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Abstract. This paper investigates de Finetti’s coherence as an opera-
tional foundation for a wide range of non-additive uncertainty measures
and focuses, in particular, on Belief functions and Lower probabilities.
In a companion paper, we identify a number of non-limiting circum-
stances under which Dutch Book criteria for Belief functions and Lower
probability are undistinguishable, which is surprising given that Lower
probabilities are known to exist which do not satisfy the axioms of Belief
functions. The main contribution of this paper consists in putting for-
ward a comparison between a criterion based on the Brier scoring rule for
Belief Functions and the scoring rule introduced in 2012 by Seidenfeld,
Schervish and Kadane for Imprecise probabilities. Through this compar-
ison we show that scoring rules allow us to distinguish coherence-wise
between Belief functions and Imprecise probabilities.

Keywords: Scoring Rules· Belief functions · Lower probabilities · Im-
precise probabilities· Coherence.

1 Introduction

In a companion paper [4], we observe that in any finite boolean algebra with at
least three atoms there exist books defined over rich-enough sets of events that do
not distinguish assignments extendible to Belief functions from those extendible
to Lower probabilities. Given that all Belief functions are Lower probabilities,
but the converse does not hold, our previous finding is somewhat puzzling. In
this work we extend the comparison between those two well-known non-additive
measures of uncertainty to the alternative, but logically equivalent (in probabil-
ity), criterion of coherence based on the Brier scoring rule.

To do so, we introduce a new scoring rule in Definition 6 and (i) show that it
characterises assignments that are extendible to Belief functions and (ii) compare
it to the scoring rule for imprecise probabilities introduced by Seidenfeld et al in
[20]. This latter allows us to make a distinction between coherent Belief functions
on the one hand, and coherent Lower probabilities on the other hand.
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The paper is organised as follows. In Section 2, we recall the Dutch Book and
the proper scoring rule coherence criteria for probability functions. Early gen-
eralisations of probabilistic coherence have been proposed in [22, 15]. In Section
3, we give the required background on uncertainty measures, a geometric view
on coherence and extendibility, and a brief outline of the key results obtained
in [4]. In Section 4, we introduce a scoring rule that characterises assignments
extendible to Belief functions. In Section 5, we relate our work to [20], draw
some conclusions and outline the research questions opened up by the present
investigation.

2 Dutch Books and Proper Scoring Rules

Bruno de Finetti proves in Chapter 3 of [7] the equivalence of two criteria for
the coherent assessment of uncertainty. The first is based on the no-existence
of a Dutch book and it is defined in terms of a two-player zero-sum game.
Suppose that ψ1, . . . , ψn are elements of the set of sentences built recursively
from a finite set of propositional variables as usual, which are interpreted (see,
e.g. [17]) as the events of interest to a bookmaker B. Suppose further that this
interest materialises with the publication of a book β : ψ1 7→ β1, . . . , ψn 7→ βn
where for i = 1, . . . , n, βi ∈ [0, 1]. A gambler G then chooses real-valued stakes
σ1, . . . , σn and for i = 1, . . . , n, pays σiβi to B. G will then receive back σiv(ψi),
where v(ψi) = 1, if ψi is true, and v(ψi) = 0 otherwise. Thus, G’s payoff is∑n
i=1 σi(v(ψi)− βi) and B’s payoff is

∑n
i=1 σi(βi − v(ψi)). The book published

by B is coherent if there is no choice of (possibly negative) stakes which G can
make, exposing B to a sure loss. More precisely, for every σ1, . . . , σn ∈ R there
is a valuation v such that,

n∑
i=1

σi(βi − v(ψi)) ≥ 0. (1)

The second criterion is framed in terms of the individual decision of a fore-
caster F, who is asked to assess a value βi to each event ψi (a forecast). F knows
that they will suffer a penalty Li (L stands for loss) proportional to the square of
the euclidean distance between the realized value of ψi and the chosen value βi.
It is assumed that the forecaster’s objective is to minimize their loss. A notable
example of a loss function just introduced is the Brier scoring rule

Li(ψi, βi) = (‖v(ψi)− βi‖2)2. (2)

De Finetti shows that minimising the expectation of loss under the Brier rule is
equivalent to avoiding sure loss in the Dutch Book setting. However he argues
that it is preferable as it neutralises some potential shortcomings arising from
the strategic aspects of the betting game. Even if they are formally defined in
the same way, in the context of the Dutch Book, any assignment on a set of
events is referred to in what follows as a book, while in the framework of scoring
rules, it is referred to as a forecast.
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Definition 1 (Proper Scoring Rule Criterion). Let Ψ = {ψ1, . . . , ψn} be
a set of events and, for i = 1, . . . , n, let βi ∈ [0, 1] be the value the forecaster
F assigns to each ψi. The forecast β : ψ1 7→ β1, . . . , ψn 7→ βn is coherent if
there is no distinct forecast β′ whose Brier score uniformly dominates β, i.e. if
L(Ψ, β) =

∑
i(‖v(ψi)− βi‖2)2, that is to say there is no β′ s.t. L(Ψ, β′) < L(Ψ, β)

for every valuation v.

De Finetti in [7], shows the equivalence between the Dutch Book and the
Proper Scoring Rule criteria for defining (probabilistic) coherence. Therefore
the following proposition holds.

Proposition 1. Let Ψ = {ψ1, . . . , ψn} be a set of events and let β : ψi 7→ βi
for i = 1, . . . , n a forecast over Ψ . The forecast β is coherent iff it extends to a
probability measure over the algebra of events.

Example 1. Let us consider the set of events Ψ = {α,¬α} and the forecast
β : α 7→ 0.8,¬α 7→ 0.6 on them. The penalty that F will suffer depends on
the realizations of the events. If v(α) = 1 (and v(¬α) = 0), then L(Ψ, β) =
(1 − 0.8)2 + (0 − 0.6)2 = 0.4. If v(α) = 0 (and v(¬α) = 1), then L(Ψ, β) =
(0 − 0.8)2 + (1 − 0.6)2 = 0.8. In the geometric interpretation of Fig. 1, the
penalty relative to the first realization of the event α is the square of the euclidean
distance between (1, 0) and the point β = (0.8, 0.6), while the penalty relative to
the second one is the square of the euclidean distance between β and (0, 1). Let
us consider the projection of β onto the simplex of probabilities. This projection
(also referred to as de Finetti’s projection) identifies the point β′ = (0.6, 0.4).
Since β′ is closer to each endpoint of the simplex of probabilities, its Brier scoring
rule is smaller than the Brier scoring rule relative to β, i.e. β′ dominates β and
β is incoherent.

(0, 1)

(1, 0)

β

β′

α

¬α

(0, 0)

Fig. 1. Example of an incoherent forecast.

In geometrical terms, β is coherent if and only if it cannot be moved in
such a way to reduce the distance from the set of all possible points. This is a
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characterization of a convex hull. Note that this is not to say that any point
inside a convex hull shares the same distance from all its vertices, but that no
matter how we move the point, it will necessarily get closer to some points of
the convex hull and farther from some others. In particular, this happens if we
consider the vertices of the convex hull. Instead, if we consider a point lying
outside the convex hull, then we can always move it in such a way as to reduce
its distance from all the point of the convex hull.

Through Definition 1, we are not minimizing the sum of the squared euclidean
distance between β and the vertices of the convex hull of probabilities (property
hold by the centroid), but we minimize every single distance between β and all
the points of the convex hull. As stated in [7], (footnote 18), if we move the
point β to another position β∗, its distance from a generic point P increases or
decreases depending on whether P is on the same side as β or β∗ with respect
to the hyperplane that bisects the segment ββ∗ orthogonally. Two cases must
be considered then:

1. If β is not in the convex hull PΨ (the convex hull of the probabilities over
Ψ), there exists a hyperplane separating it from PΨ . Moving β to β∗, its
orthogonal projection into such hyperplane, diminishes its distance from all
points P ∈PΨ .

2. If β belongs to the convex hull PΨ , then to whatever point β∗ we move β,
it always follows that for some point P ∈ PΨ , the distance increases. If we
construct the bisecting orthogonal hyperplane relative to ββ∗ and P is on
the same side as β∗, the point β would be distinguished from the convex hull
of PΨ , but this is contrary to the hypothesis.

3 Background on uncertainty measures and their
geometric interpretation

We shall assume the reader to be familiar with basic notions and results of
(finitely additive) probability theory. In particular, since we will only consider
measures on finite hence atomic boolean algebras, we shall often identify a prob-
ability measure P on an algebra A with the distribution p obtained by restricting
P on the atoms of A. As for the other uncertainty measures we will deal with in
the following sections, it is convenient to recall some basic definitions and results
from [9, 1, 14, 16].

Boolean algebras are understood as described in the signature {∧,∨,¬,⊥,>}
and their elements are denoted by lower-case Greek letters with possible sub-
scripts. In particular, the atoms of an algebra will be indicated as α1, α2, . . ..

Definition 2 (Belief function). A Belief function B on an algebra A is a
[0, 1]-valued map satisfying:

(B1) B(>) = 1, B(⊥) = 0;
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(B2) B (
∨n
i=1 ψi) ≥

∑n
i=1

∑
{J⊆{1,...,n}:|J|=i}(−1)i+1B

(∧
j∈J ψj

)
for n = 1, 2, 3, . . ..

Belief functions on boolean algebras can be characterised in terms of mass func-
tions as follows. Let A be any finite boolean algebra with atoms α1, . . . , αt. A
mass function is a map m that assigns to each subset X of atoms, a real number
such that m(∅) = 0 and

∑
X m(X) = 1. Given a mass function m, the map

B(ψ) =
∑

X⊆{αi|αi≤ψ}

m(X)

is a Belief function and every Belief function on A can be defined in this way.

Definition 3 (Lower probability). A Lower probability P on an algebra A
is a monotone [0, 1]-valued map satisfying:

(L1) P (>) = 1, P (⊥) = 0;
(L2) For all natural numbers n,m, k and all ψ1, . . . , ψn, if {{ψ1, . . . , ψn}} is an

(m, k)-cover of (ϕ,>)3, then k +mP (ϕ) ≥
∑n
i=1 P (ψi).

Although the definition above does not make clear why those measures are called
Lower probabilities, [1, Theorem 1] characterises them as follows: Let P : A →
[0, 1] be a Lower probability and denote with M(P ) the following set:

M(P ) = {P : A→ [0, 1] | P is a probability function and ∀ψ ∈ A, P (ψ) ≤ P (ψ)}.

Then, for all ψ ∈ A,

P (ψ) = min{P (ψ) | P ∈M(P )}.

Lower probabilities are more general than Belief functions. The following
result characterises the Lower probabilities that are Belief functions.

Remark 1. A Lower probability P on an algebra A is a Belief function iff P
satisfies (B2), namely

P

(
n∨
i=1

ψi

)
≥

n∑
i=1

∑
{J⊆{1,...,n}:|J|=i}

(−1)i+1P

∧
j∈J

ψj

 (3)

for all n = 1, 2, . . ..

The geometric approach we consider is similar to Paris’s [17] and is related
to [5, 6].

3 An element ϕ of a boolean algebra A is said to be covered m times by a multiset
{{ψ1, . . . , ψn}} of elements of A if every homomorphisms of A to {0, 1} that maps ϕ
to 1, also maps to 1 at least m propositions from ψ1, . . . , ψn as well. An (m, k)-cover
of (ϕ,>) is a multiset {{ψ1, . . . , ψn}} that covers > k times and covers ϕ n+k times.
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Let Ψ = {ψ1, . . . , ψn} be a finite set of events (i.e., elements of a finite
boolean algebra A). Let us denote by V = {v1, . . . , vt} the finite set of all possible
homomorphisms of A to the boolean chain on the two-element set {0, 1}. For
every j = 1, . . . , t, call ej the binary vector

ej = (vj(ψ1), . . . , vj(ψn)) ∈ {0, 1}n. (4)

Given this basic construction, we can characterise in geometric terms the extend-
ability problem for assignments on Ψ to finitely additive probability measures
and Belief functions. The additional notions we need are the euclidean convex
hull co(X) of a subset X ⊆ Rt (which reduces to co(X) in case X is finite) and
the less common tropical convex hull co∧,+(X) of X (see [8]).

Definition 4 (Tropical Hull). Let x1, . . . ,xt ∈ [0, 1]n. The tropical hull of
the xj’s is the subset co∧,+(x1, . . . ,xt) of all points y of [0, 1]n for which there

exist parameters λ1, . . . , λt ∈ [0, 1] such that
∧t
j=1 λj = 0 and

y =

t∧
j=1

λj + xj .

The symbol ∧ stands for the minimum and + for the ordinary addition in the
tropical semiring (R,∧,+). Given λ ∈ [0, 1] and x ∈ [0, 1]n, λ + x = (λ +
x1, . . . , λ+ xn) and the

∧
operator is defined component-wise.

For e1, . . . , et being defined as above from the formulas ψi’s in Ψ , let us
consider the following sets:

1. PΨ = co(e1, . . . , et);
2. BΨ = co(co∧,+(e1, . . . , et)), where, in this case, being co∧,+(e1, . . . , et) usu-

ally uncountable, co denotes the topological closure of the Euclidean convex
hull co.

Theorem 1 ([7, 10, 12]). Let Ψ = {ψ1, . . . , ψn} be a finite set of events and let
β : Ψ → [0, 1] be a assignment. Then,

1. β extends to a probability measure iff (β(ψ1), . . . , β(ψn)) ∈PΨ ;
2. β extends to a Belief function iff (β(ψ1), . . . , β(ψn)) ∈ BΨ .

In general, PΨ is strictly included in BΨ (i.e., PΨ ⊂ BΨ ) and this is ex-
pected because Belief functions are strictly more general than probabilities mea-
sures. In [4], we ask whether avoiding sure loss is sufficient to distinguish Lower
probabilities from Belief functions. In other words, we ask whether the above
strict inclusion is matched by a detectable difference in coherence, and find that
the answer is negative.

We denote with LΨ the set of all assignments β on Ψ that extend to a Lower
probability P . The sets of events that do not distinguish Belief functions from
Lower probabilities are referred to as adequate. The main result of our previous
work reads as follows.
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Theorem 2. For every algebra A with at least three atoms there exists an ad-
equate subset Ψ of A, i.e., Ψ is such that BΨ = LΨ .

We now introduce a scoring rule that characterises assignments extendible
to Belief functions. In addition, we investigate adequate sets of events from the
perspective of this rule.

4 Coherence for Belief functions

Let us begin by recalling Jaffray’s extension of de Finetti’s Dutch Book to Belief
functions [15]. The key idea of his framework is that if an event ψ occurs, then
every non-contradictory event which logically follows from ψ, also occurs.

Let Ψ = {ψ1, . . . , ψn} be a set of events and β : ψ1 7→ β1, . . . , ψn 7→ βn a book
published by the bookmaker B. If the gambler G places real stakes σ1, . . . , σn
on ψ1, . . . , ψn at the betting odds written in β, then G pays B for each ψi the
amount σiβi and gains the amount σiCψ(ψi). The function Cψ(ψi) is defined
as follows, where |=cl denotes the consequence relation of classical propositional
logic:

Cψ(ψi) =

{
1 if |=cl ψ → ψi,

0 otherwise.

The total balance for B is

n∑
i=1

σi(βi − Cψ(ψi)).

Definition 5 (Coherence Under Partially Resolved Uncertainty). Let
Ψ = {ψ1, . . . , ψn} be a set of events and β a book over Ψ . The book β is coherent
under partially resolved uncertainty if there is no choice of stakes which G can
make, exposing B to a sure loss, i.e. it is not the case that, for every fixed
non-contradictory event ψ,

∑n
i=1 σi(βi − Cψ(ψi)) < 0.

This notion of coherence characterises Dempster-Shafer Belief functions [21]
in the sense that a book β on Ψ is coherent under partially resolved uncertainty
if and only if it extends to a Belief function on the algebra of events, [19].

A criterion based on a Brier-like scoring rule can be put forward for Belief
functions as follows. From Definition 1 above it follows that a forecast β is
dominated by another forecast β′ if the squared euclidean distance between β
and the vertices of PΨ is greater than the squared euclidean distance between β′

and the same points. Thus, we can move β to reduce the distance from all points
of PΨ , vertices included. Hence, we can extend the definition of dominating
forecast to Belief functions. To do this we consider the vertices of the polytope
BΨ , rather than those of PΨ . This distance can be recovered from the Cψ
function used by Jaffray recalled above:

L(ψi, βi) = (‖Cψ(ψi)− βi‖2)2. (5)
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Remark 2. As pointed out by two anonymous referees, the forthcoming [18] pro-
vides a characterisation of scoring rules for Belief functions yielding a result
which is essentially equivalent to Theorem 3 below. Whilst we take this as wel-
come news to the effect that scoring-rule based coherence is of interest beyond
the well-known probabilistic case, the present work differs substantially in its
motivating question from [18]. In particular, whilst this latter reviews several
candidate notions for ‘coherent’ Belief functions, our present concern lies in com-
paring Belief functions and Lower probabilities against the natural formulation
provided by Definition 6. Indeed, as we point out in Subsection 5.2, the notion
captured by this Definition allows us to tell coherence-wise Belief functions from
Lower probability, a distinction not permitted by Dutch-Book coherence [4].

Definition 6 (Scoring Rule for Belief functions). Let Ψ = {ψ1, . . . , ψn} be
a set of events and, for i = 1, . . . , n, let βi ∈ [0, 1] be the value the forecaster
F assigns to each ψi. The forecast β : ψ1 7→ β1, . . . , ψn 7→ βn is coherent if
there is no distinct forecast β′ whose Brier score uniformly dominates β, i.e. if
L(Ψ, β) =

∑
i(‖Cψ(ψi)− βi‖2)2, then there is no β′ s.t. L(Ψ, β′) < L(Ψ, β) for

every non-contradictory event ψ and every possible value of Cψ(ψi).

As shown in the following Proposition, BΨ can be characterised by using the
Cψ function. We denote by Cψ(Ψ) the vector (Cψ(ψ1), . . . , Cψ(ψn)).

Proposition 2. Let A be a boolean algebra, Ψ = {ψ1, . . . , ψn} be a finite set of
events over A and β : Ψ → [0, 1] be an assignment over Ψ . Then

BΨ = co(Cψ(Ψ)| ψ is a non-contradictory event in A).

Proof. Since both BΨ and co(Cψ(Ψ)| ψ is a non-contradictory event in A)
are convex hulls, to show that they coincide, it is sufficient to show that they
share the same vertices. In particular, recall that the vectors ej are defined as
ej = (vj(ψ1), . . . , vj(ψn)) where vj is an homomorphisms of A to the boolean
chain on the two-element set {0, 1}. Thus, ej identifies in Rn the same point of
Cαj

(Ψ) = (Cαj
(ψ1), . . . , Cαj

(ψn)) where αj is an atom of A. The other vertices
of BΨ are recovered from the ej with j = 1, . . . , t by taking the point-wise min-
imum of every subset of ej ’s. Since the entailment relation to which Cψ refers
to is the consequence relation of classical propositional logic, for any proposi-
tional formula ψi and ψj we have |=cl (ψi ∨ ψj) → ψi iff |=cl ψi → ψi and
|=cl ψj → ψi. Thus, Cαi∨αj

(ψi) = 1 iff Cαi
(ψi) = 1 and Cαj

(ψi) = 1, i.e.
min{Cαi(ψi), Cαj (ψi)} = 1. Therefore, the vertices of BΨ obtained as ei ∧ ej
with i, j ∈ {1, . . . , t} identify the same point of Cαi∨αj (Ψ) and, in general,∧

j∈J⊆{1,...,t}

ej = CψJ
(Ψ),

where, for all J ⊆ {1, . . . , t}, ψJ =
∨
j∈J⊆{1,...,t} αj .

Theorem 3. Let A be a boolean algebra, and let Ψ = {ψ1, . . . , ψn} be a finite
set of elements of A. A forecast β defined over Ψ is coherent if and only if it
can be extended to a Belief function on A.
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Proof. (⇒) If the forecast β is coherent, then there is no rival forecast β′ defined
over the same set of events s.t. L(Ψ, β′) < L(Ψ, β) for every non-contradictory
event ψ and every possible value of Cψ(ψi). By Proposition 2, the vertices of
BΨ coincide with all possible values of CΨ . Thus, β ∈ BΨ and by Theorem 1 it
can be extended to a Belief function over A.

(⇐) If the forecast β can be extended to a Belief function over A, then
by Theorem 1, β ∈ BΨ and by Proposition 2, β ∈ co(Cψ(ψi)| ψ is a non-
contradictory event and i = 1, . . . , n). Therefore, no β′ reduces the (euclidean)
distance from all possible point of that convex hull (vertices included), which
implies that there is no β′ s.t. L(Ψ, β′) < L(Ψ, β) for any possible value of Cψ.

Example 2. Let A be the boolean algebra of 8 elements and 3 atoms {α1, α2, α3}
and consider the non-trivial set of events Ψ = {ψ1, ψ2, ψ3} ⊂ A where ψ1 =
α1 ∨ α2, ψ2 = α2 ∨ α3 and ψ3 = α1 ∨ α3. In Table 2 we compute the Cψ(ψi)
function for every non-contradictory event ψ.

ψ Cψ(ψ1) Cψ(ψ2) Cψ(ψ3)

α1 1 0 1

α2 1 1 0

α3 0 1 1

α1 ∨ α2 1 0 0

α2 ∨ α3 0 1 0

α1 ∨ α3 0 0 1

α1 ∨ α2 ∨ α3 0 0 0
Table 1. Values of Cψ(ψi) over the boolean algebra A and the set of events Ψ

Let us consider the forecasts β1 : ψ1 7→ 3/8, ψ2 7→ 3/8, ψ3 7→ 3/8 and
β2 : ψ1 7→ 7/8, ψ2 7→ 7/8, ψ3 7→ 7/8. If we compute the convex hull consider-
ing the points identified by Cψ(Ψi), we can verify that β1 belongs to it while β2
does not. Since the convex hull generated by Cψ coincides with BΨ , β1 extends
to a Belief function and β2 does not.

5 Comparing Scoring Rules for Belief functions and
Imprecise probabilities

5.1 Scoring Rule for Imprecise probabilities

Seidenfeld et al. introduce in [20] the following scoring rule for imprecise proba-
bilities. Let us consider the event ψ and a Lower and Upper probability forecast
(p, q) for the event ψ, that is to say, let us assume that p, q ∈ [0, 1] are values as-
signed to ψ by a Lower probability and its dual Upper probability, respectively.
The Brier-style IP scoring rule is hence defined as follows.
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L(ψ, (p, q)) =

{
(1− q)2 if v(ψ) = 1,

p2 if v(ψ) = 0.

Extending the concept of dominance between forecasts from the definitions
on probabilities and Belief functions, we say that a forecast F = {(pi, qi)| i =
1, . . . , n} over the events Ψ = {ψ1, . . . , ψn} strictly dominates another forecast
F ′ = {(p′i, q′i)| i = 1, . . . , n} if L(Ψ,F) < L(Ψ,F ′). The penalty for a set of
forecasts is the sum of the individual penalty scores.

Since the forecast F0 = {(pi = 0, qi = 1)| i = 1, . . . , n} dominates any
other forecast, coherence for imprecise probabilities based on scoring rule risks
to trivialise if we do not further elaborate it. For this reason, we need to consider
an additional restriction on the class of rival forecasts and an index of relative
imprecision between forecasts.

This is the reason why, for each forecast F = {(pi, qi)| i = 1, . . . , n}, Seiden-
feld et al., construct a scoring set SF defined as follows:

SF = {(q1, p2, . . . , pn), (p1, q2, . . . , pn) . . . , (p1, . . . , pn−1, qn)}.

Thus, a forecast F is at least as determinate as a forecast F ′ if co(SF ) is iso-
morphic under rigid movements of a subset of co(SF ′).

Finally, the class M of rival forecasts considered is the ε-contamination
class.4 The scoring criterion for imprecise probabilities is then defined as fol-
lows.

Definition 7 (Scoring Rule for Imprecise probabilities). Let A be a boolean
algebra and let F be a forecast over the atoms of the algebra. F is IP-coherent
with respect to M if there is no dominating forecast F ′ from M such that S ′F
is at least as determinate as SF .

The following theorem characterises coherent forecasts.

Theorem 4. Let A be a boolean algebra and let F be a forecast over the atoms
Ψ = {α1, . . . , αt} of the algebra A. Then, SF lies entirely within the probability
simplex PΨ iff F matches an ε-contamination model and it is IP-coherent with
respect to M.

It is now worth to point out that, for what concerns the extendability problem,
an immediate consequence of the theorem above is that a forecast F = {(pi, qi) |
i = 1, . . . , t} on the atoms α1, . . . , αt is IP-coherent with respect to M if and
only if for all i = 1, . . . , t, pi = min{P (αi) | P ∈ co(SF )} and qi = max{P (αi) |
P ∈ co(SF )} where Ψ = {α1, . . . , αt}. In addition, as we will see in the following
Section, it can be that a forecast F is not coherent as for Definition 7 and still
being extendable to an Upper and Lower probability.

4 For what concerns the present paper, we do not need to elaborate more on the pre-
viously given notions and definitions, and we invite the interested reader to consult
[20] for the relative literature on this class of forecasts.
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5.2 Distinguishing Belief functions and Imprecise probabilities
through Scoring Rules

As illustrated in [4], given a finite boolean algebra A with at least three atoms
we can identify an adequate set of events and assignments βi that do not satisfy
equation (3) and still cannot distinguish Belief functions from Lower probabili-
ties. In particular, the main result of [4] is based on the following.

Remark 3. [4, Example 2] Let us consider an algebra A with atoms α1, . . . , αt
(t ≥ 3) and probability distributions p1(α1) = q, p1(α2) = 1− q, p1(αi) = 0 for
all i 6= 1, 2; p2(α2) = q, p2(α3) = 1−q, p2(αi) = 0 for all i 6= 2, 3; p3(α1) = 1−q,
p3(α3) = q, p3(αi) = 0 for all i 6= 1, 3 where q is any value 1/3 < q ≤ 1/2. Let us
consider, as events, the co-atoms of A: ψ1 = α1 ∨α2, ψ2 = α2 ∨α3, ψ3 = α1 ∨α3

and the assigment β : ψi 7→ q for every i = 1, 2, 3. The Lower probability
P derived by the probability distributions pj extends β. Furthermore, it not
difficult to show that P is not a Belief function as it fails to prove (3) of Remark
1. However, the same assignment β is coherent in the sense of Definition 5 and in
fact there is a Belief function of A that extends it. Thus, for that set of events, it
is impossible to distinguish assignments that are coherent in the sense of Belief
functions, from those that are coherent in the sense of Lower probabilities.

Now, let us move to analyse what happens if we take into account coherence
through proper scoring rules. First, it is easy to see that the assignment displayed
in Remark 3 is coherent according to Definition 6. However, if we consider the
forecast F = {(0, 1 − q), (0, 1 − q), (0, 1 − q)} relative to the same probability
distribution over the atoms of A and construct the scoring set SF = {(1 −
q, 0, 0), (0, 1−q, 0), (0, 0, 1−q)}, then it does not lie in PΨ ′ where Ψ ′ is the set of
the three atoms considered. In fact, since 1/3 < q ≤ 1/2, then 1/2 ≤ 1− q < 2/3
and co(SF ) 6⊆ PΨ ′ = co((1, 0, 0), (0, 1, 0), (0, 0, 1)). Thus, by Theorem 4, the
forecast F is not IP-coherent with respect to the ε-contamination model class
even though the assignments βP : α1 7→ 0, α2 7→ 0, α3 7→ 0 and βP : α1 7→
1− q, α2 7→ 1− q, α3 7→ 1− q can be extended to Lower and Upper probabilities,
respectively.

Let us conclude with a brief discussion on why scoring rule-based coherence
seems to be stronger (in the sense that allows to distinguish more) than avoiding
sure loss. Indeed, although this argument needs further and deeper insights that
will be addressed in our future work, it seems clear that such an asymmetry
might be caused by the information that these criteria encode in their formal-
ization. In particular, although scoring rule-based criterion for Belief functions
(Definition 6) relies on the sole information carried by the events ψ1, . . . , ψn on
which (coherent) forecasts are defined, the same criterion for imprecise proba-
bilities (Definition 7) needs a forecast F to be defined on the atoms and on the
co-atoms of A. In this setting, in fact, a forecast assigns values of Lower and Up-
per probability to each atoms and hence, in algebraic terms, it needs both atoms
and co-atoms of A to be defined: if qi = P (αi) = 1−P (¬αi) being ¬α =

∨
j 6=i αj

a co-atom of A. We believe that the observed asymmetry between the Dutch
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Book and scoring rule-based criteria, especially for imprecise probabilities, lies
in this additional information that the latter requires.

6 Conclusion

We investigated particular sets of events that do not distinguish Belief functions
from Lower probabilities from the point of view of Dutch Books, but which are
distinguishable through scoring rules. We introduced a loss function through
which we characterise assignments defined over a generic subset of events and
that can be extended to a Belief function. Considering an already existing scoring
rule defined for imprecise probabilities, we observed that the same assignments
from which we can recover adequate sets of events, through coherence, can dis-
tinguish Lower probabilities from Belief functions. As pointed out at the end of
the previous section, this result opens up new lines of research. In particular,
given the tight connection between the scoring rule criterion and the geometric
interpretation of the extendibility criterion, we could first characterise geomet-
rically the sets LΨ and UΨ of the assignments defined over Ψ and that can be
extended to Lower and Upper probabilities. Then, following the same process
used in Section 4 for the Belief functions, define additional scoring rules through
which it is possible to characterise assignments defined over generic sets of events
and that can be extended to Upper or Lower probabilities. We could also inves-
tigate how to define a scoring rule that characterises assignments extendible to
necessity measures.

The comparison reported in this paper are limited to the unconditional case.
A general logical framework to investigate conditional probability functions has
recently been introduced in [11]. Combining this with the conditional approach
to Duch Book coherence put forward in [3, 2] on the one hand, and the approach
based on scoring rules of [13] on the other hand, we aim to extend our compari-
son to conditional, non-additive measures of uncertainty. With regards to Belief
functions the very recent [18] obtains related results from a distinct angle, as
briefly noted in Remark 2 above. Further work will elucidate potential mutual
relations between the two independent approaches.
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