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1 INTRODUCTION

Ultraproducts are a powerful tool in classical model theory. Its applications
range from an ultraproduct version of the compactness theorem to algebraic
characterizations of elementary classes. Its attraction comes from the fact
that it preserves all properties expressible in first-order logic and also from
its algebraic nature. The method originated with Skolem in the 1930’s, and
has been used extensively since the work of Łoś in the 1950’s. For a general
survey on the subject I refer the reader to [3] and [17].

Being one of the basic methods of constructing models in classical math-
ematical logic, it is a natural question to ask for the fuzzy predicate case.
Do ultraproducts play also such a relevant role? What are the conditions for
their existence? In this paper we present the first step to answer these ques-
tions. Here we examine different possibilities of defining reduced products
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and ultraproducts in fuzzy predicate logics. We prove analogues to the Łos
Theorem for these notions and discuss the advantages and drawbacks of each
definition introduced.

In fuzzy mathematical logic, ultraproducts have been used in different
ways. In a classical sense, ultrapowers on the real unit interval give a charac-
terization of MV-algebras [18]. In [13], the authors classify and axiomatize
all universal classes generated by a certain infinite totally ordered MV-algebra
by using ultrapowers of the additive group of integers. In [4], distinguished
algebraic semantics for t-norm based fuzzy logics are studied, being the se-
mantics of hyperreals another meaningful semantics close to the standard one.
Strong non-standard completeness for fuzzy logics was introduced in [10] and
more recently [19], the notion of hyperreal state have been defined.

Non-classical proposals are also present (for a reference see [9], [11], [21],
[20], [12] and [1]). We have tried to encompass the most commonly used non-
classical definitions of ultraproduct of the mathematical fuzzy logic literature.
We extend, when available, their results to work in arbitrary fuzzy predicate
logics.

This paper is an extended and full revised version of the contribution [8]
of the author to the conference ISMVL’10. It is structured as follows: we
start with some preliminaries on fuzzy predicate logics. In section 3, we
study ultraproducts over a fixed MTL-algebra. In section 4 we introduce the
notion of reduced product defined from pairs of filters. Finally, in section 5
we present some future research lines.

2 PRELIMINARIES

Our study of the model theory of fuzzy predicate logics is focused on the
basic fuzzy predicate logic MTL∀.

Now we introduce the syntax of MTL∀. A predicate language Γ is a triple
(P,F,A) where P is a non-empty set of predicate symbols, F is a set of function
symbols and A is a mapping assigning to each predicate and function symbol
a natural number called the arity of the symbol. The function symbols F for
which A(F ) = 0 are called the object constants. The predicate symbols P
for which A(P ) = 0 are called the truth constants.

Formulas of the predicate language Γ are built up from the symbols in
(P,F,A), the connectives and truth constants of MTL, the logical symbols ∀
and ∃, variables and punctuation. From now on, the formulas of a predicate
language Γ will be called Γ-formulas. A Γ-sentence is a Γ-formula without
free variables.
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Throughout the paper we consider the equality symbol as a binary predi-
cate symbol not as a logical symbol, we work in equality-free fuzzy predicate
logics. That is, the equality symbol is not necessarily present in all the lan-
guages and its interpretation is not fixed. We introduce now an axiomatic
system for the predicate logic MTL∀:

(P) the axioms resulting from the axioms of MTL by the substitution of the
propositional variables by the Γ-formulas.

(∀1) ∀xφ(x)→ φ(t), where t is substitutable for x in φ.

(∃1) φ(t)→ ∃xφ(x), where t is substitutable for x in φ.

(∀2) ∀x(φ→ ϕ)→ (φ→ ∀xϕ), where x is not free in φ.

(∀3) ∀x(φ ∨ ϕ)→ (φ ∨ ∀xϕ), where x is not free in φ.

The deduction rules are those of MTL and generalization: from φ infer ∀xφ.
By Σ `MTL∀ αwe denote that the formula α follows from the set of formulas
Σ in the axiomatic system of the fuzzy predicate logic MTL∀. When it is clear
by the context we omit the subscript MTL∀.

We introduce now the semantics for the fuzzy predicate logic MTL∀:

Definition 1 Given an MTL-algebra B, a B-structure for a predicate lan-
guage Γ is a tuple

M = (M, (PM)P∈Γ, (FM)F∈Γ)

where:

1. M is a non-empty set.

2. For each n-ary predicate P ∈ Γ, if n > 0, PM is a B-fuzzy relation
PM : Mn → B. If n = 0, PM is an element of B.

3. For each n-ary function symbol F ∈ Γ, if n > 0, FM : Mn → M is a
crisp function. If n = 0, FM is an element of M .

Given an MTL-algebra B and a B-structure M, an M-evaluation of the ob-
ject variables is a mapping v which assigns to each variable an element from
M . By φ(x1, . . . , xk) we mean that all the free variables of φ are among
x1, . . . , xk. Let v be an M-evaluation, x a variable, and d ∈ M , we denote
by v[x → d] the M-evaluation such that v[x → d](x) = d and for each
variable y different from x, v[x→ d](y) = v(y).

3



Let B be an MTL-algebra, M be a B-structure and v be an M-evaluation,
we define the values of the terms and truth values of the formulas as follows:

‖c‖BM,v = cM, ‖x‖BM,v = v(x)

‖F (t1, . . . , tn)‖BM,v = FM(‖t1‖BM,v, . . . , ‖tn‖BM,v)

for each variable x, each object constant c ∈ Γ, each n-ary function symbol
F ∈ Γ for n > 0 and Γ-terms t1, . . . , tn, respectively.

‖P (t1, . . . , tn)‖BM,v = PM(‖t1‖BM,v, . . . , ‖tn‖BM,v)

for each n-ary predicate P ∈ Γ,

‖δ(φ1, . . . , φn)‖BM,v = δB(‖φ1‖BM,v, . . . , ‖φn‖BM,v)

for each n-ary connective δ of MTL and Γ-formulas φ1, . . . , φn. Finally, for
the quantifiers,

‖∀xφ‖BM,v = inf{‖φ‖BM,v[x→d] : d ∈M}

‖∃xφ‖BM,v = sup{‖φ‖BM,v[x→d] : d ∈M}

Remark that, since the MTL-algebras we work with are not necessarily
complete, the above suprema and infima could be not defined in some cases.
It is said that a B-structure is safe if such suprema and infima are defined
for all the formulas and all evaluations. From now on we assume that all
our structures are safe. If v is an evaluation such that for each 0 < i ≤
n, v(xi) = di, and λ is either a Γ-term or a Γ-formula, we abbreviate by
‖λ(d1, . . . , dn)‖(B,M) the expression ‖λ(x1, . . . , xn)‖BM,v.

Definition 2 Let φ be a Γ-sentence, given an MTL-algebra B and a B-
structure M, it is said that M is a model of φ iff ‖φ‖(B,M) = 1. And that M
is a model of a set of Γ-sentences Σ iff for all φ ∈ Σ, M is a model of φ.

Definition 3 Let T ∪{φ} be a set of Γ-sentences. We say that φ is a semanti-
cal consequence of T (denoted by T |= φ) iff for every MTL-algebra B and
every B-structure M, if M is a model of T , then M is also a model of φ.
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From now on, given an MTL-algebra B, we say that (B,M) is a Γ-
structure instead of saying that M is a B-structure for a predicate language
Γ.

Definition 4 Let (B,M) be a Γ-structure, byAlg(B,M) we denote the sub-
algebra of B whose domain is the set

{‖φ(d1, . . . , dn)‖(B,M) : d1, . . . , dn ∈M and φ(x1, . . . , xn) is a Γ-formula}

Then, it is said that (B,M) is exhaustive iff Alg(B,M) = B.

Given two Γ-structures (B1,M1) and (B2,M2), we denote by
(B1,M1) ≡ (B2,M2) the fact that (B1,M1) and (B2,M2) are elementar-
ily equivalent, that is, that they are models of exactly the same Γ-sentences.
In this section we have presented only a few definitions and notation, a de-
tailed introduction to the syntax and semantics of fuzzy predicate logics can
be found in [14] and [5].

2.1 Mappings, Homomorphisms and Congruences
Different definitions have been used so far for basic model-theoretic opera-
tions on structures. For instance, the notion of elementary submodel, mor-
phism [9], elementary embeddings and submodels [15], fuzzy submodel, el-
ementary fuzzy submodel and isomorphism of structures of first-order fuzzy
logic with graded syntax [20], complete morphism in languages with a sim-
ilarity predicate [1] and the notion of σ-embedding [4]. Being our starting
point all these works, in this section we recall the notions of mapping, of
homomorphism and of congruence of a model, as introduced in [6]. In the
aforementioned paper we tried both to encompass the most commonly used
definitions in the literature and to extend the corresponding notions of classi-
cal predicate logics.

Definition 5 Let (B1,M1) be a Γ1-structure and (B2,M2) be a Γ2-
structure, with Γ1 ⊆ Γ2. We say that the pair (g, f) is a mapping iff

1. g : B1 → B2 is an MTL-algebra homomorphism of B1 into B2.

2. f : M1 →M2 is a mapping of M1 into M2.

3. For each atomic Γ1-formula φ(x1, . . . , xn) and elements d1, . . . , dn ∈
M1, g(‖φ(d1, . . . , dn)‖(B1,M1)) = ‖φ(f(d1), . . . , f(dn))‖(B2,M2)

Moreover, if in addition:
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• Condition 3. above holds for every Γ1-formula, (g, f) is said to be an
elementary mapping.

• g preserves the existing infima and suprema, (g, f) is said to be a σ-
mapping.

• For each n-ary function symbol F ∈ Γ1 and elements d1, . . . , dn ∈
M1,

f(FM1(d1, . . . , dn)) = FM2(f(d1), . . . , f(dn))

(g, f) is said to be a homomorphism

It is easy to check by induction on the complexity of the formu-
las, that for every mapping (g, f) the following holds: For each
quantifier-free Γ1-formula φ(x1, . . . , xn) and elements d1, . . . , dn ∈ M1,
g(‖φ(d1, . . . , dn)‖(B1,M1)) = ‖φ(f(d1), . . . , f(dn))‖(B2,M2).

If (g, f) is both a σ-mapping and a homomorphism we would say that
(g, f) is a σ-homomorphism. Moreover, we would say that (g, f) is an em-
bedding when (g, f) is a σ-homomorphism with both g and f one-to-one, and
we denote by (B,M) ∼= (A,N) when these two structures are isomorphic
(that is, there is an embedding (g, f) from (B,M) into (A,N) with g and
f onto). Homomorphisms that in addition are elementary mappings will be
called elementary homomorphisms. Remark that, unlike [1], homomorphisms
are crisp when restricted to the algebraic reducts of the models. Observe also
that, working with predicate languages without function symbols, the notions
of mapping and homomorphism coincide, but it is not the case for arbitrary
structures. Finally,

Note that, by definition, homomorphisms are not always σ-
homomorphisms, as are in [9] or [1] (mappings are not always σ-mappings
respectively). The following proposition is a reformulation of Propositions
6.1 and 6.2 in [9] :

Proposition 6 Let (g, f) be a mapping of the Γ-structure (B1,M1) into the
Γ-structure (B2,M2). If (g, f) is a σ-mapping with f onto, then (g, f) is an
elementary mapping and (B1,M1) ≡ (B2,M2).

Finally, we introduce now the notion of congruence.

Definition 7 A congruence on a Γ-structure (B,M) is a pair (θ,E) where:

1. θ is an MTL-congruence on the algebra B.
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2. E is an equivalence relation E ⊆M ×M such that:

• For each n-ary function symbol F ∈ Γ and elements
d1, . . . , dn, e1, . . . , en ∈ M , if for each 0 < i ≤ n, (di, ei) ∈ E,
then

(FM(d1, . . . , dn), FM(e1, . . . , en)) ∈ E

• For each n-ary predicate P ∈ Γ and elements
d1, . . . , dn, e1, . . . , en ∈ M , if for each 0 < i ≤ n, (di, ei) ∈ E,
then

(PM(d1, . . . , dn), PM(e1, . . . , en)) ∈ θ

Now, given a congruence (θ,E) on (B,M) we define the quotient struc-
ture (B/θ,M/E) by:

• For each n-ary function symbol F ∈ Γ and elements d1, . . . , dn ∈M ,

FM/E([d1]E , . . . , [dn]E) = [FM(d1, . . . , dn)]E

• For each n-ary predicate P ∈ Γ and elements d1, . . . , dn ∈M ,

PM/E([d1]E , . . . , [dn]E) = [PM(d1, . . . , dn)]θ

where, given an element d ∈M and b ∈ B, [d]E and [b]θ denote respectively
the equivalence classes of d modulo E and of b modulo θ. Observe that,
like the classical case, given a homomorphism we obtain a congruence and
conversely, given a congruence we obtain the so-called canonical mapping.
We will say that (θ,E) is an elementary congruence (σ-congruence, respec-
tively) iff its canonical mapping (gθ, fE) is an elementary homomorphism
(σ-homomorphism, respectively).

3 ULTRAPRODUCTS OVER AN MTL-ALGEBRA

The first ultraproducts we study are defined over a fixed MTL-algebra. See
for instance [21] for Rational Pavelka’s logic (RPL) or [20] in the case of
first-order fuzzy logic with graded syntax. Here we work over a fixed MTL-
algebra not necessarily complete, and for arbitrary fuzzy predicate languages,
using κ-complete ultrafilters.

Definition 8 Let I be a non-empty set and κ an infinite cardinal. A filter H
over I is said to be κ-complete iff the intersection of any non-empty set of
fewer than κ elements of H belongs to H .
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Given a set X we denote by |X| the cardinality of X .

Definition 9 Let I be a non-empty set, κ an infinite cardinal and for each
i ∈ I , let (B,Mi) be a Γ-structure. Assume that U is a κ-complete ultrafilter
over I such that |B| < κ. The ultraproduct (B,

∏
Mi/U) of the structures

{(B,Mi) : i ∈ I} has as algebraic part of
∏

Mi/U (regarded as a classical
first-order structure) the usual ultraproduct construction, that is, the quotient
of the direct product

∏
Mi modulo the congruence θU defined as usual: for

every d, e ∈
∏
Mi, (d, e) ∈ θU iff {i ∈ I : d(i) = e(i)} ∈ U . And for each

n-ary predicate P ∈ Γ, and every d1, . . . , dn ∈
∏
Mi,

‖P ([d1]θU
, . . . , [dn]θU

)‖(B,
Q

Mi/U) = b iff
{i ∈ I : ‖P (d1(i), . . . , dn(i))‖(B,Mi) = b} ∈ U

Observe that there is a unique structure with the above properties, the ul-
traproduct is well-defined because, by Lemma 4.2.3. of [3], a proper ultra-
filter U over a nonempty set I is κ-complete iff for every partition of I into
fewer that κ parts, exactly one of the parts belongs to U . Then we con-
sider the partition (Xb : b ∈ B) where for each b ∈ B, Xb = {i ∈ I :
‖P (d1(i), . . . , dn(i))‖(B,Mi) = b}. Since |B| < κ, by Lemma 4.2.3. of [3],
for some b ∈ B, Xb ∈ U . Here we encounter a first limitation of this defini-
tion of ultraproduct, the assumption of κ-completeness of the ultrafilters.

Remark that, so defined, ultraproducts of classical first-order structures are
two-valued and thus, this definition is an extension of the classical notion of
ultraproduct. In case that, for every i ∈ I , (B,Mi) = (B,M) for the same
Γ-structure, the ultraproduct is called the ultrapower of (B,M) and will be
denoted by (B,M)U . The natural embedding is the pair (idB, d), where idB
is the identity on the algebra B and d : M →M I/U is the mapping such that
for every a ∈ M , d(a) is the U -equivalence class of the constant function
with value a. By definition, d is clearly one-to-one. Moreover, by using
Theorem 10, it is easy to check that (idB, d) is an elementary embedding just
as in the classical case.

Now we present an analogue to the classical Łoś Theorem for Ultraprod-
ucts (cf. [3] and [17]) in fuzzy predicate logics. Intuitively speaking, this
theorem will show us how the elementary properties of ultraproducts are re-
lated to those of their constituent factors.

Theorem 10 Let I be a non-empty set, κ an infinite cardinal and for each
i ∈ I , let (B,Mi) be a Γ-structure. Assume that U is a κ-complete ultrafilter
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over I such that |B| < κ. Then for every Γ-formula φ(x1, . . . , xn), elements
d1, . . . , dn ∈

∏
Mi and b ∈ B,

‖φ([d1]θU
, . . . , [dn]θU

)‖(B,
Q

Mi/U) = b iff
{i ∈ I : ‖φ(d1(i), . . . , dn(i))‖(B,Mi) = b} ∈ U

Proof: By induction on the complexity of φ. For φ atomic it is clear, because
U is an ultrafilter and by definition of the ultraproduct. Assume that for the
Γ-formulas φ1, . . . , φk the property holds. Let δ be a k-ary MTL-connective
and for every 0 < j ≤ k, ‖φj([d1]θU

, . . . , [dn]θU
)‖(B,

Q
Mi/U) = aj .

(⇒) Assume that ‖δ(φ1, . . . , φk)([d1]θU
, . . . , [dn]θU

)‖(B,
Q

Mi/U) = b,
then δB(a1, . . . , ak) = b. Now for every 0 < j ≤ k, let Ψj be the following
set:

Ψj = {i ∈ I : ‖φj(d1(i), . . . , dn(i))‖(B,Mi) = aj}.

By inductive hypothesis, Ψ1 ∩ . . . ∩ Ψk ∈ U and since Ψ1 ∩ . . . ∩ Ψk is
included in {i ∈ I : ‖δ(φ1, . . . , φk)(d1(i), . . . , dn(i))‖(B,Mi) = b} and U is
an ultrafilter we have

{i ∈ I : ‖δ(φ1, . . . , φk)(d1(i), . . . , dn(i))‖(B,Mi) = b} ∈ U.

(⇐) Now we use the result we have just obtained to see that if

{i ∈ I : ‖δ(φ1, . . . , φk)(d1(i), . . . , dn(i))‖(B,Mi) = b} ∈ U,

since U is an ultrafilter, necessarily we have δB(a1, . . . , ak) = b. Therefore
‖δ(φ1, . . . , φk)([d1]θU

, . . . , [dn]θU
)‖(B,

Q
Mi/U) = b.

Finally we prove the universal quantifier step. Assume inductively that the
property holds for the Γ-formula φ(y, x1 . . . xn).

(⇒) If ‖∀xφ([d1]θU
, . . . , [dn]θU

)‖(B,
Q

Mi/U) = b we define

Θ = {‖φ([e]θU
, [d1]θU

, . . . , [dn]θU
)‖(B,

Q
Mi/U) : e ∈

∏
Mi}.

We have that b = infΘ. Now we choose, for every a ∈ Θ, ea ∈
∏
Mi

such that a = ‖φ([ea]θU
, [d1]θU

, . . . , [dn]θU
)‖(B,

Q
Mi/U). Let us denote by

Xa the set {i ∈ I : ‖φ(ea(i), d1(i), . . . , dn(i))‖(B,Mi) = a}. By inductive
hypothesis, for every a ∈ Θ, Xa ∈ U and since U is a κ-complete ultrafilter
over I such that |B| < κ,

⋂
a∈ΘXa ∈ U . Now let b0 ∈ B be such that

{i ∈ I : ‖∀xφ(d1(i), . . . , dn(i))‖(B,Mi) = b0} ∈ U.
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Such a b0 exists because the collection

({i ∈ I : ‖∀xφ(d1(i), . . . , dn(i))‖(B,Mi) = b′} : b′ ∈ B)

is a partition of I into fewer than κ parts. Thus exactly one of the parts
belongs to U , by κ-completeness. Observe that this implies that b0 ≤ b,
because

⋂
a∈ΘXa ∈ U . We show now that b0 = b. Let us assume the

contrary, that b0 < b. Then for each element

j ∈ {i ∈ I : ‖∀xφ(d1(i), . . . , dn(i))‖(B,Mi) = b0}

we could choose kj ∈Mj such that

‖φ(kj , d1(j), . . . , dn(j))‖BMj
< b.

Now we define an element of the product k ∈
∏
Mi in the following way:

for every i ∈ I ,

k(i) =
{
kj , if i = j

arbitrary, otherwise.

And then we set b1 = ‖φ([k]θU
, [d1]θU

, . . . , [dn]θU
)‖(B,

Q
Mi/U). Hence we

have that b1 ∈ Θ and thus b ≤ b1, which is a contradiction, because this
would imply that

{i ∈ I : ‖φ(k(i), d1(i), . . . , dn(i))‖(B,Mi) = b1} ∈ U

by inductive hypothesis. And at the same time,

{i ∈ I : ‖φ(k(i), d1(i), . . . , dn(i))‖(B,Mi) < b} ∈ U

by definition of k. Therefore we conclude that b0 = b and consequently,

{i ∈ I : ‖∀xφ(d1(i), . . . , dn(i))‖(B,Mi) = b} ∈ U.

The (⇐) direction follows from the same kind of argument than the (⇐)
direction in the quantifier-free step. For the existential quantifier the proof is
analogous. 2
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3.1 Some Drawbacks
Now we would like to mention some drawbacks of this definition of ultra-
product. It is a well-known fact (see Proposition 4.2.1. of [3]) that a filter
H over a nonempty set I is κ-complete for every cardinal κ iff H is princi-
pal. Nevertheless, as the following proposition shows, we are not interested
in principal ultrafilters:

Proposition 11 Let I be a non-empty set and for each i ∈ I , let (B,Mi) be
a Γ-structure. Assume that U is a principal ultrafilter over I . Then there is
i ∈ I such that (B,

∏
Mi/U) ∼= (B,Mi).

Proof: By definition of principal ultrafilter, sinceU is principal, there is i ∈ I
such that U = {X ⊆ I : i ∈ X}. Then, it is easy to see that the mapping
(idB, f) : (B,

∏
Mi/U) → (B,Mi), defined by: for every e ∈

∏
Mi,

f([e]θU
) = e(i) is an isomorphism. 2

Since every filter over a finite set is principal, as a corollary of the previous
proposition we have that if I is a finite set, then there is i ∈ I such that
(B,

∏
Mi/U) ∼= (B,Mi).

From the previous results we realize that we are clearly interested in non-
principal ultrafilters, but what do we know about their existence? If κ is a
singular cardinal, there are no nonprincipal κ-complete filters over κ (for a
reference see [16]). Measurable cardinals κ are those for which there ex-
ists a nonprincipal κ-complete ultrafilter over κ. Clearly, ω is measurable.
However κ-complete nonprincipal ultrafilters are much harder to come by for
uncountable cardinals: the existence of uncountable measurable regular car-
dinals is a big cardinal axiom independent of ZFC. This is a serious drawback
that makes that, apart form set-theoretical considerations, it is precisely the
case in which B is a finite algebra that makes this definition of ultraproduct
interesting.

Continuity of the connectives of the algebra gives us a better notion of
ultraproduct for logics such as RPL. In [2] it was shown that continuity guar-
antees that the limit with respect to an ultrafilter always exists. In this case,
the assumption of κ-complete ultrafilters is not needed. The proof of the cor-
responding Fundamental Ultrafilter Theorem for RPL can be found in [21].

4 D-FILTERS AND REDUCED PRODUCTS

The second definition we will examine is taken from [11]. The use of this
notion would help us to overcome difficulties coming from the assumption of
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κ-completeness of the ultrafilters.
First we recall some basic definitions and facts on direct products. Di Nola

and Gerla introduced in [9] the notions of valuation structure and fuzzy model
of a given first-order language in a categorial setting. There they show that
certain operations such as direct products preserve first-order properties of
this kind of models. In Proposition 2.1 of [9], they prove that the category of
the valuation structures of a given type has direct products. Direct products
for fuzzy structures were also studied by Bĕlohlávek in [1], but restricted to
structures over complete residuated lattices and languages with an equality
symbol interpreted as a similarity. The notion of direct product of fuzzy al-
gebras is introduced in [5] and a kind of Birkhoff variety theorem for fuzzy
algebras is presented (unpublished result of Hájek).

Definition 12 Let I be a non-empty set and for each i ∈ I , (Bi,Mi) be a
Γ-structure. The direct product (

∏
Bi,
∏

Mi) of the structures {(Bi,Mi) :
i ∈ I} is defined as follows:

• The domain is the cartesian product
∏
Mi.

•
∏

Bi is the direct product of the MTL-algebras {Bi : i ∈ I}.

• For each n-ary function symbol F ∈ Γ, and every d1, . . . , dn ∈
∏
Mi,

FQ
Mi

(d1, . . . , dn) = (FMi(d1(i), . . . , dn(i)) : i ∈ I)

• For each n-ary predicate P ∈ Γ, and every d1, . . . , dn ∈
∏
Mi,

PQ
Mi

(d1, . . . , dn) = (PMi(d1(i), . . . , dn(i)) : i ∈ I)

Remark that the direct product is well-defined because the class of MTL-
algebras is a variety and thus is closed under direct products.

Gerla introduced in [11] the notions of d-filter, of reduced product and of
ultraproduct of a family of fuzzy models with definable quantifiers. That is,
models such that for each quantifier there is a formula of the classical first-
order language with equality with a unique monadic predicate A that defines
it (for a reference see Definition 8.1 of [11]). He proved that these operations
preserve first-order properties of fuzzy models with definable quantifiers. Our
definition is based in that of Gerla, we use also pairs of filters (d-filters in
Gerla’s terms).

Definition 13 Let I be a non-empty set and for each i ∈ I , (Bi,Mi) be a
Γ-structure. Let G and H be proper filters over I with G ⊆ H . The reduced
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product (
∏

Bi/H,
∏

Mi/G) of the structures {(Bi,Mi) : i ∈ I} is the
quotient structure of (

∏
Bi,
∏

Mi) modulo the congruence (θH , θG), where
θG, θH are defined as follows:

(d, e) ∈ θG iff {i ∈ I : d(i) = e(i)} ∈ G

(a, b) ∈ θH iff {i ∈ I : a(i) = b(i)} ∈ H

for every d, e ∈
∏
Mi and a, b ∈

∏
Bi.

Observe that the reduced product is well-defined because the class of
MTL-algebras is a variety and thus is closed under reduced products. Special
cases of reduced products are the direct products, when H = {I}; ultra-
products, when G is an ultrafilter; and reduced powers, when for each i ∈ I ,
(Bi,Mi) = (B,M) for the same structure. Remark that, when G is an ul-
trafilter, then H is also an ultrafilter, because G ⊆ H . Now we present an
analogue to the Łoś Theorem for reduced products in fuzzy predicate logics:

Theorem 14 Let I be a non-empty set and for each i ∈ I , let (Bi,Mi) be a
Γ-structure and let G and H be proper filters over I with G ⊆ H such that
(θH , θG) is a σ-congruence. Then for every Γ-formula φ(x1, . . . , xn) and
elements d1, . . . , dn ∈

∏
Mi, b ∈

∏
Bi,

‖φ([d1]θG
, . . . , [dn]θG

)‖(
Q

Bi/H,
Q

Mi/G = [b]θH
iff

{i ∈ I : ‖φ(d1, . . . , dn)‖(
Q

Bi,
Q

Mi)(i) = b(i)} ∈ H iff
{i ∈ I : ‖φ(d1(i), . . . , dn(i))‖(Bi,Mi) = b(i)} ∈ H

Proof: Let (Bi : i ∈ I) be a sequence of MTL-algebras and (bj : j ∈ J)
a sequence of elements of its direct product

∏
Bi. Then we have that, for

every i ∈ I: if supj∈Jbj(i) exists then [supj∈Jbj ](i) = supj∈Jbj(i) (analo-
gously for the infimum of a sequence of elements). As a direct consequence
we obtain that the i-projection (fi, gi) defined in the natural way, is a σ-
homomorphism with fi and gi onto. Thus, for every Γ-formula φ(x1, . . . , xn)
and every d1, . . . , dn ∈

∏
Mi,

‖φ(d1, . . . , dn)‖(
Q

Bi,
Q

Mi) = (‖φ(d1(i), . . . , dn(i))‖(Bi,Mi) : i ∈ I)

Using this result and the fact that σ-congruences are elementary congruences
(by Proposition 6) we obtain that

‖φ([d1]θG
, . . . , [dn]θG

)‖(
Q

Bi/H,
Q

Mi/G) = [‖φ(d1, . . . , dn)‖(
Q

Bi,
Q

Mi)]θH

and consequently, the desired result. 2
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The advantage of working with reduced products in general (instead that
working only with ultraproducts) is that we can guarantee the existence of
such σ-congruences. Therefore we can use Theorem 14 to obtain the desired
structures preserving first-order properties. σ-congruences can be obtained
using κ-complete filters for κ big enough (depending of the chosen (Bi,Mi)
structures and the cardinality of the language). Unless κ-complete ultrafilters,
the existence of κ-complete filters does not depend on the assumption of large
cardinal axioms. Examples of κ-complete filters are the following:

• If κ is a regular cardinal, then the set of all X ⊆ κ for which the
cardinality of its complement (κ−X) is smaller than κ, is a κ-complete
nonprincipal filter over κ.

• Let I = [0, 1] be the real unit interval and µ the Lebesgue measure.
Then the set H = {X ⊆ [0, 1] : µ(X) = 1} is a countably complete
filter.

It is easy to check that one of the important applications of ultraproducts
holds for this definition of reduced products: the reduced power of one struc-
ture is an elementary extension of this structure. On the side of the drawbacks
we have that, in general, reduced products or ultraproducts of classical first-
order structures are not necessarily two-valued.

5 FUTURE WORK

Work in progress includes applications of the fundamental theorem to the
characterization of elementary classes and of elementarily equivalent models.
Using Theorems 10 and 14 it can be proved that the different ultraproduct
constructions are elementarily equivalent. Future work will be devoted to a
deeper study of the relationship between these two notions. Following [7], we
plan also to extend the results of [8] to show that the constructions introduced
are adequate for working in a reduced semantics.
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