
Information Sciences 227 (2013) 43–59
Contents lists available at SciVerse ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins
Resolution procedures for multiple-valued optimization q
0020-0255/$ - see front matter � 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.ins.2012.12.004

q Research partially supported by the Ministerio de Economía y Competividad research projects ARINF TIN2009-14704-C03-01, TASSAT TIN201
C04-01/03/04, and Newmatica INNPACTO IPT-2011-1496-310000 (funded by MICINN until 2011).
⇑ Corresponding author.

E-mail addresses: carlos@diei.udl.cat (C. Ansótegui), bonet@lsi.upc.edu (M.L. Bonet), levy@iiia.csic.es (J. Levy), felip@iiia.csic.es (F. Manyà).
URLs: http://www.lsi.upc.edu/~bonet (M.L. Bonet), http://www.iiia.csic.es/~levy (J. Levy).
Carlos Ansótegui a, María Luisa Bonet b, Jordi Levy c, Felip Manyà c,⇑
a Computer Science Department, Universitat de Lleida (UdL), Jaume II, 69, 20001 Lleida, Spain
b Department of Llenguatges i Sistemes Informàtics (LSI), Universitat Politècnica de Catalunya (UPC), Jordi Girona, 1-3, 08034 Barcelona, Spain
c Artificial Intelligence Research Institute (IIIA), Spanish Scientific Research Council (CSIC), Campus UAB, 08193 Bellaterra, Spain
a r t i c l e i n f o

Article history:
Received 16 May 2011
Received in revised form 19 October 2012
Accepted 2 December 2012
Available online 14 December 2012

Keywords:
Multiple-valued logics
Signed logic
Resolution
Optimization
Maximum satisfiability
a b s t r a c t

Signed clausal forms offer a suitable logical framework for automated reasoning in multi-
ple-valued logics. It turns out that the satisfiability problem of any finitely-valued propo-
sitional logic, as well as of certain infinitely-valued logics, can be easily reduced, in
polynomial time, to the satisfiability problem of signed clausal forms. On the other hand,
signed clausal forms are a powerful knowledge representation language for constraint pro-
gramming, and have shown to be a practical and competitive approach to solving combi-
natorial decision problems.

Motivated by the existing theoretical and practical results for the satisfiability problem
of signed clausal forms, as well as by the recent logical and algorithmic results on the Bool-
ean maximum satisfiability problem, in this paper we investigate the maximum satisfiabil-
ity problem of propositional signed clausal forms from the logical and practical points of
view. From the logical perspective, our aim is to define complete inference systems taking
as a starting point the resolution-style calculi defined for the Boolean CNF case. The result
is the definition of two sound and complete resolution-style rules, called signed binary res-
olution and signed parallel resolution for maximum satisfiability. From the practical per-
spective, our main motivation is to use the language of signed clausal forms along with
the newly defined inference systems as a generic approach to solve combinatorial optimi-
zation problems, and not just for solving decision problems as so far. The result is the
establishment of a link between signed logic and constraint programming that provides
a concise and elegant logical framework for weighted constraint programming.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Multiple-valued logics are one of the central areas of non-classical logic. Apart from philosophical, linguistic, and math-
ematical motivations for their investigation, they have found many applications in computer science and artificial intelli-
gence [19]. In particular, signed logics have shown to be a formalism particularly well-suited for automated reasoning
[14,15,28], and a powerful knowledge representation language for constraint programming [3,6,21].

In this paper we focus on propositional signed clausal forms [5], which are sets of clauses that use a generalized notion of
literal, called signed literal. A signed literal is an expression of the form S: p, where p is a propositional variable and S, its sign,
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is a subset of a domain N. Informally, S: p is true if p takes one of the values in S. As in the Boolean case, conjunction is inter-
preted with the minimum function and disjunction with the maximum function.

Signed clausal forms are well-known because the satisfiability of any finitely-valued propositional logic, as well as of cer-
tain infinitely-valued logics, can be easily reduced, in polynomial time, to the satisfiability problem of signed clausal forms
[4,16,17]. This is important because it avoids the development of a devoted satisfiability solver for every multiple-valued
logic. On the other hand, signed clausal forms are a simple and expressive language for encoding combinatorial decision
problems, and count with competitive satisfiability testing algorithms that extend the techniques developed for Boolean
CNF formulae with a very low overhead, but with the advantage of exploiting the structure of domains as in constraint pro-
gramming [3,6,21,27].

Given the important results and applications achieved with the study of the satisfiability problem of signed clausal forms,
our goal here is to investigate the corresponding maximum satisfiability problem from both a logical and a practical point of
view. From the logical perspective, our main motivation is to define complete resolution-style calculi taking as a starting
point the calculi defined for the maximum satisfiability problem of Boolean CNF formulas (MaxSAT) [8,26]. From the prac-
tical perspective, our main motivation is to use signed clausal forms as a language for solving combinatorial optimization
problems, and not just for solving decision problems as so far. Our approach will rely on encoding combinatorial optimiza-
tion problems as instances of the maximum satisfiability problem of signed clausal forms, and use the defined logical calculi
to derive an optimal solution of the original problem. Interestingly, we will uncover the link between our approach and the
weighted constraint programming approach developed in the constraint programming community to deal with soft con-
straints [29]. As we will see, signed clausal forms equipped with inference rules for the maximum satisfiability problem pro-
vide a concise and elegant logical framework for weighted constraint programming. They allow to formally define and
analyze both global and local consistency properties in a natural way.

The contributions of the paper may be summarized as follows: In Section 2 we define signed clausal forms, and the cor-
responding notions of satisfiability and maximum satisfiability. In Section 3 we define two resolution-style rules, called
signed MaxSAT binary resolution and signed MaxSAT parallel resolution. In Section 4 we prove that these rules are sound
and complete for the maximum satisfiability problem of signed clausal forms. In Section 5 we establish a link between
signed logic and weigthed constraint programming: Section 5.1 defines the weighted constraint satisfaction problem
(WCSP) and its encoding as an instance of the signed maximum satisfiability problem. Section 5.2 describes a new complete
algorithm for solving WCSP, that we can extract from the completeness proof of the new signed inference systems. Section
5.3 defines a restriction and a generalization of the signed MaxSAT parallel rule called, respectively, signed MaxSAT i-con-
sistency resolution and signed MaxSAT (i, j)-consistency resolution. These rules have the following property: if a WCSP
signed encoding is closed under signed MaxSAT i-consistency, then the corresponding WCSP is i-consistent, and if it is closed
under signed MaxSAT (i, j)-consistency, then the WCSP is (i, j)-consistent. Section 5.4 describes an algorithm that applies
directional soft consistency with the previous rules, and enforces directional i-consistency. Finally, we give some concluding
remarks.

The present paper extend the results of two conference papers [1,2]. The additional results included here are: (a) many
more examples to understand the complete inference rules; (b) a characterization of a collection of complete rules of infer-
ence of WCSP (see Corollary 22); (c) the analysis of the algorithm to enforce directional i-consistency; (d) introduction of
weights in the inference rules to be able to work with the weighted format (see Definitions 10 and 11).
2. Signed clausal forms

Next we will give the basic definitions of a signed CNF formula and the corresponding notions of satisfiability and max-
imum satisfiability.

Definition 1. Given a propositional variable p, its domain dðpÞ is a non-empty finite set dðpÞ ¼ fi1; i2; . . . ; ing of truth values.
A sign of a variable is a subset S # dðpÞ of its truth values.
A signed literal is an expression of the form S: p, where p is a propositional variable and S is a sign of p.
The complement of a signed literal S: p is defined as S : p ¼ ðdðpÞ n SÞ : p.
A signed clause is a disjunction of signed literals. The empty clause, denoted by �, is a disjunction of zero literals.
A signed CNF formula is a multiset of signed clauses. The empty multiset of clauses is denoted by ;.
A weighted signed clause is a pair C;w where C is a signed clause and w 2 N. A weighted signed CNF formula is a multiset of

weighted signed clauses.
Definition 2. An assignment for a signed CNF formula is a mapping that assigns to every propositional variable an element of
the truth value set.

An assignment I satisfies a signed literal S: p iff IðpÞ 2 S, satisfies a signed clause C iff it satisfies at least one of the signed
literals in C, and satisfies a signed CNF formula C iff it satisfies all clauses in C.

A signed CNF formula is satisfiable iff it is satisfied by at least one assignment; otherwise it is unsatisfiable.



C. Ansótegui et al. / Information Sciences 227 (2013) 43–59 45
Definition 3. The cost of an assignment for a signed CNF formula is the number of clauses not satisfied by the assignment.
The cost of an assignment for a weighted formula is the sum of the weights of the falsified clauses.

The Signed MaxSAT Problem for a signed CNF formula consists in finding an assignment that minimizes the number of
falsified signed clauses, i.e. an assignment with minimal cost. Such an assignment will be called optimal assignment and its
cost, the optimal cost.
Definition 4. A minimal unsatisfiable core of a signed CNF formula C is any unsatisfiable subset C0 of C such that, if we
remove any clause C 2 C0, then C0 n fCg is satisfiable.
3. Inference rules for signed MaxSAT

We start by recalling two complete inference rules for solving the satisfiability problem of signed CNF formulae: the first,
called signed binary resolution, is a straightforward generalization of the SAT resolution rule. The second is called signed
parallel resolution [15].

Second, we give two complete rules for solving the signed MaxSAT problem. The first one, called signed MaxSAT binary
resolution, is the natural extension to signed MaxSAT of the signed binary resolution rule. The second one, called signed
MaxSAT parallel resolution, is the extension of the signed parallel resolution rule.

Signed binary resolution and signed parallel resolution for the signed SAT problem are defined as follows [15,18]:
Signed binary resolution:
Signed parallel resolution:
In the above inference systems we assume w.l.o.g. that every variable in a clause appears only once, collapsing different
occurrences of a literal with the same variable by computing the union of the signs.

Example 5. Given the set of variables X ¼ fx1; x2; x3g with domains dðx1Þ ¼ dðx2Þ ¼ dðx3Þ ¼ fa; b; cg, the following are
examples of the application of the signed binary and parallel resolution rule (with x1 as the resolving variable):

Signed binary resolution:
Signed parallel resolution:

Next we define the signed MaxSAT counterparts of the previous rules. The first thing to notice about the new rules—which

can be seen as extension of the Boolean MaxSAT resolution rule [8,23] to the signed framework—is that we substitute pre-
mises by conclusions rather than just adding the conclusions. This is necessary to make the rule sound in the optimization
context. We will show that the formula formed by the conclusions of the rules have the same optimal cost as the formula
formed by the premises. If we replace the premises by the conclusions, then the optimal cost of the formula is preserved, but
this does not hold if we simply add the conclusions without erasing the premises.

The first rule was defined and proved sound and complete in [2].
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Definition 6. The signed MaxSAT binary resolution rule is defined as follows:
This inference rule is applied to multisets of clauses, and replaces the premises of the rule by its conclusions.
We say that the rule resolves the variable x, and x is called the resolving variable.
The tautologies concluded by the rule like N : x _ A are removed from the resulting multiset. Also we can substitute

clauses like S : x _ S0 : x _ A by ðS [ S0Þ : x _ A, and clauses like ; : x _ A by A. Next we see an example of the use of the rule.
For the sake of space, we can use the following more compact representation:
Notice that B where B is a disjunction of signed literals is not in CNF. Thus, an expression of the form D _ E, where D is a
disjunction of signed literals and E is the disjunction of signed literals e1 _ . . . _ et , should be replaced by the following equiv-
alent set of clauses:
D _ e1

D _ e1 _ e2

..

.

D _ e1 _ . . . _ et�1 _ et
The second inference rule is the one that corresponds to the signed parallel resolution rule in the signed MaxSAT frame-
work. It was first defined in [1].

Definition 7. The signed MaxSAT parallel resolution rule is defined as follows:

Tk
where Di is a disjunction of signed literals, and i¼1Si ¼ ;. We call x the resolving variable.
As we will see later, the application of this rule corresponds to k� 1 applications of the signed MaxSAT binary

resolution rule, which is the argument for the soundness of the rule. However, in this case we require the inter-
section of the signs of the resolved variable to be empty. As proved in Theorem 21, this additional restriction
does not invalidates completeness. The restriction leads the resolution process to the elimination of the resolved
variable.

We could use an alternative definition of this rule. The only difference would be that instead of requiring that
Tk

i¼1Si ¼ ;, we would require that fS1 : x; . . . ; Sk : xg should be a minimal unsatisfiable core. This restriction ensures that
the set of clauses used in the premise is minimal. Next we will prove that all these versions of the rule are sound and
complete.
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Example 8. For three premises, the signed MaxSAT parallel rule has the following form:
where S1 \ S2 \ S3 ¼ ;
Example 9. Given the set of variables X ¼ fx1; x2; x3g with domains dðx1Þ ¼ dðx2Þ ¼ dðx3Þ ¼ fa; b; cg, the following are exam-
ples of the application of the two previous signed MaxSAT resolution rules (with x1 as the resolving variable):

Signed MaxSAT binary resolution:
Signed MaxSAT parallel resolution:

Notice that many of the conclusions are tautologies, and according to the definition of the rules we can remove them. This

means that a potentially significant number of the conclusions will not appear.

Now, we introduce the weighted versions of the signed MaxSAT binary and parallel resolution rules.

Definition 10. The weighted signed MaxSAT binary resolution rule is defined as follows:
where A and B are disjunctions of signed literals, w1 (w2) denotes the weight of the first (second) clause, and

wmin ¼ minðw1;w2Þ.

We call x the resolving variable.
Definition 11. The weighted signed MaxSAT parallel resolution rule is defined as follows:



where Di is a disjunction of signed literals,
Tk

i¼1Si ¼ ;;wi denotes the weight of the ith clause, and wmin ¼ minðw1; . . . ;wkÞ. We

call x the resolving variable.
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4. Soundness and completeness

In the context of MaxSAT rules, a rule is sound if the number of unsatisfied clauses in the premises coincides with the
number of unsatisfied clauses in the conclusions for every truth assignment. Recall that applying a rule amounts to replacing
the premises by the conclusions.

Theorem 12. The signed MaxSAT binary resolution rule is sound.
Proof. Let I be an arbitrary assignment. There are four cases:

1. If I falsifies the two premises, then I also falsifies the first two conclusions, and only them.
2. If I satisfies the two premises, then it also trivially satisfies the last sþ t clauses of the conclusion, because they are either

implied by one or the other premise. The second clause of the conclusion is implied by each one of the premises. There-
fore, it is also satisfied by I.
The first clause of the conclusion is not implied by the premises. However, if both premises are satisfied then we have two
cases. If S : x and S0 : x are both satisfied, then so it is ðS \ S0Þ : x. Otherwise, either some ai’s or some bj’s is satisfied, thus
also the first clause of the conclusion.

3. If I satisfies the first premise, but not the second one, then the second clause of the conclusion as well as the t following
clauses are satisfied, because all them are implied by the first premise.
For the rest of conclusions, there are two cases: If some of the ai’s is satisfied, then let i be the index of such a. The assign-
ment will satisfy the first clause of the conclusion and the last s conclusions, except S0 : x _ b1 _ . . . _ bt _ a1 _ . . . _ ai�1 _ ai

that is falsified. Otherwise none of the ai’s is satisfied, and therefore, S : x is satisfied. Hence, the first conclusion is falsified,
and the last s conclusions are satisfied.

4. If I satisfies the second premise, but not the first one, the situation is analogous to previous case. h

We next prove that signed MaxSAT parallel resolution is a sound inference rule.

Definition 13. A rule R is a derived rule from a inference system, if the conclusion of R can be obtained from the premises of
R using several steps of the inference system.

Theorem 14. The signed MaxSAT parallel resolution rule is a derived rule from the signed MaxSAT binary resolution rule.
Proof. We will show that given the initial k premises, the multiset of conclusions can be obtained by exactly k� 1 applica-
tions of signed MaxSAT binary resolution. The first application is on the first two premises. Then, for the l-th application,
2 6 l 6 k� 1, one of the premises is the l + 1st premise, Slþ1 : x _ Dlþ1, and the second premise is the first conclusion of the
previous step, S1 \ . . . \ Sl : x _ D1 _ . . . _ Dl. Then we replace these two premises by the following conclusions:
S1 \ . . . \ Slþ1 : x _ D1 _ . . . _ Dlþ1

ðS1 \ . . . \ SlÞ [ Slþ1 : x _ D1 _ . . . _ Dlþ1

ðS1 \ . . . \ SlÞ : x _ D1 _ . . . _ Dl _ Dlþ1

Slþ1 : x _ D1 _ . . . _ Dl _ Dlþ1
Notice that in the next step the second premise will be the first clause of the above conclusions. The first conclusion of the
last step will be S1 \ . . . \ Sk : x _ D1 _ . . . _ Dk. Since S1 \ . . . \ Sk ¼ ;, the last application of the rule produces as a first con-
clusion D1 _ . . . _ Dk. h
Theorem 15. The signed MaxSAT parallel resolution is sound.
Proof. We obtain the soundness of the rule noting that it is a derived rule of signed MaxSAT binary resolution. h

We will prove first the completeness of the parallel signed MaxSAT rule. The completeness of the signed MaxSAT rule will
follow from Theorem 14 and the completeness of the parallel rule.

The completeness of the rule is similar to the arguments of [1,2,7]. In order to prove the result, we need some definitions
and lemmas.

The first definition is the notion of saturation. This notion captures the idea that if a multiset of clauses C is saturated w.r.t.
a variable x, then it does not make sense to keep applying the resolution rule with x as the resolving variable, either because
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the supports of x do not have an empty intersection (therefore the rule could not be applied) or the first clause of the con-
clusion is a tautology.

Definition 16. A multiset of clauses C is said to be saturated with respect to x if for every subset of clauses
fS1 : x _ D1; . . . ; Sm : x _ Dmg# C, it holds that either S1 \ � � � \ Sm – ; or there exist literals Si1 : y 2 Di1

; . . . ; Sil
: y 2 Dil

; l 6 m,
such that Si1 [ � � � [ Sil ¼ N.

A multiset of clauses C0 is a saturation of C w.r.t. x if C0 is saturated w.r.t. x and C‘xC0, i.e. C0 can be obtained from C applying
the inference rule resolving x finitely many times.
Lemma 17. Let E be a saturated multiset of clauses w.r.t. x. Let E0 be the subset of clauses of E not containing x. Then, any assign-
ment I satisfying E0 (and not assigning x) can be extended to an assignment satisfying E.
Proof. We have to extend I to satisfy the whole E. In fact we only need to set the value of x. Let us partition the multiset
(E � E0) (multiset of clauses that contain the variable x) into two multisets: ðE � E0ÞT the multiset already satisfied by I,
and ðE � E0ÞF the multiset such that the partial assignment I does not satisfy any of the clauses.

Let ðE � E0ÞF ¼ fS1 : x _ D1; . . . ; Sk : x _ Dkg. Since E is saturated, either S1 \ � � � \ Sk – ; or D1 [ � � � [ Dk is a tautology. If
S1 \ � � � \ Sk – ;, we extend I with a value inside the intersection. If S1 \ � � � \ Sk ¼ ;, then D1 [ � � � [ Dk is a tautology. Then,
there exist Si1

: y 2 Di1 ; . . . ; Sil : y 2 Dil ; l 6 m, such that Si1 [ � � � [ Sil ¼ N. Then, I satisfies one of these literals and the
corresponding clause. So, some of the clauses are not in ðE � E0ÞF . Contradiction. h

Another ingredient of the proof is showing that the procedure of applying inference until saturation terminates. For that
we need to define the notion of characteristic function of a multiset of clauses.

We assign a function P : f0;1g ! f0;1g to every signed literal, a function P : f0;1gn ! f0;1g to every clause, and a func-
tion P : f0;1gn ! N to every multiset of clauses as follows.

Definition 18. The characteristic function of a signed literal L ¼ fi1; . . . ; img : x is PLðxÞ ¼ ð1� fi1g : xÞ � � � ð1� fimg : xÞ.
Definition 19. For every clause C ¼ L1 _ . . . _ Ls we define its characteristic function as PCð~xÞ ¼ PL1 ðx1Þ � � � PLs ðxsÞ.
For every multiset of clauses C ¼ fC1; . . . ;Cmg, we define its characteristic function as PC ¼ Rm

i¼1PCi
ð~xÞ.

Notice that for every assignment I ; PCðIÞ is the number of clauses of C falsified by I .
Also notice that the set of functions f0;1gn ! N, with the order relation: f 6 g if for all~x; f ð~xÞ 6 gð~xÞ, defines a partial or-

der between functions. The strict part of this relation, i.e. f < g if for all ~x, f ð~xÞ 6 gð~xÞ and for some ~x, f ð~xÞ < gð~xÞ, defines a
well-founded order.

Lemma 20. For every multiset of clauses C and every variable x, there exists a multiset C0 such that C0 is a saturation of C w.r.t. x.
Proof. By the soundness of the signed MaxSAT parallel resolution rule, every application of the rule replaces a multiset of
clauses by another with the same characteristic function. But if we only look at the multisets containing the variable x, the
characteristic function strictly decreases. This is because the first clause of the conclusion of the application of the rule does
not contain the variable x and since it is not a tautology, its characteristic function is strictly greater than zero. Therefore
when we apply the rule the characteristic function of the multiset of conclusions eliminating the first clause is strictly smal-
ler than the characteristic function of the premises. h

Now we are ready to state and prove the proof of completeness.

Theorem 21. Signed MaxSAT parallel resolution is complete; i.e., for any multiset of clauses C, we have
C ‘ �; . . . ;�|fflfflfflfflffl{zfflfflfflfflffl}m;D
where D is a satisfiable multiset of clauses, and m is the minimum number of unsatisfied clauses of C.
Proof. This part of the completeness proof is identical to the corresponding proof for the MaxSAT rule [7,8]. Let x1; . . . ; xn be
any list of the variables of C. We construct two sequences of multisets C0; . . . ; Cn and D1; . . . ;Dn such that

1. C ¼ C0,
2. for i ¼ 1; . . . ;n; Ci [ Di is a saturation of Ci�1 w.r.t. xi, and
3. for i ¼ 1; . . . ;n; Ci is a multiset of clauses not containing x1; . . . ; xi, and Di is a multiset of clauses containing the variable xi.

By Lemma 20, this sequences can effectively be computed: for i ¼ 1; . . . ;n, we saturate Ci�1 w.r.t. xi, and then we partition
the resulting multiset into a subset Di containing xi, and another Ci not containing this variable.
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Notice that, since Cn does not contain any variable, it is either the empty multiset ;, or it only contains (some) empty
clauses f�; . . . ;�g.

Now we are going to prove that the multiset D ¼
Sn

i¼1Di is satisfiable by constructing an assignment satisfying it. For
i ¼ 1; . . . ;n, let Ei ¼ Di [ . . . [ Dn, and let Enþ1 ¼ ;. Notice that, for i ¼ 1; . . . ;n,

1. the multiset Ei only contains the variables fxi; . . . ; xng,
2. Ei is saturated w.r.t. xi, and
3. Ei decomposes as E i ¼ Di [ E iþ1, where all the clauses of Di contain xi and none of Eiþ1 contains xi.

Now, we construct a sequence of assignments I1; . . . ; Inþ1, where Inþ1 is the empty assignment, hence satisfies Enþ1 ¼ ;.
Now, Ii is constructed from Iiþ1 as follows. Assume by induction hypothesis that Iiþ1 satisfies Eiþ1. Since Ei is saturated
w.r.t. xi, and decomposes into Di and Eiþ1, by Lemma 17, we can extend Iiþ1 with an assignment for xi to obtain Ii satisfy
Ei. Iterating, we get that I1 satisfies E1 ¼ D ¼

Sn
i¼1Di.

Concluding, since by the soundness of the rule (Theorem 15) the inference preserves the number of falsified clauses for
every assignment, m ¼ jCnj is the minimum number of unsatisfied clauses of C. h

In fact, our result is stronger than the statement of the previous theorem, because it characterizes a family of complete
rules:

Corollary 22. Any sound resolution rule for signed MaxSAT, that is applicable when it is not saturated under some variable and
that contains a non-tautological resolvent in which the resolving variable does not appear is complete.

The signed MaxSAT binary resolution rule is also complete. This fact does not follow from the previous corollary since the
rule does not have a resolvent in which the resolving variable does not appear. The completeness follows from the fact that
the signed parallel MaxSAT resolution rule is a derived rule of the signed MaxSAT binary resolution rule.

Theorem 23. The signed MaxSAT binary resolution rule is complete.
5. Linking signed logic and weighted constraint programming

The Weighted Constraint Satisfaction Problem (WCSP) is a well known soft constraint framework for modeling over-con-
strained problems. WCSP is an optimization version of the CSP framework in which constraints are extended by associating
costs to tuples. Solving a WCSP instance, which is NP-hard, consists in finding a complete assignment of optimal cost.

There exist two main types of complete algorithms to solve constraint problems by applying inference rules (or transfor-
mations). We can use algorithms based on applying complete inference rules, or algorithms based on search that apply
incomplete inference rules. Informally, complete inference rules are those such that applying them iteratively we can solve
the problem, i.e., to find an optimal solution. A typical example are WCSP algorithms such as Bucket Elimination [11] that
solve WCSP instances without search. They obtain an optimal solution by applying transformations that preserve cost
distributions.

On the other hand, when using just incomplete inference rules one cannot guarantee to solve the problem completely (or
find the optimal solution). This is why these rules need to be incorporated into other algorithms that guarantee complete-
ness. These rules are usually added to WCSP Branch and Bound (BnB) based search algorithms such as MAC� [25], MFDAC�

[24] and MEDAC� [10]. Branch and Bound search algorithms perform a systematic search in the space of all possible assign-
ments. They differ in the method of computing a lower bound at each node of the proof tree to prune some parts of the
search space. Incomplete inference rules, like local consistency rules, can be used to compute these lower bounds. Modern
algorithms such as MAC�, MFDAC� and MEDAC� enforce some extension of Arc Consistency (AC) to WCSP—Soft AC (AC�), Full
Directional AC (FDAC�) or Existential Directional AC (EDAC�)—when computing that lower bound.

Given the relevance of both complete and incomplete inference in WCSP solvers, our aim in this section is to establish a
link between the above complete inference systems for Signed MaxSAT and complete inference algorithms for WCSP, and to
define refinements of the Signed-MaxSAT inference rules that capture the known soft local consistency properties defined in
the literature and other stronger forms of inference. Therefore, we propose a unified approach for solving WCSP using infer-
ence techniques in the case that costs are integers.

The remaininig of the present section is organized as follows. Section 5.1 defines the weighted constraint satisfaction
problem (WCSP) and its encoding as an instance of the signed maximum satisfiability problem. Section 5.2 describes a
new complete algorithm for solving WCSP, which is the derived from the completeness proof of the new signed inference
systems. Section 5.3 defines a restriction and a generalization of the signed MaxSAT parallel rule called, respectively, signed
MaxSAT i-consistency resolution and signed MaxSAT (i, j)-consistency resolution. These rules have the following property: if
a WCSP signed encoding is closed under signed MaxSAT i-consistency, then the corresponding WCSP is i-consistent, and if it
is closed under signed MaxSAT (i, j)-consistency, then the WCSP is (i, j)-consistent. Section 5.4 describes an algorithm that
applies directional soft consistency with the previous rules, and enforces directional i-consistency.
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5.1. Weighted constraint satisfaction problems

Next we will will define constraint satisfaction and weighted constraint satisfaction problems, and explain why the lan-
guage of signed CNF formulas is appropriate to talk about constraint and weighted constraint satisfaction problems.

Definition 24. A constraint satisfaction problem (CSP) instance is defined as a triple hX;D;Ci, where X ¼ hx1; . . . ; xni is a set of
variables, D ¼ hdðx1Þ; . . . ; dðxnÞi is a set of domains containing the values the variables may take, and C ¼ fC1; . . . ; Cmg is a set
of constraints. Each constraint Ci ¼ hSi;Rii is defined as a relation Ri over a subset of variables Si ¼ fxi1 ; . . . ; xikg, called the
constraint scope. The relation Ri may be represented extensionally as a subset of the Cartesian product dðxi1

Þ � � � � � dðxik Þ.
Definition 25. An assignment v for a CSP instance hX;D; Ci is a mapping that assigns to every variable xi 2 X an element
vðxiÞ 2 dðxiÞ.

A partial assignment v for a CSP instance hX;D;Ci is a mapping that assigns to every variable xi 2 Y an element
vðxiÞ 2 dðxiÞ, where Y is a subset of X.

An assignment or partial assignment v satisfies a constraint hfxi1
; . . . ; xik

g;Rii 2 C iff hvðxi1 Þ; . . . ;vðxik Þi 2 Ri.
Definition 26. A Weighted CSP (WCSP) instance is defined as a triple hX;D;Ci, where X and D are variables and domains as in
CSP. A constraint Ci is now defined as a pair hSi; fii, where Si ¼ fxi1 ; . . . ; xikg is the constraint scope and fi : dðxi1 Þ � � � � �
dðxik Þ ! N is a cost function. The cost of a constraint Ci induced by an assignment v in which the variables of Si ¼
fxi1 ; . . . ; xikg take values bi1 ; . . . ; bik is fiðbi1 ; . . . ; bik Þ.

An optimal solution to a WCSP instance is a complete assignment in which the sum of the costs of the constraints is
minimal.
Definition 27. The Weighted Constraint Satisfaction Problem (WCSP) for a WCSP instance consists in finding an optimal
solution for that instance.

Now we present an encoding that shows that solving WCSPs is equivalent to finding optimal assignments to signed CNF
formulas.

Definition 28. The signed encoding of a WCSP instance hX;D;Ci is the signed CNF formula that contains, for every variable
xi 2 X with domain dðxiÞ, a propositional variable xi with the same domain dðxiÞ, and for every possible tuple
hbi1 ; . . . ; bik i 2 dðxi1

Þ � . . .� dðxik Þ of every constraint hfxi1
; . . . ; xik

g; fii 2 C; fiðbi1 ; . . . ; bik
Þ copies of the signed clause:
fbi1g : xi1 _ � � � _ fbikg : xik
Alternatively, we can consider just one weighted signed clause
fbi1g : xi1 _ � � � _ fbikg : xik ; f iðbi1 ; . . . ; bik Þ

For the sake of clarity we will use unweighted clauses. The extension of our theoretical results to weighted clauses is

straightforward. In Section 3 we give the sound and complete inference rule for signed MaxSAT using weights.

Next we provide an example of the encoding of a WCSP as a signed formula.

Example 29. Fig. 1 shows a WCSP instance hX;D;Ci and its signed encoding. The WCSP has the set of variables
X ¼ fx1; x2; x3g with domains dðx1Þ ¼ dðx2Þ ¼ dðx3Þ ¼ fa; b; cg. There is a binary constraint between variables x1 and x2, a
binary constraint between variables x2 and x3, and a unary constraint for every variable. Unary costs are depicted inside
small circles. Binary costs are depicted as labeled edges connecting the corresponding pair of values. The label of each edge is
the corresponding cost. If two values are not connected, the binary cost between them is 0. In this instance, the optimal cost
is 2.

Notice that the graphical representation of constraint satisfaction problems is limited to unary and binary constraints.
Bigger constraints would require a representation in terms of hypergraphs which would be very difficult to visualize. Instead
the language of signed clauses does not have this restriction.

Proposition 30. Solving a WCSP instance P is equivalent to solving the signed MaxSAT problem of its signed encoding; i.e., the
optimal cost of P coincides with the minimal number of unsatisfied signed clauses of the signed encoding of P.
Proof. For every combination of values to the variables of the scope of a constraint Ci ¼ hSi; fii, the signed encoding contains
as many clauses as the cost associated with that combination. If an assignment of the signed encoding restricted to the vari-
ables of Si coincides with a combination of Ci with cost 0, then all the clauses of the signed encoding introduced by Ci are
satisfied because there is no clause forbidding that combination. If an assignment of the signed encoding restricted to the
variables of Si coincides with a combination hbi1 ; . . . ; bik i of Ci with cost u, where u > 0, then, by construction of the signed
encoding, only the u clauses of the form fbi1g : xi1 _ � � � _ fbikg : xik are falsified among the clauses introduced by Ci. h



Fig. 1. A WCSP instance and its signed encoding (see Example 29).
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In our work we use signed formulas instead of Boolean formulas for the following reasons: (a) we can define resolution-
like inference rules for constraint satisfaction (weighted or not) problems extending the corresponding rules for Boolean
logic; and (b) the language of signed logic corresponds directly to the language of constraints and therefore complicated
encodings are not necessary.

5.2. A complete algorithm for WCSP

As a first result of the link between signed logic and WCSP, we describe an exact algorithm for solving WCSP, called Signed
MaxSAT DP, which is derived from the proof of Theorem 21.

Signed MaxSAT DP algorithm:

input: A WCSP instance P
C0 :¼ signed_encodingðPÞ
for i :¼ 1 to k
C :¼ saturationðCi�1; xiÞ
hCi;Dii :¼ partitionðC; xiÞ

endfor
m :¼ jCkj
I :¼ ;
for i :¼ k downto 1

I :¼ I [ ½xi # extensionðxi; I;DiÞ�
output: m; I
Given an initial WCSP instance P with k variables, this algorithm returns the optimal cost m of P and an optimal solution I.
The function saturationðCi�1; xiÞ computes a saturation of Ci�1 w.r.t. xi applying the resolution rule resolving x until it gets a

saturated set. Lemma 17 ensures that this process terminates, in particular that it does not cycle. As we have already said, the
saturation of a multiset is not unique, but the proof of Theorem 21 does not depend on which particular saturation we take.

The function partitionðC; xiÞ computes a partition of C, already saturated, into the subset of clauses containing xi and the
subset of clauses not containing xi.

The function extensionðxi; I;DiÞ computes an assignment for xi extending the assignment I, to satisfy the clauses of Di

according to Lemma 17. The function filters all clauses of Di that are not satisfied by I. Then it computes the intersection
of the supports for xi of all of them, and returns one of the values of such a intersection, i.e. returns a value from
\fS jS : xi _ A 2 Di and I falsifies Ag
The argumentation of the proof of Lemma 17 ensures that this intersection is not empty.
Algorithm Signed MaxSAT DP is the equivalent version of the Davis–Putnam (DP) algorithm [9] in the context of the

Signed MaxSAT problem. The algorithm also follows the general bucket elimination schema [11].
In the basic Davis–Putnam algorithm, variables are eliminated one by one following some ordering. To eliminate a var-

iable, say x, we perform all possible resolution steps with clauses containing x, obtaining new clauses without the variable x.
After each variable elimination step, we can show that the new set of clauses is satisfiable iff the previous set was satisfiable.
The new algorithm, Signed MaxSAT DP, is a little different. Some of the clauses we obtain saturating a variable, say x, still
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contain that variable. Therefore when the resolution process finishes because we have a saturated multiset of clauses,
some clauses containing variable x are still in the multiset. Lemma 17 ensures that this clauses are not necessary to con-
tinue the resolution process. They will only be important to obtain an assignment that satisfies the maximum number of
clauses.

In the general bucket elimination schema [11,12], constraints are separated into buckets, one for each variable, according
to some ordering on the variables. Every constraint is put into the bucket corresponding to the biggest variable of its domain.
Then, we simplify buckets sequentially, following the order of the variables (starting with the biggest one and finishing with
the smallest one). All constraints of a bucket are combined using some sort of join operator, RA ffl RB and then, the variable X
defining the bucket is removed using a projection operator PX . In the context of CSP, the domain of RA ffl RB is the union A [ B
of the domains of RA and RB, and contains all tuples satisfying both RA and RB. Therefore, if constraints are represented exten-
sively as sets of goods or no-goods (the characteristic functions 2jAj ! f0;1g and 2jBj ! f0;1g), the representation of RA ffl RB

(the function 2jA[Bj ! f0;1g) can have size equal to the product of the sizes of the representations of RA and RB. Moreover, this
is not only in the worst case, but also in the typical case. The DP algorithm also follows a bucket elimination schema. The size
representation explosion is avoided (in the typical case) using clauses, that can be seen as compact or intensive representa-
tions of characteristic functions or sets of goods. Notice that resolution of two clauses results into a new clause with size
bounded by the sum of both sizes. In this sense, Signed MaxSAT DP can be seen as the natural extension of DP to (W)
CSP where constraints are compactly represented as (weighted) signed clauses.

Bucket elimination based algorithms are not practical unless the interaction graph of variables (see Definition 31) is
sparse. In [22], it is described an algorithm that combines branch and bound with bucket elimination. Some variables are
eliminated by bucket elimination if the resulting new constrains have low arity, and the others are eliminated using branch-
ing. This algorithm outperforms branch and bound and bucket elimination on some problems. The algorithm of [22] can be
improved using signed clauses to compactly represent constraints.

Like in the DP and bucket elimination algorithms, in our algorithm the order of the saturation of the variables can be
freely chosen, i.e. the sequence x1; . . . xn can be any enumeration of the variables. Nevertheless, different orders may have
different performance. Next we present some definitions that will help us analyze the time and space used in our algorithm.
For the definitions we will follow closely the presentation of [12,13], extending the definitions to the signed formula context.

Definition 31. The iteration graph of a signed CNF formula C, denoted GðCÞ, is an undirected graph that contains a node for
every variable in C and an edge for every pair of variables appearing in the same clause.

In [13] we find the following running example. / ¼ C;A _ B _ C;A _ B _ E;B _ C _ Dg. We can think of / as a signed formula
where the domain N is binary. The set of edges of Gð/Þ is fðA;BÞ; ðA;CÞ; ðB;CÞ; ðA; EÞ; ðB; EÞ; ðB;DÞ; ðC;DÞg. Note that the edges
pair up variables, not literals. Therefore, we do not include the edge ðA;BÞ.

Definition 32. Let C be a signed CNF formula, GðCÞ its iteration graph, and O an ordering of de nodes of GðCÞ (i.e. an ordering
of the variables of C). The width of a variable x is the number of variables connected to x in GðCÞ that precede x in the order O.
The width of a graph alongO is the maximum width over all the variables. The induced graph of GðCÞ alongO, denoted G�OðCÞ,
is obtained by connecting all neighbors of any variable x that precede x in the ordering. The induced widthof GðCÞ along O,
denoted w�O, is the maximal width of a variable in the induced graph G�OðCÞ. The induced width w� of GðCÞ is the minimum
induced width along any ordering.

Different orderings of variables can generate different induced widths of the induced graph. Going back to the running
example of [13] we can analyze the induced width depending on different orderings:

1. O1 ¼ ðE;D;C;A;BÞ. The induced graph adds the following edges: fðA;DÞ; ðE;CÞ; ðE;DÞg. The width of B in the induced graph
is 4.

2. O2 ¼ ðA;B;C;D; EÞ. The induced graph along O2 does not introduce any new edges. The induced width is 2.

The notion of induced width is related to the maximal size (number of literals) of clauses obtained by performing reso-
lution inference in a Davis–Putnam algorithm. In fact the induced width along an ordering O of variables, coincides with the
maximal number of literals a clause can have if we perform a Davis–Putnam algorithm on the initial clauses using the re-
verse ordering of O. For instance in the ordering O1, after resolving with the variables E;D;C, we resolve A _ B _ E with
B _ C _ D, obtaining among others the clause A _ E _ C _ D. This clause has 4 literals as the induced width of the variable
B. Instead, if we perform a Davis–Putnam type of algorithm using O2, we only obtain as new clause A _ B. Since our algorithm
for solving signed MaxSAT or WCSP problems is based in the same type of algorithms, the previous definitions will help us
analyze the performance of the algorithm.

Theorem 33. Let C be an arbitrary signed CNF instance with n variables and sign of size N. Let O be an ordering of the variables of
C and let the Signed MaxSAT DP algorithm eliminate the variables in the reverse ordering of O. The time and space complexity of
solving the signed MaxSAT problem for C using Signed MaxSAT DP is Oðn22 N w�O Þ and Oðn2N w�O Þ respectively, where w�O is the
induced width of GðCÞ along O.
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Proof. Lemmas 17 and 20 and Theorem 21 ensure that the algorithm solves the signed MaxSAT problem. Now we will show
the time and space bounds. In each variable elimination step of the algorithm, we can generate a maximum of ð2NÞw

�
O signed

clauses. This is because, for every variable we eliminate, the induced width of that variable is at most w�O. So performing res-
olution on that variable we can generate in the worst case all clauses with w�O variables. Since each variable has 2N possible
literals, we obtain the corresponding space bound. We obtain the time bound by noting that the maximal number of steps in
each variable elimination is 2N w�2O . This is because in the worst case we can try to apply resolution among each pair of clauses
that contain the variable. This will give us a quadratic bound. Finally, we multiply the time and space bounds by n, since n is
the number of variables and therefore the number of applications of the saturation procedure. h
5.3. Local consistency via resolution

In WCSP a number of local consistency properties have been proposed. These local properties do not ensure the global
consistency of a set of constraints. However, they can be enforced very efficiently and used to find a lower bound of the cost.

We are going to prove that the signed MaxSAT parallel resolution rule actually enforces i-consistency in WCSP. In order to
do that, we first define (i, j)-consistency and i-consistency in WCSP. We will define in parallel the notions of partial consistency
for CSPs and WCSPs. Both will be useful later on.

Definition 34. Given a CSP (a WCSP) and a partial assignment v;v is consistent if it satisfies all of the constraints of the CSP
(or WCSP) whose scopes have all their variables assigned by v.
Definition 35. A CSP is (i, j)-consistent, for i P 0 and j P 1, iff any consistent instantiation of i variables can be extended to a
consistent instantiation of any j additional variables.

A WCSP is (i, j)-consistent, for i P 0 and j P 1, iff any instantiation of i variables V that satisfies all constraints CD with
scope D, where ;– D # V , can be extended to an instantiation of j additional variables V 0 that satisfies all constraints CD0 with
scope D0, where ;– D0# V [ V 0.
Definition 36. A CSP (WCSP) is i-consistent for, i P 1, iff it is ði� 1;1Þ-consistent.
A CSP (WCSP) is strong i-consistent, for i P 1, iff it is k-consistent, for every k;1 6 k 6 i.

Now we will restrict in the signed MaxSAT parallel resolution rule the number of variables that appear in D1 [ � � � [ Dk.

Definition 37. The signed MaxSAT ði;1Þ-consistency resolution rule is the signed MaxSAT parallel resolution where exactly i
variables appear in D1 [ � � � [ Dk i.e., jvarðD1 [ � � � [ DkÞj ¼ i. If jvarðD1 [ � � � [ DkÞj 6 i we call the resolution rule the strong
signed MaxSAT ði;1Þ-consistency resolution rule.

In the previous definitions and in the following lemma we use the words satisfies/falsifies a constraint in the context of
WCSP. This is strictly speaking incorrect, but makes the definitions easier to understand. What we mean is: given constraint
Ci ¼ hSi; fii, where Si ¼ fxi1 ; . . . ; xikg, and given assignment fai1 ; . . . ; aikg; fai1 ; . . . ; aikg satisfies Ci if fiðai1 ; . . . ; aik Þ ¼ 0.
fai1 ; . . . ; aikg falsifies Ci if fiðai1 ; . . . ; aik Þ > 0.

Lemma 38. If a set of clauses is closed under the signed MaxSAT ði� 1;1Þ-consistency resolution rule, then its corresponding WCSP
is i-consistent.
Proof. Suppose that a set of clauses is closed by the signed MaxSAT ði� 1;1Þ-consistency resolution rule, but its correspond-
ing constraint network is not i-consistent. We have some tuple of i� 1 variables x1; . . . ; xi�1 and i� 1 consistent values
a1; . . . ; ai�1 of their domains, and there exists also a variable x such that a1; . . . ; ai�1 cannot be extended to x consistently.
I.e. for any value b of the domain of x, the tuple of i values a1; . . . ; ai�1; b for the variables x1; . . . ; xi�1; x falsifies some constraint
about a subset of such variables (where at least the variable x is present). Therefore, for any b, the tuple a1; . . . ; ai�1; b is a
nogood, and therefore for any b there is a clause whose literals are a subset of S1 : x1 _ . . . _ Si�1 : xi�1 _ S : x where
8l 1 6 l 6 i� 1; al R Sl and b R S. Since the set of clauses is closed under the rule, and the intersection of the supports of
x is empty, our set of clauses also contains a subclause of S01 : x1 _ . . . _ S0i�1 : xi�1 where 8l 1 6 l 6 i� 1; al R S0l. So the tuple
a1; . . . ; ai�1 is a no good for hx1; . . . ; xi�1i and this contradicts the assumption. h
5.3.1. Signed MaxSAT (i, j)-consistency resolution rule
Once we have introduced the signed MaxSAT ði;1Þ-consistency resolution rule, we are ready to introduce a more general

rule, the signed MaxSAT (i, j)-consistency resolution rule. In this case, instead of just having one resolving variable we have
exactly j resolving variables. For the sake of clarity one way of describing this rule is to collapse the j resolving variables, say
x1; . . . ; xj, into one single variable x0 whose domain is equal to the Cartesian product of the domains of the j original variables,
dðx0Þ ¼ dðx1Þ � � � � � dðxjÞ, where dðxÞ is the domain of x. As a consequence, a disjunction of signed literals on the j variables,
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S1 : x1 _ � � � _ Sj : xj is replaced by the signed literal, S0 : x0, where S0 ¼ S1 � � � � � Sj. Then, we can simply apply the (i,1)-signed
MaxSAT resolution rule taking x0 as the new resolving variable.

Definition 39. The signed MaxSAT (i, j)-consistency resolution rule is defined as follows:

0 0 Tk 0
where dðx Þ ¼ dðx1Þ � � � � � dðxjÞ; Sr ¼ Sr;1 � � � � � Sr;j; k P r P 1; jvarðD1 [ � � � [ DkÞj ¼ i, and i¼1Si ¼ ;.
Regarding the relation with the local consistencies in WCSP, we also say that if a set of clauses is closed under the signed

MaxSAT (i, j)-consistency resolution rule, then its corresponding WCSP is (i, j)-consistent.
Finally, notice that we get different instantiations of this rule by fixing the i and j parameters. In particular, if we set the i

parameter to 0 we get an interesting instantiation where the rule has the empty clause as the first of its conclusions.
An alternative definition of the signed MaxSAT (i, j)-consistency resolution rule which does not introduce new variables is

the following:

Definition 40. The signed MaxSAT (i, j)-consistency resolution rule is defined as follows (alternative version):

where S0 ¼ S � � � � � S ; k P r P 1; jvarðD [ � � � [ D Þj ¼ i and
Tk S0 ¼ ;.
r r;1 r;j 1 k i¼1 i
Example 41. For three premises, the signed MaxSAT (i, j)-consistency resolution rule has the following form:

0 0 0 0 0 0 0
where S1 ¼ S1;1 � � � � � S1;j; S2 ¼ S2;1 � � � � � S2;j; S3 ¼ S3;1 � � � � � S3;j; dðx Þ ¼ dðx1Þ � � � � � dðxjÞ and S1 \ S2 \ S3 ¼ ;.
Example 42. Given the set of variables X ¼ fx1; x2; x3g with domains dðx1Þ ¼ dðx2Þ ¼ dðx3Þ ¼ fa; bg, the following are exam-
ples of the application of signed MaxSAT ði;2Þ-consistency resolution rule (with x1; x2 as the resolving variables):

Consider S1;1 ¼ fag; S1;2 ¼ ;; S2;1 ¼ fag; S2;2 ¼ fag; S3;1 ¼ fag; S3;2 ¼ fag,
S01 ¼ S1;1 � S1;2 ¼ fag � ; ¼ fbg � fa; bg ¼ fðb; aÞ; ðb; bÞg ¼ fða; aÞ; ða; bÞg;

S02 ¼ S2;1 � S2;2 ¼ fag � fag ¼ fag � fbg ¼ fða; bÞg ¼ fða; aÞ; ðb; aÞ; ðb; bÞg;

S03 ¼ S3;1 � S3;2 ¼ fag � fag ¼ fag � fag ¼ fða; aÞg ¼ fða; bÞ; ðb; aÞ; ðb; bÞg;
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S01 \ S02 \ S03 ¼ ; and dðx0Þ ¼ fða; aÞ; ða; bÞ; ðb; aÞ; ðb; bÞg
Signed MaxSAT ði;2Þ-consistency resolution:
Signed MaxSAT ði;2Þ-consistency resolution (alternative version):
5.4. A directional local consistency algorithm

Before we give the algorithm and prove its correctness we need some definitions and a lemma.

Definition 43. A multiset of clauses C is said to be i-saturated with respect to x if the multiset of all the clauses of C that have
6 i literals is saturated with respect to x.
Definition 44. A CSP is directional i-consistent, for i P 1, iff there exists an ordering of variables such that any consistent
instantiation of i� 1 variables can be extended to a consistent instantiation of any additional variable that is greater in
the ordering.

A WCSP is directional i-consistent, for i P 1, iff there exists an ordering of variables such that any instantiation of i� 1
variables V that satisfies all constraints CD with scope D, where ;– D # V , can be extended to an instantiation of any
additional variable x greater in the ordering, and satisfying all constraints CD0 with scope D0, where ;– D0# V [ fxg.

Now, from the proof sketch of Theorem 21, we can extract an algorithm for applying complete and incomplete inference
on WCSP. The only difference with the saturation procedure described in it is that we apply inference only to clauses of a
bounded number of literals. This bound on the number of literals is the parameter i in the saturation function. Function
saturationðCs�1; i; xsÞ computes a saturation of Cs�1 w.r.t. xi applying the strong signed MaxSAT ði� 1;1Þ-consistency resolu-
tion rule resolving xs until it obtains a i-saturated set. Lemma 20 ensures that this process terminates, in particular that it
does not cycle.

Function partitionðC; xsÞ computes a partition of C, already saturated, into the subset of clauses containing xs and the sub-
set of clauses not containing xs.

Signed MaxSAT DP algorithm enforcing directional i-consistency:

input: A WCSP instance P, an index i
C0 :¼ signed_encodingðPÞ
for s :¼ 1 to n
C :¼ saturationðCs�1; i; xsÞ
hCs;Dsi :¼ partitionðC; xsÞ

endfor
output: Cn [

Sn
s¼1Ds

Given an initial WCSP instance P with n variables, the above algorithm returns an equivalent WCSP instance. The order on
the saturation of the variables can be freely chosen, i.e. the sequence x1; . . . xn can be any enumeration of the variables. Notice
that if i is the number of variables, the previous algorithm is complete.

Lemma 45. The previous algorithm enforces directional i-consistency, i.e. the WCSP that corresponds to the set Cn [
Sn

s¼1Ds is
directional i-consistent. Also equivalently, the CSP that corresponds to

Sn
s¼1Ds is directional i-consistent.



C. Ansótegui et al. / Information Sciences 227 (2013) 43–59 57
Proof. The argument is similar to the proof of lemma 17. Consider the variable ordering xn; . . . ; x1. Pick any set of i� 1 vari-
ables V, and let I be a consistent instantiation of the i� 1 variables V. W.l.o.g. let xl be the greatest of these variables. I is a
consistent instantiation of the CSP that corresponds to

Sn
s¼lDs. i.e. I satisfies all constraints that correspond to

Sn
s¼1Ds and

with scope a subset of V. Now we will show how we can extend the assignment to any variable xt consistently where t is
such that 1 6 t 6 l� 1.

Let E ¼ fS1 : xt _ D1; . . . ; Sk : xt _ Dkg be the set of all clauses on the variables V [ fxtg still not satisfied by I. Note that
E#Dt . Since Dt is i-saturated with respect to xt , either S1 \ � � � \ Sk – ; or D1 [ � � � [ Dk is a tautology. If S1 \ � � � \ Sk – ;, we
extend I to assign a value inside the intersection for the variable xt . If S1 \ � � � \ Sk ¼ ;, then D1 [ � � � [ Dk is a tautology. Then,
there exist Si1

: y 2 Di1 ; . . . ; Sil : y 2 Dil ; l 6 k, such that Si1
[ � � � [ Sil

¼ N. Then, I satisfies one of these literals and the
corresponding clause. So, some of the clauses are not in E. Contradiction. h
Example 46. Fig. 2 shows the application of the algorithm to a WCSP, with parameter i ¼ 3 and the order on the variables
given by the sequence x1; x2; x3; x4. C1 and D1 are obtained applying the signed MaxSAT (2,1)-consistency resolution rule on
clauses 1,2,3 with resolving variable x1. C2 and D2 are obtained applying the signed MaxSAT (2,1)-consistency resolution rule
on clauses 6,7,8 with resolving variable x2. C3 is obtained applying the signed MaxSAT (1,1)-consistency on clauses 4,12 and
5,9 with the resolving variable x3. Finally, the empty clause is obtained from clauses 15,16 with resolving variable x4.
Fig. 2. Example of application of the directional local consistency algorithm to a WCSP. The WCSP has the set of variables X ¼ fx1; x2; x3; x4g with domains
dðx1Þ ¼ dðx2Þ ¼ fa; b; cg and dðx3Þ ¼ dðx4Þ ¼ fa; bg. The optimal cost is 1.



58 C. Ansótegui et al. / Information Sciences 227 (2013) 43–59
6. Conclusions

We have defined two resolution rules, called signed MaxSAT binary resolution and signed MaxSAT parallel resolution, and
proved that they are sound and complete for signed MaxSAT. Based on these two rules, we have described a complete algo-
rithm for solving Signed MaxSAT and Weighted CSP. This algorithm is the first generalization of the Davis–Putnam algorithm
to Signed MaxSAT. It follows the bucket elimination schema for CSP or Weighted CSP but using the more compact language
of clauses.

Eventhough Davis–Putnam or Bucket elimination type algorithms are no efficient in general, they can be useful for certain
kinds of instances, as pointed out by [22], as long as we use them in combination with branch and bound techniques. The use
of the more compact language of clauses in this type of algorithms, can make the algorithms even more practical with some
instances.

We have also introduced a restriction and a generalization called signed MaxSAT i-consistency resolution and signed
MaxSAT (i, j)-consistency resolution, respectively. If a WCSP signed encoding is closed under signed MaxSAT i-consistency,
then the WCSP is i-consistent, and if it is closed under signed MaxSAT (i, j)-consistency, then the WCSP is (i, j)-consistent.

The new rules for local consistency we have introduced could be used to speed-up the search of exact signed MaxSAT
algorithms, following the strategy of [20]. In the work of [20], a satisfiability-based algorithm for MaxSAT is combined with
incomplete resolution rules. Given that satisfiability-based MaxSAT algorithms are the most efficient for industrial instances,
incorporating our local consistency rules into these types of algorithms could give a good performance for signed MaxSAT
and WCSP.

Finally, we have described an incomplete algorithm that applies directional soft consistency using the previous rules, that
enforces directional i-consistency.
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