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Abstract. The minimization of propositional formulae is a classical problem in
logic, whose first algorithms date back at least to the 1950s with the works of Quine
and Karnaugh. Most previous work in the area has focused on obtaining minimal, or
quasi-minimal, formulae in conjunctive normal form (CNF) or disjunctive normal
form (DNF), with applications in hardware design. In this paper, we are interested
in the problem of obtaining an equivalent formula in any format, also allowing
connectives that are not present in the original formula. We are primarily motivated
in applying minimization algorithms to generate natural language translations of
the original formula, where using shorter equivalents as input may result in better
translations. Buchfuhrer and Umans have proved that the (decisional version of
the) problem is Σp

2 -complete. We analyze three possible (practical) approaches to
solving the problem. First, using brute force, generating all possible formulae in
increasing size and checking if they are equivalent to the original formula by testing
all possible variable assignments. Second, generating the Tseitin coding of all the
formulae and checking equivalence with the original using a SAT solver. Third,
encoding the problem as a Quantified Boolean Formula (QBF), and using a QBF
solver. Our results show that the QBF approach largely outperforms the other two.

Keywords. SAT Solvers, QBF Solvers, Boolean Formula Minimization, Natural
Language Processing

1. Introduction

The minimization of complex Boolean expressions is a longstanding problem in logic.
The first algorithms developed in the 1950s, e.g., the works of Quine, McCluskey [1,2,3],
and Karnaugh [4] paved the way for extensions and optimizations in the following years
(e.g., the Petrick’s method [5], and the Espresso heuristic logic minimizer [6], i.a.). These
works have focused on obtaining minimal equivalent representations in specific canoni-
cal forms (e.g., conjunctive normal form (CNF) or disjunctive normal form (DNF)), and
confined the studies to a limited set of connectives. Here, we are interested in the general
Boolean formula minimization, where no assumptions are made in the form of the input
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formula or the output. In fact, our minimization methods allow us to use distinct sets of
connectives for the input and the output.

We frame Boolean minimization (i.e., finding the logically equivalent shortest for-
mula(e) to a given one) as a Quantified Boolean Formulae (QBF) satisfiability problem
and design an algorithm that consistently finds the shortest equivalents of a given for-
mula. We compare this algorithm with a brute force baseline, and an approach based on
SAT.

Motivation We have two main motivations behind our work. The first one is shared
in [7], where the authors present qbf2epr, a tool that translates QBF to formulae in
effective propositional logic (EPR). Their aim is to generate benchmarks for EPR and
compare solvers for QBF and EPR. Similarly, our formula minimization problem, en-
coded as QBF, generates benchmarks for QBF solvers and allows us to compare SAT and
QBF techniques. The automated deduction community is divided into sub-communities
(e.g., SAT, QBF, SMT, MaxSAT, EPR), which try to solve distinct classes of problems,
from SAT that is NP-complete, to EPR that is NEXPTIME-complete, passing by QBF
that is PSPACE-complete, and each one has its own competition and set of benchmarks.
However, many ideas that proved effective in one area (like learning in SAT) have been
exported to others. In this sense, problems that could be solved with two distinct tech-
nologies, like ours, contribute to comparing the level of maturity reached in each area.

Our second motivation relates to a use case of minimization algorithms in natural
language processing. Grasping the meaning of logical formalisms is a crucial task for
many scholars, yet sometimes even experienced logicians might have trouble decipher-
ing a complex formula. This problem is exacerbated with students of logic, particularly
when they encounter unfamiliar formal systems [8]. Techniques from natural language
generation [9,10], and in particular logic-to-text generation methodologies [11,12], can
be used for simplifying and translating logical formulae into optimally intelligible text in
natural languages (NLs) (such as English, Mandarin, or Korean), which can effectively
explain formulae to systems’ users. For example, given the following first-order formula:

∃x(Problem(x)∧∀y(Researcher(y)→ Interested(y,x)))

we want a system that can automatically generate a faithful and comprehensible expla-
nation, via the following (or another semantically equivalent) text:

There is a problem that every researcher finds interesting.

What are the characteristics that a formula should have to become a suitable input
for a logic-to-text translation system? One aspect that one might want to look at is length.
Brevity has surrounded linguistic debate at least since [13]. Arguably, shorter utterances
should be preferred over longer ones and unnecessary prolixity should be avoided. This
principle might also apply to logical formulae. Intuitively, a short formula, rather than
a longer logical equivalent, should be better suited to be translated into NL. In this pa-
per, we tackle exclusively the logical aspect of the problem. For the application of the
algorithm developed in this paper to the linguistic aspect of the problem, see [14]. We
focus on propositional logic, a formalism in which equivalence is decidable, and limit
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our examination to formulae’s length,2 aiming only for the shortest equivalents to a given
formula.

1.1. Related Work

Formula Minimization Boolean formula minimization is a natural optimization prob-
lem in the second level of the Polynomial-Time Hierarchy Σp

2 . Indeed, the problem is
used by [15] to motivate the definition of the Polynomial Hierarchy. Its decisional ver-
sion can be formulated as the following problem: Given a Boolean formula, prove the
existence of a (smaller) formula (in the same set of variables) that gets the same evalua-
tion of the given formula, for all possible assignments of the variables. The fact that both
sets of quantified variables, as well as the time to evaluate the formulae, are bounded in
the input proves its inclusion in Σp

2 . As we will see in Section 2, this corresponds to our
brute-force algorithm. It is assumed that both the given formula and its minimization are
circuits or formulae of the same form. However, in our implementation, we leave open
the possibility to use distinct sets of connectives. Apart from some completeness proofs
for some particular forms of the input and output [16], the proof for the general form had
eluded researchers until [17] proved Σp

2 -completeness of the problem.
The optimization of complex Boolean expressions has been studied extensively in

electronic circuits, where practical matters (i.e., complex circuits take up physical space
and costs more resources in their implementation) make it crucial to find optimal cir-
cuit representations. Well-known minimization methods include the Quine-McCluskey
algorithm [1,2,3] and the Karnaugh map [4]. In the Karnaugh map, Boolean results are
transferred from a truth table onto a two-dimensional grid, where each cell position rep-
resents one combination of input conditions, while each cell value is the corresponding
output value. Optimal groups of 0s and 1s are identified, which represent the terms of a
canonical form that can be used to write a minimal expression. The Quine–McCluskey
algorithm finds all the prime implicants of a function and uses them in a chart to find
(i) the essential prime implicants of the function, and (ii) other prime implicants that are
necessary to cover the function. The method is functionally identical to the Karnaugh
map, but its tabular form makes it more efficient to employ in computer systems.

However, despite this long history of research and attempts to extend well-
established methods (e.g., [18] tries to implement the XOr operator in the Quine-
McCluskey algorithm), most work has focused on a limited set of connectives and canon-
ical forms (e.g., CNF or DNF). For our scope, we need a more general approach where
all connectives could be, in principle, taken into account.

Quantified Boolean Formulae Quantified Boolean Formulae (QBFs) are an extension
of propositional logic, where universal and existential quantifications are allowed [19].
The use of quantifiers results in a greater expressive power than classic propositional
logic. If all variables occurring in a QBF φ are bound, then φ is called closed. QBFs often
assume a canonical prenex conjunctive normal form (PCNF) φ = ∃�x∀�y∃�z · · ·ψ , where
the portion containing only quantifiers and bound variables is called the prefix, followed
by ψ that is a quantifier-free Boolean formula with conjunctions over clauses, called the
matrix.

2We define length as the number of symbols (i.e., predicates and connectives, parentheses excluded) con-
tained in a formula.
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Algorithm 1: Brute-force algorithm
Input: φ
Output: a minimal equivalent formula ψ

1 Function equivalent(φ ,ψ):
2 foreach Assignment I : Var(φ)→{0,1} do
3 if I(φ) �= I(ψ) then
4 return f alse

5 return true

6 Function main(φ):
7 foreach i = 1, . . . , |φ | do
8 foreach formula ψ s.t. |ψ|= i and Var(ψ)⊆Var(φ) do
9 if equivalent(φ ,ψ) then

10 return ψ

The QBF satisfiability problem [20] consists of determining, for a given QBF φ , the
existence of an assignment for the free variables, such that φ evaluates to true under this
assignment. Hence, φ is true iff, there exists a truth assignment to �x, such that, for all
truth assignments to�y, there exists a truth assignment to�z,. . . such that ψ is true. Several
QBF solvers have been developed over time,3 and applications of QBFs technologies
range from AI to planning [21,22,23]. QBF solvers only use to provide the instantiation
of most externally existentially-quantified variables�x, since for the other ones, instantia-
tion depends on previous universal variables�z = f (�y). In this work, we exploit QBFs to
encode and solve the Boolean minimization problem.

1.2. Structure of the Paper

The rest of the paper is structured as follows. Section 2 introduces the algorithms that we
employ in our experiments and the QBF encoding we develop. Section 3 illustrates the
experiments we carry out, comparing the three aforementioned approaches, and shows
the results. We present some reflections on possible future directions in Section 4.

2. Algorithms

In our experimentation, we analyze three algorithms that we will call brute-force, SAT-
based, and QBF-based.

Brute-force Algorithm The brute-force algorithm (see Alg. 1) is the algorithm that we
mention in Section 1.1 as proof that formula minimization is in Σp

2 . Two formulae φ and
ψ are equivalent iff φ ↔ ψ is a tautology. Like TAUT, the formula equivalence problem
is CoNP-complete. Considering that we test the equivalence for all formulae ψ smaller
than φ , the average time required by equivalent(φ ,ψ) is the same as considering ψ

3http://www.qbflib.org
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a random formula smaller than φ . Assuming that the probability of I(φ) = 1 is 1/2, this
average time would be O(|φ |) (notice that in this situation, half of the calls finish after
checking one assignment, 1/4 after checking two assignments, etc. hence, on average we
would check ∑2|φ |

i=1 i 1
2i < 2 assignments in every call). However, the assumption P(I(φ) =

1) = 1/2 is, in general, false.
We can also estimate the number of calls to this function as follows. The number of

distinct complete trees of size n that we can construct with k binary symbols is kn. If the
trees can have any form, then the computation is more complicated. Let C be the set of
possible binary symbols (hence, we are not considering Not) and V be the set of possible
leaves. The number of forms of trees with m binary nodes and m+ 1 leaves is given by
the recurrence f (m) = ∑m−1

i=0 f (i) f (m− i− 1) that define the Catalan numbers Cm. The
number of distinct trees will be Cm |C |m |V |m+1. Using Stirling approximation, this can
be approximated as 4m√

πm3/2 |C |m |V |m+1. As a function of the tree size n = 2m+ 1, this

is O((4|C ||V |)n/2/n3/2) calls to the equivalent function.

Algorithm 2: SAT-based algorithm
Input: φ
Output: a minimal equivalent formula ψ

1 Function tseitin(φ ,x):
2 if φ = φ1 ∧φ2 then
3 y1,y2 := f reshvars()
4 return tseitin(φ1,y1)∪ tseitin(φ2,y2)∪CNF({x ↔ y1 ∧ y2})
5 · · · /* Similarly for other connectives or variables */

6 Function equivalent(φ ,ψ):
7 x1,x2 := f reshvars()
8 Γ := tseitin(φ ,x1)∪ tseitin(ψ,x2)∪CNF({¬(x1 ↔ x2)})
9 return SAT (Γ) �= satis f iable

10 Function main(φ):
11 foreach i = 1, . . . , |φ | do
12 foreach formula ψ s.t. |ψ|= i and Var(ψ)⊆Var(φ) do
13 if equivalent(φ ,ψ) then
14 return ψ

SAT-based Algorithm The second algorithm (see Alg. 2) is based on the use of a SAT
solver and the Tseitin encoding of the two formulae that we want to prove equivalent.
Given two formulae φ , ψ , we can find, in linear time |φ |+ |ψ|, a CNF formula Γ such that
the two formulae are equivalent iff Γ is not satisfiable. Experiments show that, in practice,
we still can get some gain with respect to the brute-force algorithm (see Section 3).

QBF-based Algorithm The third algorithm (see Alg. 3) is based on the use of a QBF
solver. Here, instead of testing every possible minimal formula ψ , we test every possi-
ble depth δ . This supposes a significant improvement since there is a linear number of
depths to try, instead of an exponential number of formula candidates. Second, instead of
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Algorithm 3: QBF-based algorithm
Input: φ
Output: a minimal equivalent formula ψ

1 Function scheme(δ ,z):
2 x f alse := f reshvar(∃(1))
3 Γ :=CNF({x f alse →¬z})
4 foreach y ∈ ∀(1) do
5 xy := f reshvar(∃(1))
6 Γ := Γ∪CNF({xy → (z ↔ y})
7 if δ > 0 then
8 z1,z2 := f reshvar(∃(2))
9 Γ := Γ∪ scheme(δ −1,z1)∪ scheme(δ −1,z2)

10 foreach c ∈ C do
11 xc := f reshvar(∃(1))
12 Γ := Γ∪CNF({xc → (z ↔ z1 c z2)})
13 return Γ∪CNF({x f alse +∑y∈∀(1) xy +∑c∈C xc = 1})
14 Function equivalent(φ ,δ):
15 z1,z2 := f reshvars(∃(2))
16 ∀(1) :=Vars(φ)
17 Γ := tseitin(φ ,z1)∪ scheme(δ ,z2)∪CNF({z1 ↔ z2})
18 return QBF(Γ) = true

19 Function main(φ):
20 foreach δ = 1, . . . ,depth(φ) do
21 if equivalent(φ ,δ ) then
22 return ψ extracted from Γ

a Tseitin encoding of the candidate, we compute a scheme of the candidate. This means
that given a depth δ , we consider all terms of depth δ as possible candidates, without
fixing the content of each node of the candidate. The equivalence between the original
formula and this scheme can be encoded as a QBF formula with three quantifier alterna-
tions: ∃�x.∀�y.∃�z.Γ. In Alg. 3, these three sets of variables are represented as ∃(1), ∀(1), and
∃(2) and individual variables are named x, y, and z, respectively. If the QBF formula is
true, the values we got for variables x∈∃(1) will encode the minimal formula. Notice that
QBF solvers only provide the instantiations of the most external existentially-quantified
variables, since the values of the other existentially-quantified variables depend on more
externally universally-quantified variables.4

These schemes are defined as follows. We assume that there is a maximal arity for
all connectives; in our case 2 (although it could be generalized for any set of fixed-arity
connectives). A scheme of depth δ is basically a complete tree of depth δ , therefore
containing 2δ+1 −1 nodes. For every node i of the scheme, and for every truth constant

4In the case of using a QBF solver unable to provide these instantiations, we cannot compute the minimal
equivalent formula.
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(we only consider the constant f alse), or variable y of the original formula, or connective
c, we have a variable in xi

f alse, xi
y, xi

c ∈ ∃(1). When xi
c ∈ ∃(1) gets the value true, then at

position i of the scheme, we have the connective c. Respectively, when variable xi
y ∈ ∃(1)

is true, we have variable y at position i, or constant f alse when xi
f alse is true. Additionally,

we will have a variable xi
dummy that gets the value true when at position i of the scheme

there is not any content. The constraints:

xi
dummy + xi

f alse + ∑
y∈∀(1)

xi
y + ∑

c∈C

xi
c = 1 (1)

in the QBF formula will ensure that one, and only one, of them get the value true. Vari-
ables in ∀(1) are just the set of variables in the original formula. The original formula and
the scheme are equivalent if for all assignments to these variables, both the original for-
mula and scheme get the same evaluation. Variables in zi ∈ ∃(2) encode the truth values
for every possible subformula at position i of the scheme or of the Tseitin encoding of
the original formula. The QBF formula will also contain restrictions of the form:

xi
false →¬zi

xi
y → (zi ↔ y)

xi
Not → (zi ↔¬zi·1)

xi
c → (zi ↔ zi·1 czi·2)

(2)

The intended meanings of these constraints are: If at position i of the scheme we have
the constant f alse, the sub-scheme is evaluated to false, if there is an original variable
y ∈ ∀(1), it is evaluated to y, and if there is a connective c ∈ C , then the sub-scheme gets
the same value as the connective c operated on the evaluations zi·1 of the left-child of i
and the evaluation zi·2 of the right-child.

When in a node of the scheme we put a Not, we only use one of the children, and in
the case of putting a variable, we do not use any of the children. To avoid useless search
in the QBF solver, we can force all these useless nodes to be fixed to the dummy value
by adding the following constraints to the QBF formula:

xi¬ → xi·2
dummy

(xi
y ∨ xi

dummy ∨ xi
f alse)→ (xi·1

dummy ∧ xi·2
dummy)

(3)

In this encoding of schemes, from the assignment computed by the QBF solver for
the variables in the most-externally existentially-quantified ∃(1) of the formula Γ, we can
obtain the minimized formula ψ . For instance, if the variables set to true are the ones on
the left, the formula ψ is the one on the right:

xε
Or

x1
a

x1·1
dummy

x1·2
dummy

x2
Not

x2·1
b

x2·2
dummy

∨

a ¬

b
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Notice that the size of the QBF formula we get is O(2depth(φ) · (|C |+ |Vars(φ)|)).
Assuming that the original formula is balanced, in practice 2depth(φ) ≈ |φ |. Therefore, we
could consider it a polynomial encoding. Notice also that we do not make a profit from
the commutativity and associativity of most connectives.

In this approach, we only bound the depth of the scheme. If we also want to limit its
size, we can add the encoding of some cardinality constraint that bound the number of
nodes in the schema that are distinct from the dummy:

∑
i
¬xi

dummy ≤ size bound (4)

Notice that this QBF-based algorithm may be used to minimize the depth of an
equivalent formula, without using Eq. (4). If instead, we want to minimize the size of
an equivalent formula, it is not so simple as adding Eq. (4). It is possible that, given an
original formula φ , there exists an equivalent formula ψ , satisfying size(ψ) < size(φ),
but where depth(ψ) > depth(φ), and it would not be found by the algorithm. Stricto
sensu, we should try all schemes of depth depth(ψ)≤ size(φ) to avoid this situation and
ensure that all smaller-sized equivalent candidates are considered. However, this would
lead us to obtain QBF formulae of size O(2size(φ)). In the experiments (see Section 3),
we have observed that it is enough to consider all schemes of size size(ψ)≤ size(φ) and
imposing a bound depth(ψ)≤ log2 size(ψ)+1, to get the same results as with the other
algorithms.

3. Experiments and Results

We conduct some experimentation with our algorithms. The three algorithms are im-
plemented in Python 3 and are publicly available at https://gitlab.nl4xai.eu/
eduardo.calo/QBF-boolean-minimization. In the case of the SAT-based algo-
rithm, we use Glucose 4 [24], a state-of-the-art SAT solver, via the Python mod-
ule python-sat.5 In the case of the QBF-based algorithm, we use the state-of-the-art
CAQE [25,26] QBF solver, although any other QBF solver that accepts QDIMACS stan-
dard6 input and output may be used.

For every size in s = 1, . . . ,20, we generate 100 random formulae of size s and
minimize them using the three algorithms. We make sure that all syntactically distinct
formulae are generated with the same probability. We do it carefully to avoid any bias.
However, we do not consider commutativity and associativity of connectives or other
formula equivalences. We generate formulae of size s over a set of

√
s variables7 and

connectives C = {Not,And,Or}, and minimizations are searched among formulae with
connectives C ′ = {Not,And,Or,Implies}.8 We also check that our conclusions are the
same for another number of variables (e.g., half of the desired size, etc.) and that the
implementations agree on the results in terms of formula size using any of the three
methods.

5https://github.com/pysathq/pysat
6http://www.qbflib.org/qdimacs.html
7Using s/c or sc variables does not seem to affect substantially the results.
8We include Implies in C ′ to remark that the set of input and output connectives may be different (contrar-

ily to other approaches).
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Figure 1. Average and median time required by the three algorithms with respect to the size of the original
formula (left) and the resulting minimized formula (right).

We use a cluster with 11 calculating nodes with 2 Intel Xeon CPUs at 2.2GHz with
10 cores/CPU and 92GB of RAM. We set a time-out of 20,000s. The brute-force and the
SAT-based algorithms reach the time-out in some instances for s = 15,18,19,20. These
values are not considered in the computation of the mean and median times. Therefore,
these mean and median values are abnormally low.

In Figure 1 (left), we show the average and median (logarithm of) CPU time required
by each one of the algorithms as a function of the size of the input formula. We clearly
observe that the QBF-based algorithm outperforms the other two algorithms, which seem
to require exponential time on the size of the input. We also observe that the SAT-based
is consistently better than the brute-force algorithm (a constant distance between the
functions, in logarithmic axes, means an improvement of constant factor). This is quite
surprising since, as we mention in Section 2, the computation of the formula equivalence
can be done in linear average time.9 It is also remarkable that, in the case of brute-force
and SAT-based, there is a significant difference between the average and median time.
The reason, as we comment in detail below, is the significant variability in the times
required by each instance. The same effect produces a fluctuation in the values of the
average time. We can conclude that, although in most of the instances (attending to the
median), the three algorithms minimize the formula in less than one second, for sizes
smaller than 20, just a few instances make brute-force and SAT-based require around 1h
on average when the size is around 20.

In Figure 1 (right), we show the average and median (logarithm of) CPU time as a
function of the size of the obtained minimal formula. Here the differences between the
mean and median times are smaller. Hence, we can conclude that the size of the output
determines the time required by the algorithms. Again, it is clear that the QBF-based
algorithm outperforms the other two. We still observe that the median time is smaller
than the average time, which indicates that significant variability still exists. Curiously,
the times depend on the parity of the formula sizes: Even-size formulae are easier than
odd-size formulae. The reason could be that, except in the case of negation, the rest of
the connectives are binary.

In Figure 2 (left), we show how the average size of the minimized formula grows
with respect to the size of the original formula. We observe that the growth is close to
the square root of the original size. Recall that we generate random formulae of size s

9Equivalence checking of two propositional formulae is CoNP-complete in the worse case. However, for
random formulae, and random assignments, the average time is decent.
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Figure 2. Average size of the minimized formula w.r.t. the size of the original formula (left) and distribution
of minimized sizes for formulae of original size 8 and 20 (right).
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Figure 3. Distribution of times for the instances solved with the brute-force algorithm (left) and SAT-based
algorithm (right).

and with
√

s variables. Curiously, we observe that odd-size formulae are simplified more
than even-size formulae, although the reason for this is not clear. In Figure 2 (right), we
show the distribution of sizes of the minimized formulae (for original formulae of sizes
20 and 8).

As mentioned above, we observe significant variability in CPU times, for the brute-
force and SAT-based algorithms. In Figure 3, we sort the instances in decreasing order of
CPU time and represent, in double logarithmic axes, these times for the 100 instances.
We observe that this representation is close to a line (truncated on the top due to time-
outs) with an increasing (negative) slope when the size increases. This implies that the
CPU time in these algorithms follows a power-law probability distribution, where the
time required by a few instances is responsible for most of the average time. The standard
solution in these situations is to use some kind of restart policy or some randomization
of the algorithm. In our case, we could randomize the order of the candidates to minimal
formulae. However, since we want to obtain the minimal equivalent formula, we cannot
randomize the order of the sizes of formulae that we try.

4. Conclusion and Future Work

In this paper, we have analyzed the practical use of three algorithms for general Boolean
formula minimization: a simple one that proves that the problem is in Σp

2 , one based
on the use of a SAT solver to check formula equivalences, and one that uses a Tseitin
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encoding of a formula’s scheme and a QBF solver. We show that the third one clearly
outperforms the other two. The use of QBF solvers represents thus the state-of-the-art
for the Boolean minimization problem.

We have done the experimentation using random formulae. We plan to expand the
work using formulae that are not randomly generated, e.g., deriving from natural lan-
guage, or realistic random formulae [27,28,29]. Moreover, our experiments have been
limited to Boolean formulae. A natural extension of this work would be to see if this or
similar methods could scale up to other (more expressive) formalisms, e.g., first-order
logic (FOL). This would open up a range of interesting research questions, as in FOL,
equivalence is undecidable. Adapting the QBF approach would probably not be feasible,
yet, a semi-brute force approach, e.g., using a first-order theorem prover, could prove
successful.
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