
Mapping CSP into Many-Valued SAT?

Carlos Ansótegui1, Maŕıa Luisa Bonet2, Jordi Levy3, and Felip Manyà1

1 Universitat de Lleida (DIEI, UdL).
2 Universitat Politècnica de Catalunya (LSI, UPC).

3 Artificial Intelligence Research Institute (IIIA, CSIC).

Abstract. We first define a mapping from CSP to many-valued SAT
which allows to solve CSP instances with many-valued SAT solvers. Sec-
ond, we define a new many-valued resolution rule and prove that it is
refutation complete for many-valued CNF formulas, and enforces (i, j)-
consistency when applied to a many-valued SAT encoding of a CSP. In-
stances of our rule enforce well-known local consistency properties such
as arc consistency and path consistency.

1 Introduction

SAT and CSP are problem solving paradigms which have been shown to be
competitive in a wide range of domains. Both the SAT community and the
CSP community have devised a number of solving techniques that have been
incorporated into state-of-the-art solvers. SAT techniques are better than CSP
techniques for some problems, and vice versa. In this paper, we focus on inference
and our goal is to explore how CSP inference can be defined in a way similar to
SAT inference, which is usually defined via resolution-like inference rules. To this
end, we use the formalism provided by the many-valued clausal forms known as
signed CNF formulas, and define a number of resolution rules that enforce the
most important local consistency properties defined in the literature.

First, we define a mapping from CSP to signed-SAT, which is the satisfi-
ability problem of the many-valued clausal forms known as signed CNF for-
mula [BHM00]. A CSP instance is now represented as a list of clauses, where
each clause represents a no-good of a constraint. We use signed-SAT instead of
SAT to capture in a natural way the information provided by the domains of
CSP variables. Second, we define a new resolution rule and prove that it is refuta-
tion complete for signed CNF formulas and, moreover, enforces (i, j)-consistency
when applied to a signed-SAT encoding of a CSP. Third, we show how instances
of the (i, j)-consistency rule enforce well-known local consistency properties such
as arc consistency and path consistency.

The fact of reformulating the main CSP consistency properties as resolution-
like inference rule has some advantages: (i) they are easier to understand, at
least for the SAT community; (ii) the machinery and techniques for resolution

? Research partially supported by projects iDEAS (TIN2004-04343), Mulog (TIN2004-
07933-C03-01/03) and IEA (TIN2006-15662-C02-02) funded by the MEC



developed by the automated deduction community can be easily applied to CSP;
(iii) CSP and SAT inference can be compared by restricting to domains of car-
dinality two; and (iv) a signed-SAT solver allowing to apply different resolution
rules at each node of the search tree provides a framework for analysing CSP lo-
cal consistency, as well as for comparing SAT and CSP inference and eventually
devise new solvers.

Our work is closely related to previous attempts to understand the relation
between CSP and SAT, and vice versa (see [BHW04,Gen02,Wal00]). The advan-
tage of our approach is the use of a formalism in which we can reformulate the
inference of both SAT and CSP, instead of mapping CSP into SAT and SAT
into CSP as in [AM04,BHM99,BHW04,FP01].

The results of this paper can provide new insights to the existing results
about exploiting the structure of CSPs into SAT solvers [ALM03,Bac06,DS06].

2 Preliminaries

2.1 Signed CNF Formulas

Definition 1. A truth value set, or domain, N is a non-empty finite set. A
sign is a subset S ⊆ N of truth values. The complement of a sign S, denoted
by S is N \ S. A signed literal is an expression of the form S :x , where S is a
sign and x is a propositional variable. The set S is also called the support of x.
The complement of a signed literal l of the form S :x , denoted by l, is S :x . A
signed clause is a disjunction of signed literals. A signed CNF formula is a set
of signed clauses (or a conjunction of clauses).

Definition 2. An assignment for a signed CNF formula is a mapping that as-
signs to every propositional variable an element of the truth value set.
An assignment I satisfies a signed literal S :x , if I(x) ∈ S. It satisfies a signed
clause C, if it satisfies at least one of the signed literals in C. It satisfies a signed
CNF formula Γ , if it satisfies all clauses in Γ .
A signed CNF formula is satisfiable, if it is satisfied by at least one assignment;
otherwise it is unsatisfiable. The signed-SAT problem for a signed CNF formula
φ consists of determining whether φ is satisfiable.

We give now two refutationally complete inference systems for signed-SAT.
The first one is defined by the next two rules on the left [Häh93], while the
second one is defined by the rule on the right [Häh94].

Signed Binary Resolution

S :x ∨ A

S′ :x ∨ B

S ∩ S′ :x ∨ A ∨ B

Simplification

∅:x ∨ D

D

Signed Parallel Resolution

S1 :x ∨ A1

· · ·
Sk :x ∨ Ak

A1 ∨ · · · ∨ Ak

whenever
⋂k

i=1
Si = ∅

Also we assume w.l.o.g. that every variable in a clause appears only once
collapsing different occurrences of a literal making the union of the supports.

2



2.2 Constraint Satisfaction Problems

Definition 3. A constraint satisfaction problem (CSP) instance, or constraint
network is defined as a triple 〈X,D,C〉, where X = {x1, . . . , xn} is a set of
variables, D = {d(x1), . . . , d(xn)} is a set of domains containing the values
the variables may take, and C = {C1, . . . , Cp} is a set of constraints. Each
constraint Ci = 〈Si, Ri〉 is defined as a relation Ri over a subset of variables Si =
{xi1 , . . . , xik

}, called the constraint scope. The relation Ri may be represented
extensionally as a subset of the Cartesian product d(xi1) × · · · × d(xik

).

Definition 4. An assignment for a CSP instance 〈X,D,C〉 is a mapping that
assigns to each variable xi ∈ Y , where Y ⊆ X, a value from d(xi). An assignment
I satisfies a constraint 〈{xi1 , . . . , xik

}, Ri〉 ∈ C, if 〈I(xi1), . . . , I(xik
)〉 ∈ Ri. An

assignment I with domain Y is consistent, if for every constraint Ci ∈ C defined
on variables Y ′ ⊆ Y , I restricted to Y ′ satisfies Ci.

The Constraint Satisfaction Problem (CSP) consists of, given a CSP in-
stance, finding an assignment that satisfies the instance, if it exists, or showing
that it is unsatisfiable.

We next define the main local consistency properties that have been defined
in the literature.

Definition 5. A CSP is node consistent (NC), if for every variable x, every
unary constraint on x coincides with the domain of x.
A CSP is arc consistent (AC), if for every constraint on two variables x and y,
for all a ∈ d(x), there exists b ∈ d(y), such that (a, b) is in the constraint.
A CSP is (i, j)-consistent, for i ≥ 0 and j ≥ 1, if any consistent instantiation of
i variables can be extended to a consistent instantiation of j additional variables.
A CSP is k-consistent, for k ≥ 1, if it is (k − 1, 1)-consistent.
A CSP is strong k-consistent, for k ≥ 1, if it is i-consistent, for every
i ∈ {1, . . . , k}.

Under the previous definition, a CSP is arc consistent, iff it is (1, 1)-consistent.
A CSP is path consistent, iff it is (2, 1)-consistent using only binary constraints.

2.3 Mapping CSP into Signed-SAT

We define a mapping that translates a CSP instance P into a signed-SAT in-
stance P ′ in such a way that P is satisfiable iff P ′ is satisfiable [ABLM07]. The
encoding basically translates no-goods into clauses.

Definition 6. The signed encoding of a CSP instance 〈X,D,C〉 is the
signed CNF formula over the truth value set N =

⋃
xi∈D d(xi) that con-

tains, for every constraint 〈{x1, . . . , xk}, R〉 ∈ C and every possible tuple
〈b1, . . . , bk〉 ∈ d(x1) × · · · × d(xk) such that (b1, . . . , bk) 6∈ R, the clause:

{b1}:x1 ∨ · · · ∨ {bk}:xk

Moreover, for every variable x and every value b ∈ N such that x 6∈ d(x), we
add the unary clause {b}:x .

3



3 CSP Inference as Signed Resolution

In this section we define a sound and complete signed resolution rule, called
(i, j)-consistency, that enforces (i, j)-consistency when applied to a signed-SAT
encoded CSP. Then, we show that instances of the rule enforce arc consistency
and path consistency. The next lemma will help us understand the rule.

Lemma 1. Let φ = {S1,1 :y1 ∨ · · · ∨ S1,n :yp , . . . , Sk,1 :y1 ∨ · · · ∨ Sk,n :yp } be a
set of signed clauses. Then, the set of assignments that satisfies all the clauses

of φ can be characterized by the set
⋂k

r=1
Sr,1 × · · · × Sr,p.

Proof: The set Sr,1×· · ·×Sr,p is exactly the set of assignments that falsify the

clause Sr,1 :y1 ∨· · ·∨ Sr,n :yp . Therefore Sr,1 × . . . × Sr,p is the set of assignments
that satisfy Sr,1 :y1 ∨ · · · ∨ Sr,n :yp . As a conclusion, the set of assignments that

satisfy all the clauses is
⋂k

r=1
Sr,1 × · · · × Sr,p.

Signed (i,j)-Consistency Rule:

S1,1 :x1 ∨ · · · ∨ S1,i :xi ∨S1,i+1 :xi+1 ∨ · · · ∨ S1,i+j :xi+j

· · ·
Sk,1 :x1 ∨ · · · ∨ Sk,i :xi ∨Sk,i+1 :xi+1 ∨ · · · ∨ Sk,i+j :xi+j

k⋃

r=1

Sr,1 :x1 ∨ · · · ∨
k⋃

r=1

Sr,i :xi

whenever
⋂k

r=1
Sr,i+1 × · · · × Sr,i+j = ∅, i ≥ 0 and j ≥ 1

Remark 1. Since we start with a no-good representation of the constraints, the
initial clauses will have all the supports of the form {b}, for some b ∈ N . Then,
when we apply the rule, for every l = 1, . . . , i, there exists a b ∈ N such that,
for all r = 1, . . . , k, we have either Sr,l = {b} or Sr,l = ∅; otherwise the rule

concludes a tautology. Therefore, in the conclusion of the rule
⋃k

r=1
Sr,l :xl is

either empty or has the form {b} for some b ∈ N ; thus, the conclusion of the
rule also preserves the no-good representation form.

In the (i, j)-consistency rule, the last j variables xi+1, . . . , xi+j are called
resolving variables. In the (i, j)-consistency rule we can add the restriction that

all variables appear in at least one clause (
⋃k

r=1
Sr,l 6= ∅, for l = 1, . . . , i + j).

We call this version of the rule strict.

Lemma 2. The signed (i, j)-consistency rule enforces CSP (i, j)-consistency,
i.e. if the signed encoding of a CSP instance is closed by the (i, j)-consistency
rule, then the CSP is (i, j)-consistent.

The non-strict signed (i − 1, 1)-consistency rule enforces CSP strong i-
consistency, whereas the strict (i − 1, 1)-consistency rule enforces (non-strong)
i-consistency.

4



Proof: Suppose that a set of clauses is closed by the rule, but its correspond-
ing constraint network is not (i, j)-consistent. We have some tuple of i vari-
ables x and i consistent values a of their domains, and there exists also a
tuple of j variables y, such that a can not be extended to these new vari-
ables consistently. I.e. for any tuple of j values b, the tuple of i + j values
a, b for the variables x, y falsifies some constraint about a subset of such vari-
ables (where at leas one of the y variables is present). Therefore, for any tu-
ple 〈b1, . . . , bj〉, the tuple 〈a1, . . . , ai, b1, . . . , bj〉 for 〈x1, . . . , xi, y1, . . . , yj〉 is not
good, and there is a clause whose literals are a subset of {a1}:x1 ∨· · ·∨ {ai}:xi ∨
{b1}:y1 ∨ · · · ∨ {bj}:yj . Since the set of clauses is closed by the rule, and we

have
⋂

b1∈N,...,bj∈N {b1} × · · · × {bj} =
⋂

b1∈N,...,bj∈N {b1} × · · · × {bj} = ∅ our

set of clauses also contains a subclause of {x1}:a1 ∨ · · · ∨ {x1}:ai witch means
that the tuple 〈a1, . . . , ai〉 is not good for 〈x1, . . . , xi〉 and this contradicts the
assumption. The proof of the second part of the lemma has the same ingredients
as the first.

Theorem 1. The signed (i, j)-consistency rule defines a sound and complete
resolution system for signed CNF formulas.

Proof: When j = 1, the signed (i, 1)-consistency rule is the signed parallel
resolution rule. So, already the signed (i, 1)-consistency rule is complete.

To see that it is a sound rule, notice that, by Lemma 1, since⋂k

r=1
Sr,i+1 × · · · × Sr,i+j = ∅, the set of clauses {S1,i+1 : xi+1 ∨ · · · ∨ S1,i+j :

xi+j , . . . , Sk,i+1 : xi+1∨· · ·∨Sk,i+j : xi+j} is unsatisfiable. By the completeness of
the signed resolution rule we can obtain the empty clause from them. Now, from
this refutation we do the following transformation. We change the set of premises
by {S1,1 :x1 ∨ · · ·∨ S1,i :xi ∨ S1,i+1 :xi+1 ∨ · · ·∨ S1,i+j :xi+j , . . . , Sk,1 :x1 ∨ · · ·∨
Sk,i :xi ∨ Sk,i+1 :xi+1 ∨ · · · ∨ Sk,i+j :xi+j } The rest of the proof is identical, but
keeping the appended parts along. At this point we will not produce the empty
clause, but the clause

⋃k

r=1
Sr,1 :x1 ∨ · · · ∨

⋃k

r=1
Sr,i :xi .

Arc Consistency Rule:

{a}:x ∨ {j1}:y
· · ·

{a}:x ∨ {js}:y

{js+1}:y
· · ·

{jm}:y

{a}:x

where s ≥ 1 and {j1, . . . , jm} = N

Path Consistency Rule:

{a}:x∨ {j1}:z
· · ·

{a}:x∨ {js}:z

{b}:y ∨ {js+1}:z
· · ·

{b}:y ∨ {jr}:z

{jr+1}:z
· · ·

{jm}:z

{a}:x∨{b}:y

where r > s ≥ 1 and {j1, . . . , jm} = N

Fig. 1. Instances of the strict (i, j)-consistency rule

5



In Figure 1 we present instances of the strict (i, j)-consistency rule that
enforce local consistency properties like arc consistency and path consistency.
We use supports of the form {b} given that we have already shown that this form
of signs is preserved by inferences (see Remark 1). Basically, the arc consistency
rule reduces the domain of the variable x to exclude the value a when it does
not have support in y. The algorithm that enforces path consistency works by
removing all the satisfying pairs of a constraint that cannot be extended to
another variable in the way just defined.

References

[ABLM07] C. Ansótegui, M. Bonet, J. Levy, and F. Manyà. The logic behind weighted
CSP. In Proc. of the 20th Int. Joint Conf. on Artificial Intelligence, IJCAI’07,
pages 32–37, 2007.

[ALM03] C. Ansótegui, J. Larrubia, and F. Manyà. Boosting Chaff’s performance by
incorporating CSP heuristics. In Proc. of the 9th Int. Conf. on Principles and

Practice of Constraint Programming, CP’03, pages 96–107. Springer LNCS
2833, 2003.

[AM04] C. Ansótegui and F. Manyà. Mapping problems with finite-domain variables
into problems with boolean variables. In Proc. of the 7th Int. Conf. on Theory

and Applications of Satisfiability Testing, SAT’04, pages 1–15. Springer LNCS
3542, 2004.

[Bac06] F. Bacchus. CSPs: Adding structure to SAT. In Proc. of the 9th Int. Conf. on

Theory and Applications of Satisfiability Testing, SAT’06, page 10. Springer
LNCS 4121, 2006.

[BHM99] B. Beckert, R. Hähnle, and F. Manyà. Transformations between signed and
classical clause logic. In Proc. of the 29th Int. Symp. on Multiple-Valued Logics,

ISMVL’99, pages 248–255, 1999.
[BHM00] B. Beckert, R. Hähnle, and F. Manyà. The SAT problem of signed CNF

formulas. In Labelled Deduction, volume 17 of Applied Logic Series, pages
61–82. Kluwer, Dordrecht, 2000.

[BHW04] C. Bessière, E. Hebrard, and T. Walsh. Local consistencies in SAT. In
Proc. of the 6th Int. Conf. on Theory and Applications of Satisfiability Testing,

SAT’03, pages 299–314. Springer LNCS 2919, 2004.
[DS06] Y. Dimopoulos and K. Stergiou. Propagation in CSP and SAT. In Proc. of the

12th Int. Conf. on Principles and Practice of Constraint Programming, CP’06,
pages 137–151. Springer LNCS 4204, 2006.

[FP01] A. M. Frisch and T. J. Peugniez. Solving non-boolean satisfiability problems
with stochastic local search. In Proc. of the Int. Joint Conf. on Artificial

Intelligence, IJCAI’01, pages 282–288, 2001.
[Gen02] I. P. Gent. Arc consistency in SAT. In Proc. of the 15th European Conf. on

Artificial Intelligence, ECAI’02, pages 121–125, 2002.
[Häh93] R. Hähnle. Short CNF in finitely-valued logics. In Proc., Int. Symp. on

Methodologies for Intelligent Systems, ISMIS’93, pages 49–58. Springer LNCS
689, 1993.

[Häh94] R. Hähnle. Efficient deduction in many-valued logics. In Proc. of the Int.

Symp. on Multiple-Valued Logics, ISMVL’94, pages 240–249. IEEE Press, 1994.
[Wal00] T. Walsh. SAT v CSP. In Proc. of the 6th Int. Conf. on Principles of Con-

straint Programming, CP’00, pages 441–456. Springer LNCS 1894, 2000.

6


