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Abstract. Electronic institutions (EIs) have been proposed as a means
of regulating open agent societies. Els define the rules of the game in
agent societies by fixing what agents are permitted and forbidden to do
and under what circumstances. And yet, there is the need for Els to
adapt their regulations to comply with their goals despite coping with
varying populations of self-interested external agents. In this paper we
focus on the extension of Els with autonomic capabilities to allow them
to yield a dynamical answer to changing circumstances through norm
adaptation and changes in institutional agents.
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1 Introduction

The growing complexity of advanced information systems in the recent years,
characterized by being distributed, open and dynamical, has given rise to inter-
est in the development of systems capable of self-management. Such systems are
known as self-* systems [1] , where the * sign indicates a variety of properties:
self-organization, self-configuration, self-diagnosis, self-repair, etc. A particular
approximation to the construction of self-* systems is represented by the vision
of autonomic computing [2], which constitutes an approximation to computing
systems with a minimal human interference. Some of the many characteristics
of autonomic systems are: it must configure and reconfigure itself automatically
under changing (and unpredictable) conditions; it must aim at optimizing its
inner workings, monitoring its components and adjusting its processing in order
to achieve its goals; it must be able to diagnose the causes of its eventual mal-
functions and repair itself; and it must act in accordance to and operate into a
heterogeneous and open environment.

In what follows we argue that Els [3] are a particular type of self-* system.
When looking at computer-mediated interactions we regard Electronic Institu-
tions (EI) as regulated virtual environments wherein the relevant interactions
among participating agents take place. Els have proved to be valuable to de-
velop open agent systems [4]. However, the challenges of building open systems
are still considerable, not only because of the inherent complexity involved in
having adequate interoperation of heterogeneous agents, but also because the
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need for adapting regulations to comply with institutional goals despite varying
agents’ behaviors. Particularly, when dealing with self-interested agents.

The main goal of this work consists in studying how to endow an EI with
autonomic capabilities that allow it to yield a dynamical answer to changing
circumstances through the adaptation of its regulations. Among all the char-
acteristics that define an autonomic system we will focus on the study of self-
configuration as pointed out in [2] as a second characteristic: “An autonomic
computing system must configure and reconfigure itself under varying (and in
the future, even unpredictable) conditions. System configuration or ”setup” must
occur automatically, as well as dynamic adjustments to that configuration to best
handle changing environments”.

The paper is organized as follows. In section 2 we introduce the notion of au-
tonomic electronic institution as an extension of the classic notion of electronic
institution along with a general model for adaptation based on transition func-
tions. Section 3 details how these functions are automatically learned. Section
4 details a case study to be employed as a scenario wherein to test the model
presented in section 2. Section 5 provides some empirical results. Finally, section
6 summarizes some conclusions and related work and outlines paths to future
research.

2 Autonomic Electronic Institutions

The idea behind EIs [3] is to mirror the role traditional institutions play in the
establishment of “the rules of the game” —a set of conventions that articulate
participants’ interactions. The main goal of Els is the enactment of a constrained
environment that shapes open agent societies. Els structure agent interactions,
establishing what agents are permitted and forbidden to do as well as the con-
sequences of their actions.

In general, an EI regulates multiple, distinct, concurrent, interrelated, di-
alogic activities, each one involving different groups of agents playing differ-
ent roles. For each activity, interactions between agents are articulated through
agent group meetings, the so-called scenes, that follow well-defined interaction
protocols whose participating agents may change over time (agents may enter
or leave). More complex activities can be specified by establishing networks of
scenes (activities), the so-called performative structures. These define how agents
can legally move among different scenes (from activity to activity) depending on
their role.

Although Els can be regarded as the computational counterpart of human
institutions for open agent systems, there are several aspects in which they are
nowadays lacking. According to North [5] human institutions are not static; they
may evolve over time by altering, eliminating or incorporating norms. In this
way, institutions can adapt to societal changes. Nonetheless, neither the current
notion of EI nor the engineering framework in [6] support their adaptation so
that an EI can self-configure. Thus, in what follows we study how to extend the
current notion of EI to support self-configuration.

First of all, notice that in order for Els to adapt, we believe that a “rational”
view must be adopted (likewise the rational view of organizations in [7]) and thus
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consider that Fls seek specific goals. Hence, Els continuously adapt themselves
to fulfill their goals. Furthermore, we assume that an EI is situated in some
environment that may be either totally or partially observable by the EI and its
participating agents.

With this in mind, we observe that according to [3] an EI is solely composed
of: a dialogic framework establishing the common language and ontology to be
employed by participating agents; a performative structure defining its activities
along with their relationships; and a set of norms defining the consequences of
agents’ actions. From this follows that further elements are required in order to
incorporate the fundamental notions of goal, norm configuration, and performa-
tive structure configuration as captured by the following definition of autonomic
electronic institution.

Definition 1. Given a finite set of agents A, we define an Autonomic Electronic
Institution (AEI) as a tuple (PS,N,DF,G, P;, P., P,,V,0,7) where:

— PS stands for a performative structure;

— N stands for a finite set of norms;

— DF stands for a dialogic framework;

— G stands for a finite set of institutional goals;

— P, = (i1,...,is) stands for the values of a finite set of institutional properties,
where i; € IR, 1 < j < s contains the value of the j-th property;
— P. = (e1,...,e.) stands for the values of the environment properties, where

each e; is a vector, e; € R™, 1 < j < r contains the value of the j-th
property;

— P, = {a1,...,ay) stands for the values that characterize the institutional
state of the agents in A, where a; = (aj,,...,a;,.), 1 <j <n stands for the
institutional state of agent A;;

— V stands for a finite set of reference values;

— §: N xGxV — N stands for a normative transition function that maps a
set of norms into a new set of norms given a set of goals and a set of values
for the reference values; and

— v: PSXGxV — PS stands for a performative structure transition function
(henceforth referred to as PS transition function) that maps a performative
structure into a new performative structure given a set of goals and a set of
values for the reference values.

Notice that a major challenge in the design of an AEI is to learn a normative
transition function, 0, along with a PS transition function, 7, that ensure the
achievement of its institutional goals under changing conditions. Next, we dissect
the new elements composing an AEI.

2.1 Goals

Agents participating in an AEI have their social interactions mediated by the
institution according to its conventions. As a consequence of his interactions,
only the institutional (social) state of an agent can change since an AEI has no
access whatsoever to the inner state of any participating agent. Therefore, given
a finite set of participating agents A = {41,...,A4,} where n € IN, each agent
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A; € A can be fully characterized by his institutional state, represented as a
tuple of observable values (a;,,...,a;,) where a;; € R, 1 < j < m. Thus, the
actions of an agent within an AEI may change his institutional state according
to the institutional conventions.

The main objective of an AEI is to accomplish its goals. For this purpose,
an AEI will adapt. We assume that the institution can observe the environment,
the institutional state of the agents participating in the institution, and its own
state to assess whether its goals are accomplished or not. Thus, from the obser-
vation of environment properties(P,), institutional properties (P;), and agents’
institutional properties (P,), an AEI obtains the reference values required to
determine the fulfillment of goals. Formally, the reference values are defined as a
vector V = (v1,...,v,) where each v; results from applying a function h; upon
the agents’ properties, the environmental properties and/or the institutional
properties; v; = h;(P,, Pe, P;), 1<j<gq.

Finally, we can turn our attention to institutional goals. An example of insti-
tutional goal for the Traffic Regulation Authority could be to keep the number
of accidents below a given threshold. In other words, to ensure that a reference
value satisfies some constraint.

Formally we define the goals of an AEI as a finite set of constraints G =
{c1,...,cp} where each ¢; is defined as an expression ¢;(V) < [m;, M;] where
m;, M; € IR, < stands for either € or ¢, and g; is a function over the reference
values. In this manner, each goal is a constraint upon the reference values where
each pair m; and M; defines an interval associated to the constraint. Thus,
the institution achieves its goals if all g;(V') values satisfy their corresponding
constraints of being within (or not) their associated intervals.

2.2 Norm Transition

An AFEI employs norms to constrain agents’ behaviors and to assess the conse-
quences of their actions within the scope of the institution. Although there is a
plethora of formalizations of the notion of norm in the literature, in this paper
we adhere to a simple definition of norms as effect propositions as defined in [8]:

Definition 2. An effect proposition is an expression of the form

A causes F if Py,..., P,

where A is an action name, and each of F, Py,..., P,(n > 0) is a fluent expres-
sion. About this proposition we say that it describes the effect of A on F', and
that Py, ..., P, are its preconditions. If n = 0, we will drop if and write simply A
causes F'. From this definition, changing a norm amounts to changing either its
pre-conditions, or its effect(s), or both. Norms can be parameterized, and there-
fore we propose that each norm N; € N, ¢ = 1,...,n, has a set of parameters
(pf\fl, ... ,pf\fm’} € IR™. Hence, changing the values of these parameters means
changing the norm. In fact this parameters correspond to the variables in the
norm transition function that will allow the institution to adapt under changing
situations.
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2.3 PS Transition
As mentioned above, an EI involves different groups of agents playing different

roles within scenes in a performative structure. Each scene is composed of a
coordination protocol along with the specification of the roles that can take part
in the scene. Notice that we differentiate between institutional roles (played by
staff agents acting as the employees of the institution) and external roles (played
by external agents participating in the institution as users). Furthermore, it is
possible to specify the number of agents than can play each role within a scene.

Given a performative structure, we must choose the values that we aim at
changing in order to adapt it. This involves the choice for a set of parameters
whose values will be changed by the PS transition function. In our case, we choose
as parameters the number of agents playing each role within each scene. This
choice is motivated by our intention to determine the most convenient number
of institutional agents to regulate a given population of external agents.

Scenes can be parameterized, and therefore, we propose that each scene
in the performative structure, S; € PS, i = 1,...,t, has a set of parameters
(pfl, ceny pfqi> € IN% where pfj stands for the number of agents playing role r;
in scene S;.

3 Learning Model
Adapting Els amounts to changing the values of their parameters. We propose
to learn the norm transition function (§) and the PS transition function ()
by exploring the space of parameter values in search for the ones that best
accomplish goals for a given population of agents. In this manner, if we can
automatically adapt an EI to the global behavior of an agent population, then,
we can repeat it for a number of different agent populations and thus characterize
both § and ~.

Figure 1 describes how this learning process is performed for a given popula-
tion of agents (A) using an evolutionary approach. We have an initial set of indi-

viduals (I, ..., I), where each individual represents the set of norm and role pa-
rameters defined above {(p{\{l, e ,pf{ml) ey <P7]X1a e ,pﬁmn), (pfl, e ,pf(h),
ce <p£’17 ce pfqt>}. Each individual represents a specific AEI configuration, and

therefore, the institution uses each configuration to perform a simulation with
the population of agents A. The corresponding configuration can then be eval-
uated according to a fitness function that measures the satisfaction degree of
institutional goals (configuration evaluation). Finally, the AEI compiles the eval-
uations of all individuals in order to breed a new generation from the best ones
configuration adaptation. This process results with a new set of individuals (New
configurations) to be used as next generation in the learning process. Since we
are working with a complex system, we propose use an evolutionary approach
for learning due to the fact that the institutional objective function can be nat-
urally mapped to the fitness function and an evolutionary approach provides a
solution good enough. Notice that the AEI does not learn any agent parameter,
it learns the best parameters by simulation for a certain population of agents,
that is whose values will be changed by the normative transition function and
by the PS transition function. It is a first step learning where the AEI learns
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by simulation the best parameters for a list of populations, thus, in a next step
the AEI could use this learning in a real environment to adapt itself to any
population of agents (e.g., using Case-Based Reasoning (CBR) problem solving
technique).

Configuration
evaluation

AEI ———| Fitness(A,1;,G '—
Simulation A1C) New
i

configurations

" Configuration
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(A C Simulation A0 adaptation
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Fig. 1. Example of a step in EI adaptation using an evolutionary approach.

4 Case Study: Traffic Control

Traffic control is a well-known problem that has been approached from different
perspectives, which range from macro simulation for road net design [9] to traffic
flow improvement by means of multi-agent systems [10]. We tackle this problem
from the Electronic Institutions point of view, and therefore, this section is
devoted to specify how traffic control can be mapped into Autonomic Electronic
Institutions.

In this manner, we consider the Traffic Regulation Authority as an Auto-
nomic Electronic Institution, and cars moving along the road network as exter-
nal agents interacting inside a traffic scene through driving actions. Additionally,
indirect communication is established by means of stop, rear and turn signal in-
dicators. Considering this set-up, traffic norms regulated by Traffic Authorities
can therefore be translated in a straight forward manner into norms belong-
ing to the Electronic Institution. Norms within this normative environment are
thus related to actions performed by cars (in fact, in our case, they are always
restricted to that). Additionally, norms do have associated penalties that are
imposed to those cars refusing or failing to follow them. On the other hand,
institutional agents in the traffic scene represent Traffic Authority employees. In
our case study, we assume institutional agents to be in charge of detecting norm
violations so that we will refer to them as police agents. Each police agent is able
to detect only a portion of the total number of norm violations that car agents
actually do. Therefore, the number of police agents in the traffic scene directly
affects the number of detected norm violations, and thus, the overall quantity of
penalties imposed to car agents. Furthermore, our Electronic Institution is able
to adapt both norms and the number of deployed police agents based on its goals
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— just as traffic authorities do modify them— and, therefore, it is considered to
be autonomic.

Our AFEI sets up a normative environment where cars do have a limited
amount of credit (just as some real world driving license credit systems) so that
norm offenses cause credit reductions. The number of points subtracted for each
traffic norm violation is specified by the sanction associated to each norm, and
this sanction can be changed by the regulation authority if its change leads the
accomplishment of goals. Eventually, those cars without any remaining points
are forbidden to circulate. On the other hand, we assume a non-closed world, so
expelled cars are replaced by new ones having the total amount of points.

Getting into more detail, we focus on a two-road junction. It is a very re-
strictive problem setting, but it is complex enough to allow us to tackle the
problem without losing control of all the factors that may influence the results.
In particular, no traffic signals (neither yield or stop signals nor traffic lights) are
considered, therefore, cars must only coordinate by following the traffic norms
imposed by the AEIL. Our institution is required to define these traffic norms
based on general goals such as minimization of the number of accidents or dead-
lock avoidance.

We model the environment as a grid composed by road and field cells. Road
cells define 2 orthogonal roads that intersect in the center. In previous work [11]
we introduce some nomenclature definitions about the environment.

4.1 AEI specification
Environment As mentioned above, we consider the environment to be a grid.
This grid is composed of cells, which can represent roads or fields. The main
difference among these two types is that road cells can contain cars. Indeed, cars
move among road cells along time.

We define this grid environment as:

P, ={(z,y,a,7,dy,dy) | 0 <z <maz,, 0<y<max,, o PA)UO,

re|0,1], d; € [-1,0,1], dy, € [-1,0,1] )

being x and y the cell position, « defines the set of external agents inside the
grid cell (z,y) (notice that & C A), r indicates whether this cell represents a road
or not, and, in case it is a road, d, and d, stand for the lane direction, whose
values are the same as the ones for car headings. Notice that the institution can
observe the environment properties along time, we use P! to refer the values of
the grid environment at a specific time t. This discretized environment can be
observed both by the institution and cars. The institution observes and keeps
track of its evolution along time, whilst cars do have locality restrictions on their
observations.
Agents We consider A = (4y,..., A,,) to be a finite set of n external agents
in the institution. As mentioned before, external agents correspond to cars that
move inside the grid environment, with the restriction that they can only move
within road cells. Additionally, external agents are given an account of points
which decreases with traffic offenses. The institution forbids external agents to
drive without points in their accounts. The institution can observe the P, =
(a1, ...,a,) agents’ institutional properties, where
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a; = (xi, Yi, Rig, hiy, speed;, indicator;, of fenses;,

accidents;, distance;, points;)
These properties stand for: car A;’s position within the grid, its heading, its
speed, whether the car is indicating a trajectory change for the next time step
(that is, if it has the intention to turn, to stop or to move backwards), the norms
being currently violated by A;, wether the car is involved in an accident, the
distance between the car and the car ahead of it; and, finally, external agent
A;’s point account. Notice that the institution can observe the external agent
properties along time, we use a! to refer the external agent A;’s properties at a
specific time t.

Reference values In addition to car properties, the institution is able to ex-
tract reference values from the observable properties of the environment, the
participating agents as well as the institution. Thus, these reference values are
computed as a compound of other observed values. Considering our road junction
case study, we identity different reference values:

V = {col, crash, of f, block, expel, police)

where col indicates total number of collisions for the last t,, ticks (0 <ty < tpow):

tnow
col= ) " . EeePg fleat)
being P! the values of the grid environment at time t, e, the o component of
element e € P! and Lif let|>1
f(eat> = 0 otherwise

Similarly, considering last t,, ticks (0 < t, < tnow): of f indicates the total
number of offenses accumulated by all external agents; crash counts the number
of cars involved in accidents; block describes how many cars have been blocked
by other cars; expel indicates the number of cars that have been expelled out of
the environment due to running out of points; and finally, police indicates the
percentage of police agents that the institution deploys in order to control the

traffic environment.

Goals Goals are in fact institutional goals. The aim of the traffic authority
institution is to accomplish as many goals as possible. The institution tries to
accomplish these goals by defining a set of norms and by specifying how many
police agents should be deployed on traffic scene.

Institutional goals are defined as constraints upon a combination of reference
values. Considering our scenario, we define restrictions as intervals of acceptable
values for the previous defined reference values (V') so that we consider the
institution accomplishes its goals if V' values are within their corresponding
intervals. In fact, the aim is to minimize the number of accidents, the number of
traffic offenses, the number of blocked cars, the number of cars that are expelled
from the traffic scene, as well as the percentage of deployed police agents. In
order to do it, we establish the list of institutional goals G as:

G = (g(col) € [0,mazxCol], glof f) € [0,maxOff], g(crash) € [0, maxCrash],
g(block) € [0, maxBlock], g(expel) € [0, mazExpel], g(police) € [0, maxPolice] )
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Having more than one institutional goal requires to combine them. We pro-
pose an objective function [12] that favors high goal satisfaction while penalizing

big differences among them:
|G|

sz\/f gl mzaMi]vﬂi)

where 1 < i < |G|, w; > 0 are Welghtlng factors such that > w; = 1, g; is a
function over the reference values, p; € [0,1] and f is a function that returns a
value f(z,[m, M], ) € [0,1] representing the degree of satisfaction of a goal:

r<<m

f(@,[m, M], p) = 1—(1—ﬂ)mfﬂ€ [m, M]

=

=
S
Vv
=

]

ek M—m

Norms Autonomic Electronic Institutions use norms to try to accomplish goals.
Norms have associated penalties that are imposed to those cars refusing or failing
to follow them. These penalties can be parameterized to increase its persuasive-
ness depending on the external agent population behavior.
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4

Fig. 2. Priority to give way to the right (Simma tool screenshot).

Considering a road junction without traffic signals, priorities become basic
to avoid collisions. We consider, as in most continental Europe, that the default
priority is to give way to the right. This norm prevents a car A; located on the
Junction Boundary Entrance (Jpg) to move forward or to turn left whenever
there is another car A; on its right. For example, car 1 in figure 2 must wait
for car 2 on its right, which must also wait for car 3 at the bottom Jpg. The
formalization in table 1 can be read as follows: “if car A; moves from a position
in Jpp at time t — 1 to its next heading position at time ¢ without indicating a
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right turn, and if it performs this action when having a car A; at the Jgg on
its right, then the institution will fine A; by decreasing its points by a certain
amount”.

Where the predicate in(a;, Region,t) in table 1 is equivalent to
I(x,y, ot 7, dy, dy) € P! so that (z,y) € Region and a; € o' and right(a;,a;,t)
is a boolean function that returns true if car A; is located at Jgg area on the
right side of car A;. For the 2-lane Jgg case, it corresponds to the formula:
(@} — hiy + hiyJe, yi +hi, + Dl Jy) == (2%, y5).

Similarly, we define an additional norm that is somehow related to the pre-
vious ‘right priority norm’. We name it ‘front priority norm’. It applies when
two cars A;, A; reach Junction Boundary Entrance areas (Jpg) located at op-
posite lines, and one of them wants to turn left. Car A; turning left may interfere
Aj’s trajectory, and therefore, this norm assigns priority to A; so that A; must
stop until its front Jgg area is clear. Otherwise A; will be punished with the
corresponding fine fron: fee.

Table 1 shows the formalization of this norm, where front(a;,a;,t) is a
boolean function that returns true if car A; is located in front of car A; at
time t. In an orthogonal environment, this function can be easily computed by
comparing car headings ((hf,,h,), (h%,,hf,)) by means of the boolean formula
(Rt ht, + Rt At ) == —1.

iz/Vje T Miyljy

Table 1. Right and Front priority norms.

Right priority norm Front priority norm
Action n(as, Jpe,t — 1)A in(as, Je,t — 1)A
in(ai, (393_1 + hf;lvyf_l + hiy_l)v t)Alin(ai, (Ig_l + hﬁ;layf_l + hzgjl)?t)/\
Tindicator(a;, right,t — 1) indicator(ai,left,t — 1)
Pre-conditions|right(a;,a;,t — 1) m(aj, Jpe,t — 1A

front(ai,aj,t—1)

Consequence |pointst = pointst — fineright pointst = pointst — finegront

Performative Structure As introduced in 1, an AEI involves different groups
of agents playing different roles within scenes in a performative structure. Each
scene is composed of a coordination protocol along with the specification of the
roles that can take part in the scene. Our case study particularizes the Performa-
tive Structure component so that we define it as being formed by a single traffic
scene with two possible agent roles. On one hand, there is an institutional role
played by police agents, whereas, on the other hand, the external role is played
by car agents. Notice also that it is possible to specify the number of agents than
can play each role within a scene.
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4.2 Experimental Settings and Design

As a proof of concept of our proposal in section 3, we have designed an ex-
perimental setting that implements the traffic case study. In this preliminary
experiment we consider four institutional goals related to col, of f, expel, and
police reference values; and both right and front priority norms in table 1. In-
stitutional goals are combined with the objective function introduced in section
4.1, assuming corresponding weights are 4/10,4/10,1/10,1/10 so that the first
two goals are considered to be most important. On the other hand, norms are
parameterized through its fines (i.e., points to subtract to the car failing to follow
the corresponding norm).

The 2-road junction traffic model has been developed with Simma [13], a
graphical MAS simulation tool shown in Figure 2, in such way that both envi-
ronment and agents can be easily changed. In our experimental settings, we have
modeled the environment as a 16 x 16 grid where both crossing roads have 2
lanes with opposite directions. Additionally, the environment is populated with
10 cars, having 40 points each.

Our institution can observe the external agent properties for each tick and can
keep a record of them in order to refer to past ticks. Institutional police agents
determine traffic offenses by analyzing a portion of car actions along time. Exter-
nal agent actions are observed through consecutive car positions and indicators
(notice that the usage of indicators is compulsory for cars in this problem set
up). Furthermore, during our discrete event simulation, the institution replaces
those cars running out of points by new cars, so that the cars’ population is
kept constant. Cars follow random trajectories at a constant 1-cell/tick speed
and they collision if two or more cars run into the same cell. In that case, the
involved cars do remain for two ticks in that cell before they can start following
a new trajectory.

Cars correspond to external agents without learning skills. They just move
based on their trajectories, institutional norms and the percentage of deployed
agents on the traffic scene. Car agents have local information about their environ-
ment (i.e., grid surrounding cells) and know whether their next movements will
violate a norm and what fine will be applied if a police agent sees the infraction.
Car agents decide whether to comply with a norm based on four parameters:
(ful fill_prob , high_punishment, inc_prob, police). Being fulfill_prob € [0,1]
the probability of complying with norms that is initially assigned to each agent,
high_punishment € IN the fine threshold that causes an agent to consider a
fine to be high enough to reconsider the norm compliance, inc_prob € [0, 1] the
probability increment that is added to fulfill_prob when the fine threshold is
surpassed by the norm being violated, and police € [0, 1] the percentage (between
0 and 1) of police agents that the traffic authority has deployed to the traffic
environment. In summary, agents decide whether they keep moving —regardless
of violated norms— or they stop —in order to comply with norms— based on a
probability that is computed as:

Final_prob {police - ful fill_prob fine < high_punishment

police - (ful fill_prob + inc_prob) fine > high_punishment
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Our goal is to adapt the institution to agent behaviors by applying Genetic
Algorithms (GA)3 to accomplish institutional goals, that is, to maximize the
objective function, which comprises the number of collisions, the number of
offenses, the number of expelled cars and the percentage of police agents that
should be deployed to control the traffic environment. We shall notice, though,
that these offences do not refer to offences detected by police agents but to the
real offences that have been actually done by car agents.

As section 3 describes, we propose to adapt the institution to different exter-
nal agent population behaviors by running a genetic algorithm for each popula-
tion. Therefore, institution adaptation is implemented as a learning process of the
“best” institution parameters. In our experiments, Genetic Algorithms run 50
generations of 20 individuals. An individual corresponds to a list of a binary cod-
ifications of specific values for the following institution parameters: right norm
penalty, front norm penalty, and percentage of police agents. Crossover among
individuals is chosen to be singlepoint and a mutation rate of 10% is applied. The
fitness function for individual evaluation corresponds to the objective function
described above, which is computed as an average of 5 different 2000-tick-long
simulations for each model setting (that is, for each set of parameters):

O(v) = 4\ 1(g(col), [0 marcCol, %) + % \Fato ), 0.maz0s 11, 1)+

10 \/f (expel), [0, maxExpel], - \/f (police), [0, maxPolice],0)

where g(col), g(of f), g(expel) and g(police) correspond to average values of
each reference value averaged for 5 different simulations; and f(x, [m, M], ) €
[0, 1] represents the goal satisfaction.

5 Results

From the experimental settings specified above, we have run experiments for five
different agent populations. These populations are characterized by their norm
compliance parameters, being ful fill_prob = 0.5 and inc_prob = 0.2 for the five
of them whereas high_punishment varies from 5 for the first, to 8 for the second,
to 10 for the third, to 12 for the fourth, up to 14 for the fifth (see table 2).

Since both right and front priority norms contribute to reduce accidents, our
AFEI must learn how to vary its fine parameters to increase its persuasiveness for
agents, and eventually, to accomplish the normative goal of minimizing the total
number of collisions. Nevertheless, it is also important for the AEI to reduce the
total number of offenses, as well as, to a lesser extent, the number of expelled cars
and the police deployment percentage. Each institutional agent has an associated
cost, so that the AEI pursues the success of the traffic environment (i.e., a few
collisions, agents respecting traffic norms and not having many expelled agents)
at minimum cost. Thus, the AEI must learn what is the minimun percentage of
police agents that should be deployed to control the traffic environment.

3 We use a genetic algorithm Toolbox [14].
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Table 2. Agent populations.
Parameters populationl|population2|population3|population4|populationb
ful fill_prob 0.5 0.5 0.5 0.5 0.5
high_punishment 5 8 10 12 14
inc_prob 0.2 0.2 0.2 0.2 0.2

Learning AEI parameters is a rather complex task because individual AEI’s
goals are interrelated and can generate conflicts (for example, increasing police
helps with collisions but raises costs). Furthermore, goals are related to agents’
behaviors. As explained before, agent’s behavior is so that its probability of
complying with norms is proportional to the percentage of police, and therefore,
since norms contribute to reduce accidents, collisions increase when police de-
crease. Moreover, the more percentage of police is deployed, the more number of
fines are applied, and thus, the higher number of cars are expelled. Nevertheless,
agents generate less offences when the police percentage increases. Additionally,
the number of expelled cars decreases proportionally, not only to the police per-
centage, but also to the amount of applied fines. On the other hand, it may
be worth recalling that agent’s behavior also increases its probability of com-
plying with norms when the fine is larger than high_punishment. Therefore,
any fine value higher than the population’s high_punishment value will have
the same effect, and thus, will generate equivalent individual goal satisfaction
degrees. As a result, the AEI must learn the best combination of parameters
(fineright, finepront and police) according to the 4-goal objective function and
to the agents’ behavior.

When learning, we have repeated tests for each setting three times —i.e., three

separated learning runs for each agent population and setting—. Table 3 shows
the learned parameters, where columns Learned fine,igne, Learned finegsront,
and Learned police include the learned values for each corresponding parame-
ter and agent population. Each cell in the table contains three values: one per
repeated experiment. Thus, for example, considering populationl, learned val-
ues for fine,ign: are 15 for the first test, 12 for the second one and 7 for the
third test. Notice that, due to the agent’s behavior, any fine value higher that 5
(high_punishment value) will have the same effect. Table 3 also shows the goal
satisfaction value obtained for each test (this value corresponds to the objective
function value explained above (O(V)) using maxzCol = 150, mazOf f = 200,
maxExpel = 200 and max Police = 1).
As it can be seen, learned fines are larger than the population’s high_punishment
value except for the third test in population5 (where the GA fails to find the
maximum). Therefore, the institutional goals are successfully reached in four-
teen of the fifteen tests. In this manner, we can rather state the AEI succeeds
in learning the norms that better accomplish its goals. Relating to the police
percentage, learned values are close to the 90%. This is due to its low associated
weight in the objective function. Notice that the objective function is weighted in
such a way that goals aiming to decrease the number of collision and offenses are
considered to be significantly more important than those that pursue to decrease
the number of expelled cars and the police percentage.
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Table 3. Learning results for five different agent populations.

Population |Learned fine,igni|Learned fines,on:| Learned police || Goal satisfaction
populationl 15, 12, 7 8, 14, 13 0.93, 0.93, 0.93] 0.699, 0.7, 0.691

population2| 13, 13, 14 10, 11, 9 0.93, 0.93, 0.93][0.689, 0.694, 0.691
population3| 15, 12, 15 14, 11, 15 |0.93, 0.87, 0.93[[0.685, 0.681, 0.685
populationd| 15, 13, 15 14, 13, 13 |0.93, 0.93, 0.87|/ 0.676, 0.686, 0.63
population5| 15, 15, 15 15, 15, 8 0.93, 0.93, 0.93[/0.668, 0.674, 0.677

For the seek of clarity, figure 3 shows the overall goal functions for popula-
tionl, population3 and population5 respectively. These 3D charts depict all the
values of the goal function using only two parameters (fine,;gn: and police* but
not finegront), so that search space for the learning algorithm is kept 3 dimen-
sional. The domain for each is 16 x 16 x 1. The figure shows the dependency
between both parameters: when the police percentage is 100% the effect of the
norm fine (fine,igny > high_punishment) is greater than for smaller values of
police, and becomes null when the police percentage goes down to 0%.
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(a) Populationl (b) Population3 (c) Population5
Fig.3. Objective functions with 4 goals: col,off,expel,police. (a)Populationl
(high_punishment = 5), (b)Population3 (high_punishment = 10), (c)Populationb
(high_punishment = 14).

6 Discussion and Future work

Within the area of Multi-Agent Systems, adaptation has been usually envisioned
as an agent capability. In this manner, works such as the one by Excelente-Toledo
and Jennings [15] propose a decision making framework that enables agents to
dynamically select the coordination mechanism that is most appropriate to their
circumstances. In [16] Gasser and Ishida presented a general distributed problem-
solving model which can reorganize its architecture, in [17] Ishida and Yokoo in-
troduce two new reorganization primitives that change the population of agents
and the distribution of knowledge in an organization; and Horling et al. [18] pro-
pose an approach where the members adapt their own organizational structures
at runtime. On the other hand, it has been long stated [19] that agents working
in a common society need norms to avoid and solve conflicts, make agreements,
reduce complexity, or to achieve a social order. Both approaches —i.e. adaptation
and norms— have been considered together by Lopez-y-Lopez et al. [20], where

4 Notice that the parameter police is scaling to 15.
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agents can adapt to norm-based systems and they can even autonomously de-
cide its commitment to obey norms in order to achieve associated institutional
goals. This adaptation from the point of view of agents in these related works is
the most remarkable difference with the approach presented in this paper, which
focuses on adapting the institution —that is, the authority issuing norms— rather
than adapting the agents. Institution adaptation is accomplished by changing
norms autonomously. Therefore, we do not select norms at design stages as it
is done by Fitoussi and Tennenholtz [21], who do it so by proposing the no-
tions of minimality and simplicity as selecting criteria. They study two basic
settings, which include Automated-Guided-Vehicles (AGV) with traffic laws, by
assuming an environment that consists of (two) agents and a set of strategies
available to (each of) them. From this set, agents devise the appropriate ones in
order to reach their assigned goals without violating social laws, which must be
respected. Our approach does not use regulative norms to represent agent goals,
in contrast to Boella et al. [22], since we do not focus on modeling agents but the
institution itself. For this same reason, agents are not allowed to change norms,
which it is done through the institutional adaptation. Although the idea of au-
tonomous normative system and goals of a normative system has been promoted
before, [22], our proposal differs from it since we focus on the extension of the
current notion of Electronic Institutions as an autonomous system (AEI) that
could adapt to societal changes by changing the norms and the performative
structure of the institution.

Regarding the traffic domain, MAS has been previously applied to it [10] [23],
[24]. But traffic has been also widely studied outside the scope of MAS, for ex-
ample, the preliminary work by [25] used Strongly Typed Genetic Programming
(STGP) to control the timings of traffic signals within a network of orthogonal
intersections. Their evaluation function computed the overall delay.

Preliminary results in this paper provide soundness to our AEI approach. We
plan to perform the same experiments with other norms and with more goals.
Nevertheless, we plan to extend both our traffic model and the institutional
adaptation capabilities so that the AEI will not only learn the most appropriate
norms for a given agent population, but it will be able to adapt to any change
in the population.
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