through the action Instantiate(Ci), which creates and
enters an agent Ai in the institution. The configuration
of AD specifies, for each agent class, a maximum number of
agents it can manage, denoted MaxAgs(Ci). If MaxAgs(Ci)
is 0, AD cannot instantiate agents of type Ci. The func-
tion CurrAgs(Ci) counts the number of tuples (AGj , Ci) ∈
hasType.

AD implements two primitive operations for updating these
relations. RegisterAgent(Ai, Ci) inserts Ai in Agents and
introduces the tuple (Ai, Ci) in hasType. On the other
hand, UnregisterAgent(Ai) removes Ai from Agents and
the tuple (Ai, Ci) from hasType.

2.3 Processing Agent Participation Requests

We can assume that the dispatcher agent becomes aware
of the agsP layingRole(R, S, Q) goal owned by the agent
X through a protocol PReq. In this way, AD generates an
agent participation request APR(X, R, S, Q) whose purpose
is committing Q agents to participate in S with role R.
Given the previous definitions, AD must determine if it can
satisfy the request with the current set of agents.

Definition 1. An apr = APR(X, R, S, Q) is satisfiable w.r.t.
Agents if an only if, there is a set
AGS = {AGi|hasType(AGi, C) ∧ canP lay(C, R) for 0 ≤
i ≤ m}, such that m ≥ 1 for a quantifier Q ∈ {ONE, ALL}, or
m ≥ n for a quantifier Q = N=n. Similarly, APR(X, R, S, Q)
is unsatisfiable w.r.t. Agents if m = 0 for Q ∈ {ONE, ALL},
or if m < n for Q = N=n

Given the set of agents AGS that can satisfy apr and us-
ing a protocol PInv, agent AD invites every agent in AGS

ITMAS 2010: International Workshop on Intrastructures and Tools for Multiagent Systems

28



to participate in S playing role R.The acceptance of AGi is
represented by Agree(AGi, S, R), while its refusal is repre-
sented by Refuse(AGi, S, R). Once all agents in AGS have
given a response, AD proceeds to select the best agents for
the scene.

The set of agents accepting the invitation, denoted AccAgs,
is partially ordered by an operator � that calculates how
suitable is an agent AGi of type C for playing role R in
scene S, denoted AccAgs�. Hence, AGi � AGj means that
AGi is better or at least as good as AGj for the given sce-
nario.

The ordered set SelAgs ⊆ AccAgs� is constituted by the
first n agents of AccAgs�, where n = 1 for q =ONE, n =
|AGS| for q =ALL, and n ≤ n for Q = N=n.

Definition 2. An apr = APR(X, R, S, Q) is satisfied, de-
noted satisfied(apr), if |SelAgs(apr)| ≥ 1 for Q ∈ {ONE,
ALL} or |SelAgs(apr)| = n for Q = N=n.

If apr is not satisfied w.r.t. Agents, the introduction of
new agents in the system would solve the problem. This is
possible if there exists at least one agent class Ci such that
canP lay(Ci, R) and MaxAgs(Ci) > 0. If there is no Ci

with these properties, AD will have to wait for new agents
for a fixed period of time τ , after which it will declare the
request unsatisfied.

Given that there may be more than one agent class ca-
pable of playing role R, AD can use the same partial order
criteria � for selecting the best class for the role R required
in an apr. If apr is an agent participation request and
AgClss(apr) a partially ordered set {Ci|canP lay(Ci, R)}
w.r.t. �, then AD will choose the first Ci ∈ AgClss(apr)
for which CurrAgs(Ci) < MaxAgs(Ci). If no Ci satisfies
this requisite, the instantiation is not performed.

AD determines the number of agents that should be in-
stantiated to satisfy the request, denoted NMissing. If Q =
N=n, NMissing = n−|SelAgs|, meanwhile if Q ∈ {ONE, ALL}
then NMissing = 1. If NMissing > 0, AD can instantiate
and enter in the institution a missing agent through the ex-
ecution of the primitive Instantiate(Ci) : Ai for some Ci ∈
AgClss(apr). These primitives make use of the Agent Man-
agement System (AMS) provided by any FIPA-compliant
agent platform.

Agents entering the institution are invited to scenes held
in stand-by due to an unsatisfied apr. Thus, if an agent
AGi of type Ci is created by AD in order to satisfy apr =
APR(X, R, S, Q) and AGi doesn’t accept the corresponding
invitation to S, Ci is removed from AgClss(apr). If an agent
created by AD refuses all the invitations made during its
logging in the institution, its access is denied. Agents exiting
from the institution produce a revision of unsatisfied agent
participation requests that might require the instantiation
of new agents.

We distinguish between permanent and transient partic-
ipants according to their patterns of entry and exit in the
institution. Let’s call permanent participants those agents
that remain in the institution continuously while it is alive.
On the other hand, transient participants are agents that
enter the institution pursuing certain goals and exit once
they have reached them. Agent classes representing perma-
nent participants are identified by the set PermAgCls ⊂
AgClasses; similarly transient participants are denoted by
TranAgCls ⊆ AgClasses.

Now we can establish necessary conditions to determine

when an unsatisfied agent participation request justifies an
agent instantiation.

Theorem 1. An unsatisfied apr = APR(X, R, S, Q) can
be satisfied through the instantiation of NMissing agents
if there is a subset (Ci ∪ Cj) ⊆ AgClss(apr) such that
NMissing ≤ FSlots(apr), where

FSlots(apr) =
�

i

MaxAgs(Ci)− CurrAgs(Ci, S) +

�

j

MaxAgs(Cj)− CurrAgs(Cj)

for Ci ∈ (AgClss(apr)∩TranAgCls) and Cj ∈ (AgClss(apr)∩
PermAgCls). CurrAgs(Ci, S) returns the number of agents
with type Ci currently in scene S.

Proof. Eventually, transient agents will leave the in-
stitution releasing slots that AD can use for creating new
instances, hence in the worst case where MaxAgs(C) =
CurrAgs(C) and a single C ∈ AgClss(apr) ∩ TranAgCls
exists, the exit of all agents of type C will make CurrAgs(C) =
0 allowing the instantiation of the required agents.

CurrAgs(C, S) allows to consider those agents of class
C that will remain in S. For permanent agents, we can-
not assume that they will exit from the institution, hence
we can only count with the instantiation of MaxAgs(C) −
CurrAgs(C) agents of type C.

The order in which invitations are issued is important
when incoming agents have a limited capacity for attend-
ing invitations. Suppose that AD is processing two agent
participation requests apr1 and apr2 for the same role R,
where AgClss(apr1) = AgClss(apr2), and the maximum
number of invitations an agent of type C ∈ AgClss(apr1)
can take is one. If an agent is instantiated for class C and
the invitation for apr2 is sent earlier than the invitation for
apr1, the new agent will only attend the scene in apr2. Simi-
lar instantiations and invitations might satisfy apr2 and left
apr1 in hold if NMissingapr1 < FSlots(apr2).

On the other hand, the refusal of agents for participat-
ing in an apr might produce an empty AgClss(apr) set.
This condition would allow AD to consider apr unsatisfi-
able discarding it from its queue. Otherwise, an unsatisfi-
able apr1 might block a subsequent apr2 if AgClss(apr2) ⊆
AgClss(apr1).

2.4 Request and Invitation Protocols
Agent participation is negotiated through two protocols,

one for requesting agent participation (PReq) and another
for inviting agents (PInv). Both protocols must be executed
in parallel with the scene that originated the request for
agent participation.

Let us use the DAgent name for denoting the RD role,
call ReqAgent the role played by an agent requesting the
participation of other agents and call InvAgent the role that
an invited agent plays. Every agent in the institution must
be able to play ReqAgent and InvAgent roles, meanwhile
only one agent, AD, is allowed to play the role DAgent.

Figure 1 shows the sequence diagram for PReq between
DAgent and ReqAgent. Figure 2 depicts the automata de-
scribing the request protocol where letters on arrows rep-
resent valid sequences of illocutions taken from figure 1, as
well as the nested call to PInv.
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Figure 1: Sequence diagram for the request proto-
col.

Figure 2: Automata for the request protocol.

Figure 3 shows a sequence diagram with segments of PInv.
Figure 4 illustrates the automata describing the request pro-
tocol where letters on the arrows represent sequences of il-
locutions shown in Figure 3. PInv distinguishes between
invitations to current agents and the instantiation and invi-
tation of new agents. Figures are discussed below.

3. CASE STUDY
We used the Electronic Institution formalism for the au-

tomation of the auditing of an information repository. Sev-
eral kinds of autonomous agents and human users partici-
pate in this auditing process. The process is initiated by
external events and during its execution human interven-
tion might be required. Rather than waiting for human
users entry to the system, our approach enables autonomous
agents to request human participation in order to achieve
their goals.

A multiagent system for performing this auditing process
was implemented with the tools developed in the IIIA [5].
Experiments and the results obtained are described at the
end of this section.

3.1 Information Auditing
The information repository is managed by a RepGuardian

agent that monitors changes on the repository and initiates
the auditing process. The auditing process is driven by a
specialized agent Carrier, and with the participation of other
autonomous agents, Auditor and Corrector, as well as user
agents representing human experts and information authors.
A Carrier agent receives a notification about a record that
has been added or modified in the information repository.
The Carrier requests every available Auditor agent to check
the internal consistency of the repository with respect to the

Figure 3: Sequence diagram for the invitation pro-
tocol.

Figure 4: Automata for the invitation protocol.

auditing rules it knows. The Auditor agent responds to the
Carrier whether informing that the record and the reposi-
tory are consistent or returning a set of the inconsistencies
detected. The type of inconsistencies are either internal in-
consistencies of the record, or violations of rules defined for
the entire repository; for instance, duplicity of records.

The Carrier agent chooses between sending the record to
automatic correction with a Corrector agent, asking for ex-
pert assessment from a human expert, or notifying the au-
thor of the record of the possible inconsistency. The Cor-
rector agent can apply the correction procedure or ask for
expert assessment instead. In turn, the Expert user can
modify the record or notify to its author. At the end, the
decision made by the author is final. This decision model is
depicted on Figure 5.

In this scenario we can detect some cases where human

Figure 5: Decision model during information correc-
tion.
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users are not present in the system when their participation
is required. For instance, the user registering or modify-
ing the record might have left the system by the time an
inconsistency needs a final decision. Similarly, the expert
user may not be logged in the system when an inconsistency
is detected. A new auditing rule evaluated throughout the
repository might require the assessment of expert users or
users responsible for inconsistent records.

3.2 Implementing the auditing process
The process described above was specified with a per-

formative structure AuditingPS that contains protocols for:
triggering the auditing (NewInfo), detecting inconsistencies
(Auditing), performing the corrections (Correction) and in-
tegrating results on the repository (Audited). AuditingPS
and its protocols use the roles defined above: RepGuardian,
Carrier, Auditor, Corrector, Expert and Author. Using the
ABuilder tool [5], agent classes were generated for each role,
except for Expert and Author roles which shared the same
agent class, named UserAgent. Only the RepGuardianAgent
was classified as permanent; the rest of the agent classes
were considered transient.

It was possible to simulate the auditing of new pieces of
information registered in the repository with this implemen-
tation. The simulation required to have a fixed set of user
agents playing the roles of experts and authors for every
possible human user that could be required in the process.
Besides, every expert or author user participated in each
Correction scene.

Given that human users responses to a request made when
he/she was off-line might take entire days, the duration of
Correction scenes was limited by a timeout after which the
correction is considered to have failed. A User agent repre-
senting an expert or an author is not allowed to participate
on multiple scenes simultaneously; nevertheless it can ac-
cept invitations to other scenes until reaching a given limit
of invitations.

3.3 Implementing Agent Participation Request
The request for agent participation was implemented by

developing: 1) an additional performative structure con-
taining the protocols proposed in our approach, 2) the dis-
patcher agent, 3) an institutional service for instantiating
new agents, and 4) new functionality for previously defined
agent classes.

The new performative structure is assembled with four
protocols that enable agents to: 1) log in, 2) request agent
participation, 3) receive and answer invitations to scenes,
and 4) log out. AuditingPS was inserted in this performa-
tive structure indicating that every agent should pass by
the first three protocols before entering AuditingPS, hence
remaining active in request and invitation protocols. Fi-
nally, after leaving AuditingPS they should pass by the log
out scene. Protocols and roles specified in this performative
structure are defined in section 2.4.

The RepGuardian agent implemented the functionality of
the DAgent role with the characteristics described in section
2.2, the algorithm outlined on section 2.3 and the primitives
described in both sections.

Agents developed for AuditingPS were augmented with
the functionality of ReqAgent and InvAgent roles. A pa-
rameter on each agent class C denoted MaxInv(C) was set
to limit the maximum number of simultaneous invitations

Parameter Low High Critical
Feeding rate 40 sec. 10 sec. 10 sec.
Expert revision 2-5 sec. 2-5 sec. 2-5 sec.
Author revision 20-25 sec. 20-25 sec. 20-25 sec.
MaxAgs(Carrier) 10 10 10
MaxAgs(User) 10 10 5

Table 1: Experiment configurations.

an agent of this class can accept.

3.4 Experiments
To demonstrate the capabilities of the Dispatcher agent we

prepared a test-bed with the system described above. We
want to observe the capabilities of the DAgent for dispatch-
ing agents to scenes where human intervention is requested
and for detecting unsatisfiable requests. In order to do so,
we simulated different demand patterns on the system and
manipulated the maximum number of agents permitted. An
overloaded system is that in which information is fed faster
than users are able to revise it. Thus we provoked that cer-
tain scenes stalled due to the lack of enough agents for all of
them. Next we manipulated the maximal number of agents
in order to generate unsatisfiable requests.

We defined a single RepGuardian and constant popula-
tions of auditor and corrector agents. One Carrier agent was
instantiated for each information piece fed into the system.
User agents playing the role of Expert or Author are created
on demand up to a maximum of MaxAgs(User). The same
User agent representing a human user must participate in
all the scenes where the user intervention is requested and
it must wait to finish its work in a scene before proceeding
to the next.

Our focus was on the Correction protocol, whose deci-
sion model is shown in Figure 5 and is explained in section
3.2. In our experiments, the power for instantiating Cor-
rector agents was disabled, i.e. MaxAgs(Corrector) = 0.
In consequence, the dispatcher informs the Carrier of the
unfeasibility of requests for Corrector agents. Hence the
Carrier requests an expert who in turn calls one author for
correcting the record. In conclusion, every Correction scene
is initiated by one Carrier and requires the participation of
one expert and one author. All the agents remain in the
scene until this finishes. User agents were limited to accept
up to three invitations, i.e. MaxInv(User) = 3.

We prepared three system configurations. The first config-
uration gives us a reference of how the system would behave
under low demand. In the second we have an information
feeding rate higher than revision time, which we expect to
generate several stalled scenes. And the last configuration
has a reduced number of User agents for detecting unsatisfi-
ability of requests. Parameters for the three configurations,
labeled Low, High and Critical respectively, are shown in
Table 1.

3.5 Results
Using the configurations given above we ran experiment

rounds auditing 50 new information pieces in order to mea-
sure the behavior of agents and measure the performance
in the Correction scene. We observed the maximal number
of simultaneously stalled scenes, i.e. scenes in hold due to
a request for agents, and calculated the average conclusion
time for these scenes. Aditionaly, we observed the maximum
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Observation Low High Critical
Max. stalled scenes 2 7 10
Avg. scene time 30 sec. 61 sec. 197 sec.
Max. active Carriers 2 10 10
Max. active Users 2 10 5
Max. active Experts 1 5 4
Max. active Authors 1 6 2

Table 2: Experimental results.

number of concurrent Carrier and Users agents, as well as
the maximum simultaneous number of User agents playing
the Expert or Author role; recall that experts and authors
use the User agent class for participating in the system. Re-
sults for the three configurations are shown in Table 2.

The first configuration showed only one Correction scene
most of the time, and reached the maximum of two at some
point of the simulation. The number of simultaneously stalled
Correction scenes and Carrier agents is the same as long as
Carrier agents are in charge of creating the Correction scene.
Only one expert and one author were active in the system
at the same time, authors and expert were released once the
correction scene finished and were instantiated again when
a new Correction scene was generated.

In the second configuration the reduction on the feeding
rate produced more stalled scenes and a higher utilization
of agents. The maximal number of Carrier and User agents
was reached. This time the maximum number of stalled
scenes didn’t match the maximal number of Carriers agents
because they were busy participating in other scenes of the
auditing process. The average conclusion time for scenes
was doubled as long as busy experts kept in hold at most
two scenes meanwhile they were attending another scene.
Figure 6 shows the behavior of the population of Carrier
and User agents, broke down on Expert and Author roles,
for this configuration.

In the third configuration, after approximately twelve suc-
cessful evaluations the entire system stalled. At this point
we observed the five user agents playing the role of Expert
leaving no space for authors. Ten scenes were stalled, five
of which had an Expert agent and the other five had a sin-
gle Carrier agent waiting. In this case the dispatcher agent
was not capable of determining the unsatisfiability of the
requests for authors as long as it was expecting that some
User agent left the institution for instantiating an agent to
play the author role. The rest of the scenes made use of the
five available Expert agents not allowing the instantiation of
a new User agent for playing the role of Author. All these
scenes finished thanks to the timeout of 200 seconds, as can
be observed in the average termination time for these scenes.

This last scenario make us conclude that it was necessary
to reserve agent slots for authors in order to conclude the
scenes satisfactorily. Even when the participation of experts
and authors is not assured in all the scenes, we should be
capable of indicating it to the dispatcher agent in order to
prevent the deadlock.

4. DISCUSSION

Low-level services like the Directory Facilitator only an-
swer questions about the current set of agents in the system.
On agent platforms implementing this kind of services an
agent must search agents in term of the services they can

provide. For Electronic Institutions such service could rep-
resent playing a role at certain type of scene. Nevertheless,
the agent should be capable of negotiating the participation
of other agents directly with them. In our approach this ne-
gotiation is centralized and organized in the DAgent which
allows to detect unsatisfiable requests at some extent.

Another advantage of our approach is that populations
of agents can be adjusted on line according to the current
demand. This is possible thanks to the ability of transient
agents for leaving the institution when they are idle and to
the DAgent’s ability for instantiating agents when they are
required.

Another way of optimizing the system performance is us-
ing a well known protocol for resource allocation, the Con-
tractNet protocol [9]. ContractNet can be adapted for be-
ing used as agent request protocol. This can be done by
narrowing the signal task announcement to agents of class
C ∈ AgClss(apr) and making an analogy between invitation
acceptance and task assignment, where the task abstraction
would be expressed as playRoleIn(AG, R, S). The bid spec-
ification can include information about the time that would
take a bidder to get to the scene. Finally, every agent AGi

chosen from AccAgs(apr) receives an AWARD message for
playRoleIn(AG, R, S), and AGi is added to SelAgs(apr).
Agents making a bid for a task of this type commits since
that moment to attend to the scene if it is awarded.

5. CONCLUSIONS

We presented an approach for facilitating goal achieve-
ment by agents on an Electronic Institution. The type of
situations prevented are those where a missing agent pre-
vents the on-going execution of a protocol. Our approach
consists in introducing an agent that dispatches available or
new agents to those scenes.

We proposed necessary conditions for the instantiation of
agents to satisfy an agent participation request. Neverthe-
less, experiments showed that such conditions are not suffi-
cient when the scene requires the simultaneous participation
of further agents of the same class. More work on this direc-
tion is needed. Even though, agent instantiation controlled
by the DAgent showed its potential for optimizing dynami-
cally the populations of agents in the system.

Advantages of our approach were illustrated in an audit-
ing scenario with particular characteristics. For example,
the interaction was not initiated by human users but by au-
tonomous agents. As it was shown, our approach allowed
the participation of just the necessary agents on each scene
and avoided having idle agents in the system.

5.1 Future Work

The request protocol can be extended to deal with fu-
ture agent invitation and not just current invitations. By so
doing, we could prevent the deadlock of concurrent scenes.
Another option would be developing an algorithm for prun-
ing the directed cyclic graph representing an EI protocol or
scene. That would produce a reduced version of the protocol
when agents for certain role are missing. A pruned protocol
that doesn’t reach the final state would indicate an unsatis-
fiable scene execution. For instance, a Correction protocol
on which the participation of Corrector, Expert and Author
agents is pruned, could be detected a priori as unsuccessful.

An institutional model of public information for scenes
and agents can be used to improve our proposal. Public
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Figure 6: Agent populations on the high-demand configuration.

information of the scene and the participants may be used
by the DAgent to narrow the announcement task, and by
invited agents to calculate their bids for participating in a
scene. For example, a Corrector agent that knows a rule for
correcting inconsistencies of a single type, should be directed
only to scenes where an inconsistency of that type is being
corrected.

Agent descriptions formalized through a Description Log-
ics [3] system would allow the generation of agent profiles
describing the properties that potential participant agents
should have. For instance, knowing that there are three
auditing rules for the repository and that every Auditor
agent can only handle one single rule, the request for au-
ditor agents for all the type of auditing rules would generate
three agent profiles, one for each rule. An instance of each
profile would be enough for assuring a complete auditing of
each new record.
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