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Abstract. Wireless Sensor Networks when deployed in inaccessible or
remote areas require sensing and communication algorithms that min-
imise energy consumption. This is needed to reduce battery replacement
costs. At the same time, the information transmitted to the sink has to
be good enough in order to make timely decisions on the environmental
hazards being monitored. Sensor algorithms have to thus balance qual-
ity of information with energy consumption. We introduce in this paper
an algorithm that uses multiagent co-ordination technology to organize
the sensors in coalitions that share the burden of sensing and commu-
nicating. We provide experimental evidence of a good balance between
information quality and energy consumption on a simulated river pollu-
tion phenomenon.

Keywords: Wireless Sensor Networks, Sensor Coalitions, Resourse Sa-
ving Strategies.

1 Introduction

Wireless Sensor Networks (WSNs) are networks composed of battery-operated
sensing nodes that are often deployed in remote and hostile environments. The
cost of replacing or recharging their batteries can become astronomical and, quite
often, this is the reason that hinders their actual deployment. Sometimes, the
replacement of the batteries is simply not possible. As the phenomena to monitor
usually show large local variability, these networks have to be formed by a large
quantity of sensing nodes. Hence, the cost of each node has to be necessarily
low and therefore the battery has to be of limited capacity. AI techniques and
in particular Multiagent systems (MAS) techniques can help in reducing energy
consumption and thus enlarge the life span of these networks.

From a MAS perspective, agents co-operate within a group in order to share
resources or reach shared goals that cannot be achieved individually. A whole
range of different coalition formation (CF) mechanisms have been proposed for
different kinds of applications and network nodes. In this paper we propose a
new CF algorithm for homogeneous nodes in a sensor network that allows to
extend the useful life time of the network by avoiding redundant sensing and

C.I. Chesñevar et al. (Eds.): AT 2013, LNAI 8068, pp. 32–47, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



A Multi-agent Approach to Energy-Aware WSNs Organization 33

transmission. This CF algorithm is based on the nodes’ state and the conditions
of the environment. There is no intervention of any central authority and the
algorithm is fully distributed and embedded in the node’s behaviour. Saving en-
ergy is achieved by allowing nodes in a coalition to delegate their sensing tasks
to a distinguished member of the coalition, while restricting the maximum in-
formation loss, so that the initial purpose of the system: faithfully monitoring
the environment, is not missed. Although this CF algorithm has been originally
conceived for networks of homogeneous nodes, it could also work for heteroge-
neous networks as long as the elements can communicate among them as the
algorithm is based on individual knowledge and agents’ state. Nonetheless, the
performance of the algorithm would probably present higher variability due to
the particular characteristics of each of the nodes in the system.

Negotiation among nodes [1] or the individual adoption of a global policy [2]
have been considered to introduce CF techniques into distributed WSN. The
evolution of these coalitions have been studied based on different aspects of the
coalition, such as its members characteristics or the resulting performance [3–
5]. Differently from us, none of these approaches took into account the energy
consumption nor the cost derived from the rewiring policies.

Saving energy has been the focus of some clustering algorithms proposed for
WSNs, such as LEACH [6], EEHC [7] and HEED [8]. These algorithms divide the
sensor network into a set of non-overlapping clusters, each with a cluster head
in charge of sending the data collected within the group to the sink. Although
these approaches are distributed our approach fundamentally differs from them
in the way the cluster head is chosen. For this decision, we take into account the
characteristics of the node, its state and the model of the node maintained by its
neighbours, instead of doing it randomly or just based on the node’s available
energy, as previous works do. A recent centralised approach to this clustering
problem is presented in [9]. In this case, the sink determines the cluster heads
and runs an algorithm to reduce the amount of transmitted data. In contrast, in
our approach, nodes make autonomous decisions, thus reducing the coordination
communication costs to and from the sink.

Different approaches not based on coalitions have also been proposed in order
to extend WSNs’ lifetime. The work of [10] focuses on the individual nodes’
sampling regime, while the work of [11] reduces the energy consumption of the
system by improving the sensor node hardware and software design. However,
none of these works use coordination among the nodes in the system.

The rest of the paper is organized as follows. Section 2 introduces our al-
gorithm. The environment simulation model that we have used to test it is
described in Section 3. Section 4 presents the experimental results obtained and
finally, conclusions and future work are discussed in Section 5.

2 Algorithm Description

The standard behaviour of a sensor in a WSN consists of sampling the envi-
ronment according to a pre-established frequency and transmitting the data to
a server. This basic behaviour wastes energy when the environment does not
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change, and misses information when it changes quickly. The objective of the
Coalition Oriented Sensing Algorithm (COSA) proposed here is to radically im-
prove this situation as we explain next.

The core of COSA lies in the establishment of coalitions among nodes through
peer to peer negotiation. The resulting coalition structure depends at any time
on the network topology, the state of the nodes and the environment. As WSNs
are deployed in dynamic environments, coalitions’ configuration in the system
will change along time. The use and interpretation of the available information
for a node is the key activity of COSA.

2.1 COSA

COSA modifies the standard node sampling behaviour by making the node au-
tonomous, proactive and reactive. To achieve this behaviour, COSA relies on a
simple negotiation protocol and two functions modelling graded relationships: ad-
herence and leadership. The numerical degrees of these relationships determine the
asynchronous dialogue in which nodes engage when negotiating, and at the same
time the result of negotiationsmodify the numerical degrees of these relationships.

The basic idea of the algorithm is simple. When a node samples the environ-
ment, it sends the observed value to its neighbouring nodes. A node receiving
a sample from a neighbour uses this information to evaluate the adequacy of
forming a group. If this evaluation is positive, it tells the neighbour, who offers
itself to work for the two of them (assuming the role of leader of the coalition). If
they both agree one node becomes the leader while the other, called dependant,
can sleep and stop its sampling and sink transmission tasks. Therefore, simple
negotiations between neighbours situated one-hop distance away, lead the nodes
to select their preferred role and build a coalition structure in a bottom-up fash-
ion. Adopting the best system’s organization translates into energy savings by
avoiding unnecessary long-distance transmissions: those of the dependant nodes.

Algorithm 1 represents a simple view of the thread of action of a node imple-
menting COSA as explained above.

Algorithm 1. COSA: Node basic behaviour

while energy > 0 do1

environment sampling;2

environment model update;3

relationship to neighbours update;4

social network update;5

end6

Given a set of sensing nodes A, called agents henceforth, the value of the
functions adh : A×A → R and lead : A×2A → R changes along time depending,
among other factors, on the value of the observed variable by the agents. In this
work, we assume that the observed variable follows a Normal distribution, N ,
as this is a common model for natural phenomena observations [12].
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The adherence of an agent i to an agent j is a measure that indicates how
much agent i intends to take part of a group led by agent j. Its definition takes
into account the similarity between the values observed by the agents and, also,
how certain is j’s about its variable model (measured in terms of its entropy,
Hj). The more similar the values the more adherence and the more certain j is
about its monitored variable value the more adherence. These two multiplying
factors can be identified in equation (1).

adh(ai, aj) =
p(xi,Nj(x̄j , σj))

p(x̄j ,Nj(x̄j , σj))
·
(
1− eHj − eHmin

eHmax − eHmin

)
(1)

The evaluation of the leadership attitude, unlike the adherence, does not only
take into account the two negotiating agents. It also considers the relationships
previously established by the node offering itself as a leader. P (ai) represents the
set of nodes depending on ai, together with ai and the negotiating neighbour aj .
A good leader has to be a good representative of its neighbours and needs also
enough energy to sense and communicate with the sink. Thus, the willingness of
ai to act as a leader of P (ai) depends on three factors that can be identified in
equation (2). The first factor, prestige, is an average of the adherence level of the
members of P (ai) towards ai. The second factor, capacity, considers the available
energy of the node to act as a leader. This value is a proportion of the current
energy level of the node E(ai) minus the security energy level Esl (energy needed
to send the last disconnection message ) over the maximum energy level of the
battery Emax. Finally, the last factor, representativeness, indicates how well the
potential leader’s measurement fits as a representative of the potential group
nodes’ measurements. Thus, ai characterises the set of values received together
with its own value, that is, the set {x}P (ai), with their mean and standard
deviation, noted as (x̄P (ai), σP (ai)). To encourage the formation of groups with
very similar measurements, an exponential function establishes the divergence
growing ratio. Those potential groups whose measurement distribution is very
disperse are also penalized through the inclusion of the Pearson’s coefficient
(CVP (ai)) in the equation. Equation (2) presents the leadership capacity of an
agent ai for a potential group P (ai):

lead(ai, P (ai)) =

∑
aj∈P (ai)

adh(aj , ai)

|A| · E(ai)− Esl

Emax
· 1

e|xi−x̄P(ai)
|CVP (ai)

(2)

COSA is designed with a set of parameters that constraints the agent’s actions.
These parameters are: 〈dmax, σmin, σmax〉. The first one puts a limit on the
maximum difference between agents’ samples to allow establishing an adherence
relationship (‖xj − xi‖ ≤ dmaxσj). This maximum difference is proportional to
the neighbour’s σj to take into account the shape of its distribution. (σmin, σmax)
demand a level of certainty to the neighbour’s model of the environment. σmin

corresponds to very precise models whether σmax represents wider distributions
(correspondingly, entropy values of Hmin and Hmax). Evaluating adherence val-
ues to a neighbour whose variable’s model is over this range implies admitting
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Algorithm 2. Message Processing

Data: me: focus node; aj : generic neighbour; al: potential leader; ar: potential
dependant on me; ap: dependant node on me; aL: leader node of me;
D(me): set of dependant nodes on me

case rcvd(inform(aj ,me,meas, t))1

updateNeighbourInfo();2

adherence2NeighbourEvaluation();3

updateOwnMaxAdherence();4

if changesOnOwnMaxAdherence5

then
inform(me, al,maxAdh, t);6

end7

end8

case rcvd(inform(aj ,me,maxAdh, t))9

inform(me, ar, lead);10

updateNeighbourInfo();11

adherence2NeighbourEvaluation();12

updateOwnMaxAdherence();13

if changesOnOwnMaxAdherence14

then
inform(me, al,maxAdh, t);15

end16

end17

case rcvd(inform(al,me, lead))18

if checkAgainstOwnLead then19

firmAdherence(me, al);20

end21

end22

case rcvd(firmAdherence(ar ,me))23

if checkAgainstOwnLead then24

ackAdherence(me,ar);25

updateOwnLeadValue();26

updateDependentGroup();27

end28

end29

case rcvd(ackAdherence(al ,me))30

if !leader ∧ al! = aL then31

withdraw(me, aL);32

end33

if leader ∧D(me)! = ∅ then34

while D(me)! = ∅ do35

break(me, ap);36

end37

end38

updateRoleState(dependant);39

sleep(t);40

end41

case rcvd(break(aL ,me))42

updateRoleState(leader);43

end44

case rcvd(withdraw(ap ,me))45

D(me)← D(me)\ap;46

updateRoleState(leader);47

end48

dissimilar agents’ values in a coalition. This would imply larger errors at the sink
but larger and more stable coalitions (i.e. more energy savings).

Agents implementing COSA exchange information via performatives and us-
ing a classical alternating negotiation protocol. Figure 1 shows a simple example
of a negotiation between two agents that finishes in a group establishment. The
set of performatives considered is: inform, that indicates the transmission of
data; firmAdherence, that expresses the desire of the sending agent to adhere to
the addressee agent; ackAdherence, that is an acknowledgement to a previously
received firmAdherence message; break, that allows a leader agent to break a
leadership relationship and, finally, withdraw, which is the message sent by a
dependant agent to break a leadership relationship. All these performatives are
used in Algorithm 2. The meaning of each procedure is rather self-explanatory.

When a message is received, its processing implies the update of the inter-
nal model of the agent about its leadership value and about the model of the
agent sending the message. Depending on these updates, new messages can be
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Fig. 1. Negotiation protocol stages

transmitted back to the sender or to other agents in the network. The code
allows for the intermingling of dialogues with different neighbours.

2.2 COSA Strategies

We propose here two strategies that are used by COSA (in isolation or combined)
and that produce different CF behaviour. This change in behaviour influences
the balance between the energy consumption and the overall observation error
of a WSN. The strategies are:

– Sampling Frequency. This strategy alters the sampling frequency of the leader
agents based on the number of dependants. Specifically, the sampling fre-
quency doubles its value in a group with 4 or more components. The aim
of this simple adaptive sampling is to increase the reaction capacity of the
network, as agents will detect changes in the environment sooner.

– Coherence. This strategy checks whether the leadership of an agent is still
coherent with the last sampled values of the current members of the coalition.
The leader agent works for its group members. While they are asleep, the
leader samples the environment and updates its variable’s model. However, if
the current model differs from the model that the leader had when a member
of the coalition joined in, it is unclear whether the node in sleeping mode
would still be willing to stay within the coalition. Thus, when the difference
is significant enough, over a threshold VT , the leader proactively wakes up
the agent so that it can sample and decide again which coalition to join.
Drifts in the sensed values of a leader makes this agent wake its dependant
nodes as the coalition raison d’être (similarity of sampled values) may be
at stake. This behaviour makes the system react quicker to changes in the
environment.

Both strategies increase the sensing and thus the energy consumption with re-
spect to the basic COSA operation while still satisfying the main objective:
consuming energy only when that consumption keeps the error of the monitored
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variable under limits. The computational effort implied by these strategies is
negligible although certainly the number of messages exchanged and the num-
ber of sampling actions taken by leaders and coalition members grow. Despite
of this, these strategies increase the robustness of the algorithm as they allow
a quicker detection of nodes’ measurements deviation. These strategies do not
mend nodes’ malfunction, but they do reduce the effect that this can cause on
the system’s global error.

3 Simulation Model

To test our algorithm we have used the simulation environment RepastSNS [13].
It is an event-based simulator that, although being quite general, results specially
appropriate for the study of WSNs from a MAS perspective. One of the main
advantages of this environment is that it provides a scalable and extensible
infrastructure to build up networks of basic WSN components. Therefore, it
allows different application domains to be tested over it.

We consider a WSN deployed along a river, whose sensor nodes sample the
presence of hydrocarbons in the environment. The set of simulation elements in-
clude: a river and its water flow, pollutant releases, a set of sensing nodes and
a sink node. The river is a rectangular section 50 km long by 2 km wide repre-
sented as a discrete grid. The river flows according to the following expression:
River(x, y) = (1 − ρ)River(x, y) + ρ(α(River(x − 1, y − 1)) + β(River(x, y −
1)) + γ(River(x + 1, y − 1))), where ρ is the sedimentation factor and α, β, γ
determine the horizontal diffusion of pollutants.

The pollutant phenomenon considered in the simulation appears as an
intensity-oscillating stain near the sink. Its spewing pace follows a sine func-
tion and lasts for the whole simulation time. The pollutant spreads along the
river due to the river flow and can, therefore, be sensed by different nodes of the
WSN. Our sensor nodes satisfy the communication and processing properties
of actual Waspmote nodes [14]. In particular, we simulate Waspmote’s energy
consumption. Finally, the sink node represents the central monitoring station
that receives the information sent from the sensing nodes. It is situated at the
upstream extreme of the network.

To test the behaviour of the algorithm we assess its performance in two differ-
ent scenarios. In the first scenario, the network configuration consists of 50 nodes
that are evenly-spaced as a chain along the river. In this case, the network covers
the whole river. The second scenario shows a completely different configuration.
It consists of 30 nodes situated at the end of the river. Nodes are deployed in a
grid distribution of three nodes per row. The same horizontal distance between
each pair of nodes is also the distance between rows. This configuration shows
two important characteristics that differentiates it from the first scenario. First,
the energy cost of transmitting information to the sink increases, as all nodes
are at a considerable distance to the sink. Second, as nodes are situated near
each other, groups of a high number of nodes can be formed.

To completely define the experimental setup considered, Table 1 presents the
values assigned to the COSA algorithm parameters.
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Table 1. Parameter values

Parameter Value

Sampling frequency 10min

dmax 1.75

σmin 0.0005

σmax 6

Node sleep time 1day

VT 0.95

4 Experimental Results

To show the properties of COSA, we performed a set of experiments in the
scenarios described in Section 3. Our goal is to study the performance of a WSN
in terms of energy usage and accuracy of the data reported to the sink. We will
compare the behaviour of COSA using different strategies with the performance
resulting from a Random sampling schedule. According to a Random sampling
schedule, every agent takes a sample from the environment at a random time
instant within the sampling frequency and then, it transmits the observed value
directly to the sink.

To evaluate the energy consumption of the system, we compute the median
of the nodes’ energy values at every time instant. This measure gives information
on the number of nodes that are still alive in the network (with E(ai) > 0) and
also about their battery discharge pattern.

The quality of information is assessed using two measures: error and entropy.
The error is measured as the difference between the sink’s current known ob-
served value for each alive node and the actual pollution value —as we are
simulating, we know the exact value at any instant. The error measures how
wrong the sink is with respect to the actual situation in the river. It is computed
as:

et =
∑

i∈Nt

‖xsti − xpti‖ (3)

where N t ⊆ A represents the set of nodes that have not depleted their batteries
at time t; xsti, the value known by the sink for the pollutant level at node i at
time t and xpti is the actual level of the pollutant at time t and node i.

The information quality is computed as the addition of the entropy value
associated to every node in the network (computed according to Equation 4,
[15]). This entropy value increases with the time spent since a node’s last sam-
pling action.

Hi(t) = ln (σi(t) ·
√
2πe) (4)

The information of the sink is thus considered as the addition of the entropy of
the distributions of all nodes in the network, alive or dead. Being dead means
that the sink stops receiving information from the node and thus its distribution
should be that of complete ignorance —complete ignorance would equate to a
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flat distribution with a very large σ. We model this with a time decay function
over σi(t) as follows:

σi(t) =

{
σbot if t = ti
σbot +

et−ti

etmax · (σtop − σbot) if t 	= ti

where ti is the time instant of the last value received from node i; σbot is the
variance of the gaussian noise that the simulator adds to each sensor reading;
and σtop, in the order of 100σbot, represents a very large variance that models
maximum ignorance, i.e. a flat distribution. The parameter tmax is set to three
times the sampling period. Receiving no information from a node for this amount
of time would mean a node failure or a serious malfunction.

The following set of figures presents the results obtained for the evaluation
of these measurements in the previously described scenarios. Figures 2 and 4
summarise the percentage of gain obtained by COSA with respect to Random
sampling for scenarios I and II. We next explain how to interpret these numbers.

Fig. 2. COSA gains w.r.t. Random Sampling (Scenario I)

The vertical axis of Figure 2 identifies the particular instance of COSA: no
strategies (COSA), sampling frequency strategy (COSA-SF), coherence strategy
(COSA-C) and both strategies (COSA-SF+C). This figure corresponds to the
performance evaluation of COSA for the first simulation scenario, in which a set
of 50 nodes are deployed along the river course.

COSA shows the expected tradeoff between energy consumption and error.
Figure 2, shows how COSA causes the sink to have slightly higher errors (1.6%)
than the Random policy. However, this loss is compensated by a gain of 26% in
terms of energy consumption and of 39% with regard to entropy.

The evaluation of the error gain is based on the mean error value registered at
the sink. This gain is computed for a period of 100 days in which all the nodes in
the network are alive and outside the bootstrapping phase. We select as midpoint
of this period the time when the median of the random nodes’ energy reaches
0.5 value (see Figure 3(b)). At this point, both sampling policies are in the same
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conditions and the comparison is therefore fairer. Otherwise, any of the COSA
algorithms would be much better than Random because nodes live longer with
them. The shape of the error curves can be seen in Figure 3(a).

To compute the gains in terms of energy consumption and entropy, we select a
reference point at which we evaluate the difference in performance between both
policies. The reference point selected for the energy gain is the time when the
median of the nodes’ energy value reaches zero (Figure 3(b)). This timestamp is
interesting as it represents the moment at which half of the nodes in the network
have depleted their batteries. The reference point to evaluate the difference in
entropy is set to the time when the overall entropy reaches zero (see Figure
3(c). The gain says how much time in percentage an algorithm needs to ‘loose’
information, i.e. to increase the entropy to reach zero. Any other point could
have been equally interesting.

The first set of bars appearing in Figure 2 corresponds to the gain of COSA
algorithm with regard to Random sampling in scenario I. It clearly shows that
the adoption of COSA policy by the sensing nodes originates a little loss in the
accuracy of the information but also an important increase of the WSN life-span.
This life-span extension translates into a significant improvement of the quality
of the information, as nodes live longer. The extension of the life-span of the
network does not only represent a reduction of its battery replacement costs but
also an improvement of the system’s performance.

The results obtained when we use COSA with the sampling frequency strategy
are slightly different. In this case, we get an important improvement in the error
gain (reaching a value of almost 13.23%). This improvement comes at the cost of
more moderate gains in terms of energy savings and entropy (correspondingly,
values of 20% and 26%). Increasing the sampling frequency of the leaders allows
them to better follow the changes in the environment caused by the sinusoidal
pollutant, therefore committing less error. However, this extra effort in sampling
and transmitting originates lower energy and entropy gains when compared to
basic COSA.

The third set of bars represents the gains obtained when we compare Ran-
dom and COSA with the coherence strategy. COSA coherence outperforms the
sampling frequency strategy in terms of error gain (16.38%) but reports poorer
results performance in terms of energy and entropy (with corresponding values
of 5% and 8%). This result shows that this strategy, with the considered config-
uration parameters, is not the most convenient for a highly dynamic scenario,
as scenario I. The cost of breaking groups and initiating negotiations reduces
drastically the improvements in energy and entropy. Nonetheless, group disman-
tlement causes the nodes to sample the environment at the time this happens,
what explains the global committed error reduction.

The results obtained for the combination of both strategies (COSA-SF+C)
shows how the coherence strategy has a stronger impact on the combination than
the sampling frequency strategy. In this case, the error gain is almost the same
obtained as for COSA coherence alone. Error and entropy gains also present low
values (4% and 12% correspondingly). Therefore, the adoption of the combined
strategies does not seem convenient. COSA-SF+C and COSA-C give the best
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Fig. 3. Information error, Energy and Entropy performance in time for different COSA
strategies and Random (Scenario I)

performance in terms of error but at the cost of an important reduction in energy
and entropy gains. Hence, the characteristic trade-off of COSA renders its best
results for scenario I for COSA-SF strategy.

Figures 3(a) to 3(c) shows the evolution in time of the evaluation variables
(error, energy and entropy). These figures represent, for scenario I, the network
performance for each individual variable during its whole lifetime.

Figure 3(a) represents the error at the sink when agents implement the Ran-
dom policy and COSA-SF+C strategy. As the pollutant phenomenon has a peri-
odical behaviour and is present in the scenario for the whole simulation time, the
mean error value associated to the Random policy remains quite constant as long
as all nodes are alive. The corresponding curve associated to COSA-SF+C shows
more variability due to the group configuration and reconfiguration processes.

Figure 3(b) represents the median of the nodes’ energy values per week for
Random and COSA-SF strategy. It shows how half of the nodes deplete their
batteries by week 101 when using the Random policy, whereas this situation
is reached more than 25 weeks later for COSA-SF. Besides, COSA-SF allows
the network to keep a higher level of global energy. Its corresponding curve also
presents an increasing variance in time due to the influence of leaders’ positions
in the network —demanding different energy quantities when transmitting to
the sink.
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Fig. 4. COSA gains w.r.t. Random Sampling (Scenario II)

Figure 3(c) represents the overall entropy for scenario I, that is, the infor-
mation quality. The Random approach causes the entropy to deteriorate almost
at a constant pace since the first node’s battery depletion. The level of entropy
when using COSA is lower (i.e. better) during the whole system life-span. COSA
results in an evenly distributed nodes’ battery depletion, which allows the net-
work to offer a fairly good representation of the whole environment, for most of
its life time.

The results obtained for the application of COSA to the second scenario pro-
posed shows a quite different behaviour due to the specific characteristics of
this scenario already discussed. The first thing we notice is that none of COSA
strategies reaches a positive gain value for the error measurement. As it occurred
for scenario I, the error gain obtains its worst value for the application of COSA
policy and its best one for the combination of COSA and its two strategies
(COSA-SF+C). The energy measurement shows the opposite behaviour giving
the best result for COSA policy and the worst for COSA-SF+C. The relationship
between the energy and the entropy measurement also changes in this scenario
with regard to the first one. In this case, the entropy gain obtained for one of
the COSA strategies is always lower than its corresponding energy gain. This is
due to the specific network depletion pattern, as we will explain later.

In the scenario II composed of 30 nodes situated far from the sink, the error
gain obtained for the network when it implements COSA strategy has a value
of -103.3%. That is, a loss of 100% representing that the application of COSA
doubles the error committed by the nodes with regard to the random sampling
scheme. Therefore, favouring the formation of bigger groups in this scenario
implies sending information to the sink on behalf of nodes that are poorly rep-
resented by their leaders. On the other hand, this high loss in error comes with
high values for the energy and entropy gains. The same grouping phenomenon
originates high energy savings that render an energy gain of 69.31% and an
entropy gain of 55.31%.

The gain values obtained for the adoption of COSA with sampling frequency
strategy shows a very little improvement in terms of the error gain and also, a
little detriment of the energy and entropy gains. The error loss is still over 100%
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(specifically 101.58%) while the energy gain reduces its value to 51.92% and the
entropy to 41.98%.

As occurred for the scenario I, COSA coherence strategy causes an important
improvement in the error loss, almost dividing its value by 2. The error gain for
this strategy and this scenario reaches a value of -59.77%. But, opposite to the
what occurred with the energy and entropy gain, that also suffered an important
decrease, in this case the corresponding energy gain is 53.94% and the entropy
gain is 40.83%. This is due to a quick group reconfiguration process in which
nodes find a new appropriate distribution.

Finally, the combination of both strategies results in the highest error gain
(-49.14%) and the lowest energy and entropy gains (38.8% and 28.27% corre-
spondingly). Once again, the trade-off between energy consumption and accu-
racy of the information reported to the sink appears for every COSA strategy.
And, for this scenario II, we can observe how we are able to extend the network
life-time over 60% with regard to the Random sampling strategy at the cost of
admitting twice the error reported by the Random schedule.

Figures 5(a) to 5(c) shows the performance of the network corresponding to
the second scenario in terms of the error reported by the system, the remaining
energy of the nodes and the overall entropy level of the network.

Figure 5(a) shows the network mean error per unit time for COSA-SF+C
strategy and Random scheme. As in Figure 3(a), the reported error by the Ran-
dom sampling policy shows a stable pattern. The specific situation of the nodes
far from the sink and also far from the pollution source, together with the char-
acteristic river flow, makes the pollution stain effects smoother, which explains
the lower error committed by nodes adopting the random sampling policy. The
application of COSA-SF+C strategy, after an initial phase, also returns a quite
stable error pattern, although with higher variability around 0.065. The median
of the remaining energy per node per unit time measures the available energy in
the system. Figure 5(b) represents the value of this variable for COSA-SF and
Random strategies. This figure shows clearly the improvement derived for the
characteristic grouping scheme, as the temporal point when half of the nodes
implementing COSA-SF have no energy is reached around 40 weeks later than
for random nodes. The life-span of the network for scenario II is also lower than
for scenario I. In this case, as all the nodes are situated at a considerable distance
to the sink, the demands of energy for information transmission to this element
are also higher. The tight grid distribution of the nodes for this scenario implies
also low variance for the energy of COSA-SF (as whichever node is the leader,
the energy needed to transmit to the sink is almost the same); and a steeper
nodes’ death pattern. This phenomenon can be observed in Figure 5(c).

Figure 5(c) presents the overall entropy for scenario II. The strategies con-
sidered in this figure are COSA and Random. The Random approach shows the
same behaviour pattern as for scenario I (see Figure 3(c)). However, the en-
tropy value per week obtained for the application of COSA to the network in
this scenario shows how the highest (worst) value of entropy is reached over 25
weeks later. That is, the extesion of the network life-span directly causes having
information from the environment available for longer time. Another difference
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(a) Information error: COSA-SF+C
and Random.
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(b) Median remaining energy: COSA-
SF and Random.
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(c) Overall entropy level: COSA and
Random.

Fig. 5. Information error, Energy and Entropy performance in time for different COSA
strategies and Random (Scenario II)

between this figure and its corresponding one for the first scenario refers to the
slope of the curve, higher than in the previous case. This also reflects the deple-
tion pattern of nodes’ batteries in this case and justifies always obtaining lower
entropy gains than energy gains for this second scenario, as shown in Figure 4.

5 Conclusions and Future Work

In this paper we have introduced the COSA algorithm and have given experimen-
tal evidence of its computing properties for a particular scenario. This algorithm
uses Multiagent systems technology to make WSNs self-configurable at run time.
That is, WSNs are able to self-organize in order to adapt the energy consump-
tion to the changes of the environment while fulfilling their sampling objectives
in terms of the quality of the reported information. COSA innovates by reaching
this objective via a peer to peer negotiation protocol, that results in a global
organization producing a network-wide benefit. To attain a good group configu-
ration the algorithm relies on the node local information about its environment
state and neighbouring nodes. This information together with the appropriate
COSA parameter configuration leads to the formation of groups of nodes that
act as a single entity, avoiding redundant sensing and transmissions efforts. The
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results obtained by the experimentation showed how a sensor network whose
nodes implement COSA can adapt to different performance requirements reach-
ing a balance between the energy consumed by the system and the quality of
the information reported.

As future work, we plan to test the behaviour of COSA and the different
strategies in scenarios showing different dynamic behaviours and different net-
work topologies. From this study we expect to lay out the impact of the different
COSA’s parameters on the overall network performance. This will fully charac-
terise the algorithm and will allow to establish guidelines on how to use it on
different environment monitoring situations.
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