
SaxEx : a case-based reasoning system for generatingexpressive musical performances �Josep Llu��s Arcos1, Ramon L�opez de M�antaras1, and Xavier Serra21 IIIA, Arti�cial Intelligence Research InstituteCSIC, Spanish Council for Scienti�c Researchfarcos, mantarasg@iiia.csic.es, http://www.iiia.csic.es2 IUA, Audiovisual Institute, Pompeu Fabra Universityxserra@iua.upf.es, http://www.iua.upf.es/AbstractWe have studied the problem of generating expressive musical performances in the context of tenorsaxophone interpretations. We have done several recordings of a tenor sax playing di�erent Jazzballads with di�erent degrees of expressiveness including an inexpressive interpretation of each bal-lad. These recordings are analyzed, using SMS spectral modeling techniques, to extract informationrelated to several expressive parameters. This set of parameters and the scores constitute the set ofcases (examples) of a case-based system. From this set of cases, the system infers a set of possibleexpressive transformations for a given new phrase applying similarity criteria, based on backgroundmusical knowledge, between this new phrase and the set of cases. Finally, SaxEx applies the inferredexpressive transformations to the new phrase using the synthesis capabilities of SMS.1 IntroductionWe have developed SaxEx, a case-based reasoningsystem for generating expressive performances ofmelodies based on examples of human performances.Case-based Reasoning [1] (CBR) is a recent ap-proach to problem solving and learning where newproblems are solved using similar previously solvedproblems. The two basic mechanisms used by CBRare (i) the retrieval of solved problems (also calledprecedents or cases) using some similarity criteriaand (ii) the adaptation of the solutions applied inthe precedents to the new problem. Case-basedreasoning techniques are appropriate on problemswhere many examples of solved problems can beobtained|like in our case where multiple examplescan be easily obtained from recordings of human per-formances.Sound analysis and synthesis techniques basedon spectrum models like Spectral Modeling Synthe-sis (SMS) [13] [14] are useful for the extraction ofhigh level parameters from real sounds, their trans-formation and the synthesis of a modi�ed versionof the original. SaxEx uses SMS in order to ex-tract basic information related to several expressive�Published in the Proceedings of the International Com-puter Music Conference (ICMC'97)

parameters such as dynamics, rubato, vibrato, andarticulation. The SMS synthesis procedure allowsSaxEx the generation of new expressive interpreta-tions (new sound �les).SaxEx incorporates background musical knowl-edge based on Narmour's implication/realizationmodel [11] and Lerdahl and Jackendo�'s generativetheory of tonal music (GTTM) [10]. These theo-ries of musical perception and musical understandingare the basis of the computational model of musicalknowledge of the system.SaxEx is implemented in Noos [4] [3], a reectiveobject-centered representation language designed tosupport knowledge modeling of problem solving andlearning.1.1 SMSSMS is a set of techniques for the analysis, transfor-mation and synthesis of musical sounds. The goalof SMS is to get a general and musically meaning-ful sound representation, based on spectral analysis,from which we can manipulate musical parameterswhile maintaining the perceptual identity with theoriginal sound when no transformations are made.Its particular approach to spectral analysis is basedon decomposing a sound into sinusoids plus a spec-



Figure 1: Snapshot of SMS analysis and synthesis graphical interface for the beginning of the `AutumnLeaves' theme. The top window shows a graphical representation of the input sound �le, the middle windowshows the evolution of the partials' frequency, and the bottom window shows the spectral residual.tral residual [13].This process can be controlled by the user, ordone automatically depending on the sound charac-teristics. The analysis procedure detects partials bystudying the time-varying spectral characteristics ofa sound and represents them with time-varying sinu-soids. These partials are then subtracted from theoriginal sound and the remaining residual can be ap-proximated in the frequency domain. Figure 1 showsa snapshot of some of the graphical representationsof sounds provided by the SMS graphical interface.Speci�cally, a window showing a graphical represen-tation of the input sound �le, a window showing theevolution of the partials' frequency, and a windowshowing the spectral residual.From the sinusoidal plus residual representationwe can extract high level attributes when the soundis a note or a monophonic phrase of an instrument.Attributes such as attack and release times, formantstructure, vibrato, or average pitch and amplitude,can be obtained by the process described in [14].These attributes can be modi�ed and added back tothe spectral representation without any loss of soundquality.This sound analysis and synthesis system is idealas a preprocessor for Saxex, giving to it high levelmusical parameters, and as a post-processor, addingthe transformations speci�ed by the case-based rea-

soning system to the original sound.1.2 Case-Based ReasoningCase-based Reasoning [9] [1] (CBR) is a recent ap-proach to problem solving and learning where a newproblem is solved by �nding a set of similar pre-viously solved problems, called cases, and reusingthem in the new problem situation. The CBRparadigm covers a family of methods that may bedescribed in a common subtask decomposition: theretrieve task, the reuse task, the revise task, andthe retain task. Di�erent CBR methods di�er in theway of achieving these four tasks.The goal of the retrieve task is to recover a setof previously solved problems similar to the currentproblem. The retrieval task is usually performed us-ing, in turn, three subtasks: identify, search, andselect tasks. The identify subtask determines, usingdomain knowledge, the set of relevant aspects of thecurrent problem. Then, using these relevant aspectsas similarity criterion, the search subtask retrieves aset of precedent cases. Next, the goal of the selectsubtask is to rank the set of precedents using domainknowledge.Given a set of ordered precedent cases, the reusetask constructs a solution for the current problemadapting the solutions taken in precedent cases. The



Figure 2: Browse of the score for the `All of me' ballad represented in Noos. Features are represented as thinboxes, dots indicate not expanded terms, and gray boxes express references to existing terms.ranking over cases is interpreted as preference crite-rion. An usual policy is to consider only the maximalprecedent determined by the select subtask.When the solution generated by the reuse task isnot correct, an opportunity for learning arises. Therevision phase involves detecting the errors of thecurrent solution and modifying the solution usingrepair techniques. This phase, that is not present inall CBR methods, takes the result from applying thesolution in the real world (or by asking a teacher).Finally, the new solved problem is incorporatedinto the system by the retain task in order to helpthe resolution of future problems. This task involvesselecting which information of the case retain andhow to integrate the new case in the memory struc-ture.In Section 2.2 we will see these tasks in the lightof the SaxEx system.1.3 NoosNoos is a reective object-centered representationlanguage designed to support knowledge modelingof problem solving and learning. The Noos languagehas been implemented using Common Lisp and cur-rently is running on several platforms. The main de-velopment platform is the Macintosh (using MCL),providing a window-based graphical interface.Modeling a problem in Noos requires the speci�-cation of three di�erent types of knowledge: domainknowledge, problem solving knowledge, and metalevelknowledge.Domain knowledge speci�es a set of concepts, aset of relations among concepts, and problem datathat are relevant for an application. Concepts andrelations de�ne the domain ontology of an applica-

tion. For instance, the domain ontology of SaxEx iscomposed by concepts such as notes, chords, impli-cation/realization structures, and expressive param-eters. Problem data, described using the domain on-tology, de�ne speci�c situations (speci�c problems)that have to be solved. For instance, speci�c inex-pressive musical phrases to be transformed into ex-pressive ones. Noos is based on feature terms [12].Feature terms are record-like data structures em-bodying a collection of features. Figure 2 shows therepresentation of a score in Noos that is described inSection 2.1.Noos has been used to implement several appli-cations such as chroma[5], a system for recommend-ing a plan for the puri�cation of proteins from tis-sues and cultures, spin, a sponge identi�cation sys-tem for a class of marine sponge species, and sham,a knowledge-based system for harmonizing catalanfolk songs.Problem solving knowledge speci�es the set oftasks to be solved in an application. For instance,the main task of SaxEx is to infer a sequence of ex-pressive transformations for a given musical phrase.Methods model the ways to solve tasks. Methodscan be elementary or can be decomposed into sub-tasks. These new (sub)tasks may be achieved byother methods. A method de�nes an execution or-der of subtasks and an speci�c combination of theresults of the subtasks in order to solve the task itperforms. For a given task there may be multiple al-ternative methods that may be capable of solving thetask in di�erent situations. This recursive decompo-sition of task into subtasks by means of a method iscalled the task/method decomposition.Metalevel (or reective) knowledge is knowledge
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Figure 3: General view of SaxEx blocks.about domain knowledge and problem solving knowl-edge. Intuitively, metalevel knowledge can be usedto model criteria for preferring some methods overother methods for a task in a speci�c situation.The metalevel of Noos incorporates preferencesto model decision making about sets of alternativespresent in domain knowledge and problem solvingknowledge. For instance, preference knowledge canbe used to model criteria for ranking some prece-dent cases over other precedent cases for a task in aspeci�c situation.Once a problem is solved, Noos automaticallymemorizes (stores and indexes) that problem. Thecollection of problems that a system has solved iscalled the Episodic memory of Noos. The problemssolved by Noos are accessible and retrievable. Thisintrospection capability of Noos is the basic buildingblock for integrating learning, and speci�cally case-based reasoning, into Noos.Noos also incorporates perspectives [2], a mecha-nism to describe declarative biases for case retrievalin structured and complex representations of cases.Perspectives provide a exible and dynamical wayof retrieval in the episodic memory and are used bySaxEx for making decisions about the relevant as-pects of a problem.

2 SaxexAn input for SaxEx is a musical phrase describedby means of its musical score (a MIDI �le) and asound. The score contains the melodic and the har-monic information of the musical phrase. The soundcontains the recording of an inexpressive interpreta-tion of the musical phrase played by a musician. Theoutput of the system is a new sound �le, obtained bytransformations of the original sound, containing anexpressive performance of the same phrase. Solvinga problem in SaxEx involves three phases: the anal-ysis phase, the reasoning phase, and the synthesisphase (see Figure 3).Analysis and synthesis phases are implementedusing SMS sound analysis and synthesis techniques.The reasoning phase is performed using case-basedtechniques and implemented in Noos and is the mainfocus of this paper.SaxEx has been developed specifying two dif-ferent types of knowledge: (1) modeling the con-cepts and structures relevant for representing musi-cal knowledge, and (2) developing a problem solvingmethod for inferring a sequence of expressive trans-formations for a given musical phrase.2.1 Modeling musical knowledgeProblems to be solved by SaxEx are represented ascomplex structured cases (see Figure 4) embodyingthree di�erent kinds of musical knowledge: (1) con-cepts related to the score of the phrase such as notesand chords, (2) concepts related to background mu-sical theories such as implication/realization struc-tures and GTTM's time-span reduction nodes, and(3) concepts related to the performance of musicalphrases.
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performance e1 e2 e3 e4 e5Figure 4: Overall structure of a SaxEx case.A score (see Figure 2) is represented by amelody, embodying a sequence of notes, and aharmony, embodying a sequence of chords. Each



note holds in turn a set of features such as thepitch of the note (C5, G4, etc), its position withrespect to the beginning of the phrase, its duration,a reference to its underlying-harmony, and a refer-ence to the next note of the phrase. Moreover, anote holds the metrical-strength feature, inferredusing GTTM theory, expressing the note's relativemetrical importance into the phrase. Chords holdalso a set of features such as the name of the chord(Cmaj7, E7, etc), their position, their duration,and a reference to the next chord.The musical analysis structure embodies anal-ysis structures of the phrase built using the back-ground musical knowledge. Narmour's implica-tion/realization model (IR) proposes a theory of cog-nition of melodies based on eight basic structures.These structures characterize patterns of melodicimplications that constitute the basic units of thelistener perception. Other parameters such as met-ric, duration, and rhythmic patterns emphasize orinhibit the perception of these melodic implications.The use of the IR model provides a musical analysisbased on the structure of the melodic surface.On the other hand, Lerdahl and Jackendo�'sgenerative theory of tonal music (GTTM) o�ersan alternative approach to understanding melodiesbased on a hierarchical structure of musical cog-nition. GTTM proposes four types of hierarchicalstructures associated with a piece. This structuralapproach provides the system with a complementaryview for determining relevant aspects of melodies.Examples of analysis structures are theprolongational-reduction structure embody-ing a hierarchical structure describing tension-relaxation relationships among groups of notes, thetime-span-reduction structure embodying a hier-archical structure describing the relative structuralimportance of notes within the heard rhythmicunits of a phrase, and the process-structureembodying a sequence of implication/reduction(IR) Narmour's structures.A performance is represented as a sequence ofevents. There is an event for each note withinthe phrase embodying knowledge about expressiveparameters applied to that note. Speci�cally, anevent holds knowledge about expressive parametersof notes such as dynamics, rubato, vibrato level,articulation, and attack. Expressive parametersare described using qualitative labels as follows:Changes on dynamics are described relative tothe average loudness of the phrase by means of a setof �ve ordered labels. The middle label representsaverage loudness and lower and upper labels repre-sent respectively, increasing or decreasing degrees of
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Figure 5: Task decomposition of the SaxEx CBRmethod.loudness.Changes on rubato are described relative to theaverage tempo also by means of a set of �ve or-dered labels. Analogously to dynamics, qualitativelabels about rubato cover the range from a strongaccelerando to a strong ritardando.The vibrato level is described using two param-eters: the frequency vibrato level and the ampli-tude vibrato level. Both parameters are describedusing �ve qualitative labels from no-vibrato tohighest-vibrato.The articulation between notes is described us-ing again a set of �ve ordered labels covering therange from legato to staccato.Finally, SaxEx distinguishes two transformationsover a note attack: (1) reaching the pitch of a notestarting from a lower pitch, and (2) increasing thenoise component of the sound. These two transfor-mations were chosen because they are characteristicof saxophone playing but other transformations canbe introduced without altering the system.In the conclusions section we discuss di�erentalternatives we are considering for improving the ex-pressive model of the system.2.2 The SaxEx taskGiven a musical phrase, SaxEx infers a speci�c setof expressive transformations to be applied to everynote in the phrase. These sets of transformations areinferred note by note. For each note in the phrasethe same problem solving method is performed.The problem solving method developed in SaxExfollows the usual subtask decomposition of CBRmethods described in Section 1.2: retrieve, reuse,and retain (see Figure 5). Given a current note prob-



lem of a problem phrase, the overall picture of thesubtask decomposition of SaxEx method is the fol-lowing:� Retrieve: The goal of the retrieve task is tochoose the set of notes (cases) most similar tothe current note problem. This task is decom-posed in three subtasks:{ Identify : The goal of this task is to buildretrieval perspectives using two comple-mentary biases: a �rst bias based or Nar-mour's implication/realization model, anda second bias based on Lerdahl and Jack-endo�'s generative theory.{ Search: The goal of this second task isto search cases in the case memory usingNoos retrieval methods and previously con-structed perspectives.{ Select : The goal of the select task is torank the retrieved cases using Noos pref-erence methods. The preference methodsuse criteria such as similarity in durationof notes, harmonic stability, or melodic di-rections.� Reuse: the goal of the reuse task is to choose aset of expressive transformations to be appliedin the current problem from the set of more sim-ilar cases. The �rst criterion used is to adaptthe transformations of the most similar case.When several cases are considered equally sim-ilar, transformations are selected according tothe majority rule. Finally, when previous crite-ria are not su�cient, all the cases are consideredequally possible alternatives and one of them isselected randomly.� Retain: the incorporation of the new solvedproblem to the memory of cases is performedautomatically in Noos. All solved problems willbe available for the reasoning process in futureproblems.After describing the subtask decomposition ofSaxEx problem solving method, we will introduce asimpli�ed example, using musical notation, to helpits understanding. Let us suppose that SaxEx hasto infer a set of expressive transformations for theencircled note within the following phrase:

The �rst subtask engaged is the retrieve task.The retrieve task engages in turn the identify sub-task. Taking as example the following bias based onNarmour's model:Determine as relevant the role that a givennote plays in a implication/realization struc-ture.We obtain the following perspective for our noteproblem:that is, the �rst note of a P process.Then, the search subtask is engaged in order to�nd similar situations among the precedent cases.Let us assume that the search subtask �nds the fol-lowing two notes (called P1 and P2) as precedentcases.P1: P2:Next, the select subtask is engaged for rankingthe precedents. Taking as preference criterion themelodic direction, precedent P1 is considered as themost relevant precedent (since it belongs to a processwith descending direction like the note problem).After choosing precedent P1 as the most relevantprecedent, the reuse subtask is engaged. For thissimpli�ed example, since we have only selected oneprecedent, the set of expressive transformations tobe applied to the current note problem A are thesame that were applied to precedent P1 and that arestored as part of precedent case P1 information.3 ExperimentsWe study the issue of musical expression in the con-text of tenor saxophone interpretations. We havedone several recordings of a tenor sax performerplaying several Jazz standard ballads (\All of me",\Autumn leaves", \Misty", and \My one and onlylove") with di�erent degrees of expressiveness, in-cluding an (almost) inexpressive interpretation ofeach piece. These recordings are analyzed, usingthe SMS spectral modeling techniques, in order toextract basic information related to the expressiveparameters. The set of extracted parameters to-gether with the scores of the pieces constitute the setof structured cases of the case-based system. Fromthis set of cases and using similarity criteria basedon background musical knowledge, the system in-fers a set of possible expressive transformations fora given piece. Finally, using the set of inferred trans-formations and the SMS synthesis procedure, SaxEx



A-7 D7 Gmaj7     Cmaj7 F#-7 B7 E-Figure 6: First phrase from the `Autumn Leaves' theme.generates new expressive interpretations of the samejazz ballads as well as of other similar melodies.We have performed two sets of experiments com-bining the di�erent Jazz ballads recordered. The�rst set of experiments consisted in using examplesof three di�erent expressive performances of twentynote phrases of a piece in order to generate newexpressive performances of another phrase of thesame piece. This group of experiments has revealedthat SaxEx identi�es clearly the relevant cases eventhough the new phrase introduces small variationswith respect to the phrases existing in the memoryof precedent cases.The second set of experiments consisted in usingexamples of expressive performances of some piecesin order to generate expressive performances of otherpieces. More concretely, we have worked with threedi�erent expressive performances of pieces havingabout �fty notes in order to generate expressive per-formances of new twenty note phrases. This sec-ond group of experiments has revealed that the useof perspectives allows to identify situations such aslong notes, ascending or descending melodic lines,etc. Such situations are also usually identi�ed by ahuman performer.As an example, let as describe briey some of theexpressive transformations applied by SaxEx to the�rst phrase of the `Autumn Leaves' theme (see thescore in Figure 6) based on precedent cases of simi-lar phrases. Concerning to changes of dynamics, theascending melodic progressions are transformed us-ing crescendo. For instance, the �rst note (E) of thetheme starts piano and the dynamics is successivelyincreased yielding a forte in the fourth note (C). Con-cerning rubato, after the fourth note (C) the attackof the �fth note (D) is delayed and brought closer tothe next note, then the duration of sixth note (E) isexpanded, and �nally the duration of the next note(F) is reduced. Vibrato is applied over notes withlong duration combined with a dynamics decay (forinstance, over the fourth note). In ascending melodicprogressions, the articulation is also transformed bydecreasing the interruption between notes (i.e. play-ing closer to legato than to staccato). Finally, thetransformation of the attack consisted in reachingthe eighth and ninth notes (B and B) starting from alower pitch.

The reader can visit our web site at<http://www.iiia.csic.es/Projects/music/Saxex>for sound examples.4 Related work and conclu-sionsPrevious work on the analysis and synthesis of mu-sical expression has addressed the study of at mosttwo parameters such as rubato and vibrato [6] [7], orrubato and articulation by means of an expert sys-tem [8]. However, to the best of our knowledge, theonly previous work addressing the issue of learning togenerate expressive performances based on examplesis that of Widmer [15], who uses explanation-basedtechniques to learn rules for dynamics and rubatoin the context of a MIDI electronic piano. In ourapproach we deal with additional expressive param-eters in the context of an expressively richer instru-ment.Furthermore, to the best of our knowledge, thisis the �rst attempt to deal with this problem usingcase-based techniques as well as the �rst attemptto cover the full cycle from an input sound �le toan output sound �le going in the middle through asymbolic reasoning and learning phase.The results obtained are comparable to a humanperformance specially for dynamics, rubato and vi-brato, however the articulation and attack needs fur-ther work.Concerning future work, we intend to:� model the degree of the di�erent expressive pa-rameters by means of fuzzy sets, since they arecloser than discrete labels to the continuouscharacter of the SMS analysis.� model the decay of long notes by means of di�er-ent envelope functions decreasing more or lessrapidly.� experiment further with di�erent expressive pa-rameters and their di�erent degrees of expres-siveness.� With the aim of making our system useful formusicians we intend to provide the possibility
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