90 Artificial Intelligence Research and Development
M. Villaret et al. (Eds.)

© 2021 The authors and 10S Press.

This article is published online with Open Access by 10S Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA210120

Enabling Game-Theoretical Analysis of
Social Rules

Nieves MONTES #!, Nardine OSMAN # and Carles SIERRA 2

4 Artificial Intelligence Research Institute (IIIA-CSIC)
Campus de la UAB, 08193 Bellaterra (Barcelona)

Abstract. In the field of normative multiagent systems, the relationship between
a game structure and its underpinning agent interaction rules is hardly ever ad-
dressed in a systematic manner. In this work, we introduce the Action Situation
Language (ASL), inspired by Elinor Ostrom’s Institutional Analysis and Develop-
ment framework, to bridge the gap between games and rules. The ASL provides a
syntax for the description of agent interactions, and is complemented by an engine
that automatically provides semantics for them as extensive-form games. The re-
sulting games can then be analysed using standard game-theoretical solution con-
cepts, hence allowing any community of agents to automatically perform what-if
analysis of potential new interaction rules.

Keywords. normative multiagent systems, game theory, rules, logic programming,
Institutional Analysis and Development framework

1. Introduction

In the field of normative multiagent systems (norMAS), a great deal of work has been de-
voted to the study of norms, rules and other mechanisms to achieve coordination among
autonomous agents [1,2,3]. In parallel, game theory has provided a powerful toolbox to
model multiagent interactions of competitive, cooperative and hybrid nature. Very well
established game theoretical solution concepts are prevalent across the Multiagent Sys-
tems literature (e.g. [4,5]). However, in game theory, the rules that configure the structure
of the interaction become irrelevant once the formal model has been built, and are often
expressed in non-systematic, plain natural language.

The fundamental contribution of this paper is a formal methodology for the what-if
analysis of community rules through the game structures they generate. To do so, we
define the syntax of the novel Action Situation Language (ASL), inspired by the Institu-
tional Analysis and Development (IAD) framework. We formally define its semantics as
an extensive-form game (EFG) and provide an engine to automatically build it from an
ASL description, hence connecting the norMAS and game theory fields. The choice of
EFGs as the ASL semantics is motivated by the availability of many reasoning schemes
from the game theory literature. The application of these schemes to the resulting model
completes the pipeline from a rule specification to an evaluation of the outcomes it pro-
motes.

IContact: {nmontes,nardine,sierra} @iiia.csic.es

N. Montes et al. / Enabling Game-Theoretical Analysis of Social Rules 91

Exogenous variables

Biophysical
conditions Game engine .
states.pl - Action arena
interpreter.pl
Attributes qf Action
the community situation | |e..... Interactions
build.py AnEFG
- Rules E i
A N valuation

' rules.pl Participants Predicted iteri
'] Decision-making | paths of play _ criteria
' model Desirable properties
! | (e.g. Pareto optimal,
1
'

social welfare)

Qutcomes

Figure 1. Outline of the IAD framework (adapted from [6, p. 15]). Coloured text outside boxes indicate either
the script that contain the information on the boxed component, or the game-theoretical concepts that would
represent it.

In the remainder of this paper, we provide some background on the IAD framework
(Section 1.1) and review some research efforts similar to ours (Section 1.2). Then, we
move on to the main part and present the syntax and semantics of ASL in Sections 2 and 3
respectively. We complement those two with a running example. Finally, we conclude
and point to possible future directions in Section 4.

1.1. Background

Within the field of policy analysis, the Institutional Analysis and Development (IAD)
framework, put forward by Ostrom and colleagues [6], represents a comprehensive the-
oretical effort to identify and delineate the universal building blocks that make up any
social interaction. Its main components are presented in Figure 1. In the central part, the
social interaction under study (e.g. a commercial transaction, a legislature) is referred to
as an action arena. It is made up of a set of participants (endowed with some decision-
making model) who find themselves within an action situation, which is broadly defined
as the social space they might enter, take actions in and jointly bring about outcomes.

Action arenas are conditioned by three sets of exogenous variables: biophysical con-
ditions, attributes of the community, and rules. The first two refer to environmental and
material features. Within the scope of this work, the term rules will encapsulate both the
laws of nature that inevitably play a part in determining outcomes, as well as malleable
human-made regulations that constrain or provide alternative avenues for a course of ac-
tion. Physical laws are distinct from biophysical conditions in the sense that laws control
the dynamics of the environment (drop an object and it will land on the ground) while
biophysical conditions refer to static elements (like land topology). Meanwhile, human-
made regulative rules play an essential part when it comes to achieving more positive
outcomes, as measured by the evaluation criteria of choice. Suitable changes to the reg-
ulatory rules have the potential to steer the interaction towards more desirable endings,
by modifying the incentives that agents face.

Within an action situation, the IAD framework also delineates seven distinct internal
variables that compose any social space. Of these, we will focus on the four that we
deem indispensable: (1) the participants who are allowed to enter the interaction; (2) the

92 N. Montes et al. / Enabling Game-Theoretical Analysis of Social Rules

roles they take on; (3) the actions assigned to every role; and (4) the linkages between
the executed actions and the outcomes they bring about. Every one of these components
will have a dedicated rule type in our language.

1.2. Related work

Originally, the IAD framework was complemented by the Institutional Grammar (IG)
syntax [7], which parses institutional statements into several distinct fields. Lately, the
IG has spurred renewed interest, with extensions to the original proposal including the
nesting of statements [8] and the distinction between different levels of granularity in the
parsing [9]. Although the early version of IG did include the derivation of some game-
theoretical analysis from a set of statements [6, Ch. 5-6], no attempt is made to automate
this process, as the IG syntax is not formulated as a machine-readable language. Some
works that attempt to make it operational are limited in their scope [10,11], as they only
use statements to encode agent strategies in an evolutionary type simulation.

On another front, the field of General Game Playing within the Al community has
come up throughout the years with machine-processable languages for the specification
of games. The most prominent of these is the Game Description Language (GDL) [12]
and its extensions to imperfect-information [13] and epistemic games [14]. Beyond game
playing, GDL has been used for more socially relevant applications, such as mediated
dispute resolution [15] and automated negotiations [16].

The original GDL admits a form of restricted imperfect information as simultaneous
moves that we incorporate into our language. However, the rules of the game are implicit
in GDL descriptions, while our language represents them explicitly and individually (one
by one). Therefore, ASL descriptions are more declarative than GDL ones, as new rules
can be easily added and their individual impact examined.

Also within the AT community, declarative action representations are ubiquitous in
the planning domain. The multiagent extension to the Planning Domain Definition Lan-
guage (MA-PDDL) [17] and ASL have similar expressive power for actions: both allow
the specification of concurrent actions with probabilistic effects. A difference between
the two representations is the removal of state fluents: MA-PDDL specifies them explic-
itly within action effects, while ASL relies on incompatibilities between the previous
state fluents and the newly derived ones to remove outdated facts.

2. ASL syntax

Now, we turn to the definition of the syntax of our Action Situation Language (ASL). To
do so, we leverage the conceptual clarity of the IAD framework and tailor the design of
our language to the components delineated in that theory. ASL is a logical language im-
plemented in Prolog, hence fully machine-readable yet relatively syntactically friendly.
In order to fully specify a complete action situation, it should, first, include constructs
for the three sets of exogenous variables that determine it (see Figure 1):

e The candidate agents to take part in the interaction, plus any relevant characteris-
tics (attributes of the community): age, gender, ethnicity, etc.

e The biophysical and environmental conditions, like land topology, location of
resources, etc.

N. Montes et al. / Enabling Game-Theoretical Analysis of Social Rules 93

Table 1. Action Situation Language keywords, sorted into reserved predicate symbols (with their arity) and
operators (with their type in parenthesis).

Predicates Operators
agent/1 rule/4 initially/1 if (prefix) then (infix)
participates/1 role/2 incompatible/2 where (infix) ~ (prefix)
can/2 does/2 terminal/O withProb (infix) and (infix)

e The rules structuring the interaction, in particular the following four rule types:

+ Boundary rules determine who is allowed to participate in the interaction.

+ Position rules assign (possibly several) roles to participants.

* Choice rules establish the actions available to every role under the current
circumstances.

+ Control rules relate (possibly joint) actions to the effects they have.

Additionally, the following is also necessary:

e The starting point of the interaction, and the conditions under which it halts.

e Which facts describing a state are compatible with one another and can be simul-
taneously true (e.g., an individual cannot be at two different places at the same
time).

The predicates for ASL are gathered in Table 1. Most of these appear as part of
rule arguments, and only agent, initially, terminal and incompatible are used
as standalone predicates.

We start by reviewing the predicate symbols that do not appear within rules. First,
agent (A) simply designates A as an individual susceptible of entering the action sit-
uation. Second, initially(F) indicates that fact F holds true at the start of the in-
teraction, prior to any action being executed. terminal plays the opposite role, as
it returns true whenever the conditions for halting the interaction are met. Finally,
incompatible (F,L) states that fact F cannot be simultaneously true with the fluents in
list L.

We move on now to the syntax of rules. All rule clauses, regardless of the com-
ponent they target, follow the general template in Figure 2. Their first argument is an
identifier for the action situation where they apply. The second argument is their type.
Third, the priority is a non-negative integer that determines which rule is to prevail in
case several clauses have contradicting effects. Rules that model the unregulated situa-
tion? are assigned priority equal to zero, and are referred to as the default rules. The over-
writing operator ~ is introduced to have high priority rules nullify the effects of lower
priority rules. The fourth and last argument of a rule predicate contains its content ex-
pressed as an if-then-where construct. The content of the Condition and Consequence

2By “unregulated”, we mean that only rule statements that reflect physical principles are considered.

Rule ::= rule(Id,Type,Priority,
if Condition then Consequence where Constraints).
Type ::= boundary | position | choice | control
Priority:= 0|1]..|ee

Figure 2. General syntax of if-then-where rules.

94 N. Montes et al. / Enabling Game-Theoretical Analysis of Social Rules

Table 2. Syntactic restrictions for the Condition and Consequence fields for every of the proposed rule
types. & stands for an atom, i.e. a predicate symbol with terms as arguments.

Rule type Condition Consequence
Boundary agent (Ag) [~]participates(Ag)
Position participates(Ag) [~]role(Ag,R)
Choice role(Ag,R) [~]can(Ag,Ac)
Control joint_action [consequence, .WithProb D1,
consequence, withProb p», ...]

joint_action ::=does(Ag,Ac) [and joint_action]

consequence ::= ¢ [and consequence]

fields is determined by the rule type in question. These restrictions are summarised in
Table 2. Constraints always consists of a list of literals whose free variables unify
with those in Condition and Consequence. The separation of rule pre-conditions into
a short Condition and a Constraints field is not technically indispensable, but rather
a stylistic choice to help keep the syntax concise.

Note that, in Table 2, boundary, position and choice rules have an analogous syntax:
one agent, participates or role predicate as the Condition, and participates,
role or can as the Consequence, respectively. In contrast, the control rules may have
in their condition multiple does predicates concatenated by the and operator to reflect
the execution of joint actions. Their consequences, instead of a single predicate, consists
of a list where each of its members consists of predicates concatenated with and, and the
whole conjunction is assigned some probability with the operator withProb. In order
for a control rule to be valid, the probability distribution over the potential consequences
must be well-defined, i.e. all p; must fall in the range [0, 1] and must add up to unity.’

Fishers example (syntax) The best way to understand the syntax of ASL is to provide a
complete example of an action situation description.* Here, we present the model of an
open fishery, where two fishers compete for two fishing spots (it is assumed that one is
more productive than the other) [18, Ch. 4.5 The clauses are split into three files accord-
ing to the three exogenous variables identified in the IAD framework. First, agents.pl
contains the information on the attributes of the community. It declares two agents and
two attributes for each, strength and speed (the second one will become relevant later
on when we introduce higher priority rules).

Second, states.pl introduces the environmental conditions. Here, two fishing spots
are declared. This file also contains the initially and terminal clauses. All fish-
ers start at the shore. The interaction halts when both fishers are at distinct spots (first
terminal clause) or when one of them has lost a fight (second terminal clause). The
last piece of information in states.pl is the incompatible clauses. They indicate that a
fisher can only be at one location at a time, and that only one of them may be the winner
of a fight or race.

Third, rules.pl contains the rule base. It only contains the default rules with priority
equal to zero. All of them use the identifier “fishers”. The first two rule statements are

31f that is not the case, the game engine (see Figure 1) will raise an error.

“4Further examples can be found at the extended pre-print version of this paper, see: https://arxiv.org/
abs/2105.13151.

3The complete ASL description for the fishers domain appears in Listing 6 (Appendix C) of the extended
pre-print.

https://arxiv.org/abs/2105.13151
https://arxiv.org/abs/2105.13151

N. Montes et al. / Enabling Game-Theoretical Analysis of Social Rules 95

very generic boundary and position rules. They let all agents enter the action situation
and denote all of them as fishers. Then, the choice rules indicate that fishers may go to
any fishing spot from the shore and that, once at a spot, they may stay or leave for the
other one.

The control rules regulate the effects that fishers’ actions have on the environment.
The first two control rules are related to the movement of fishers from the shore to a spot
and between spots. Both of them are stated in terms of a single individual action and
have deterministic effects (boats never break down). The last control rule does include
joint actions and stochastic consequences. It states that when two different fishers who
are at the same spot and take the same action will inevitably fight for the spot they meet
at for the second time. The probability of each fisher winning the fight is proportional to
their relative strength.

3. ASL semantics

As earlier introduced, an action situation description in ASL has its formal semantics
grounded as an extensive-form game (EFG). This choice is motivated by the availabil-
ity of well-established solution concepts within the game theory literature, which allow
agents to reason on top of the resulting game. The construction of an EFG from an ASL
description is composed of three main steps:® rule interpretation, game round building,
and game round concatenation.

3.1. Rule interpretation

First, rule interpretation consists of querying the knowledge base to find, given the cur-
rent state of the system, instantiations of the active rules (bindings to free variables),
and processing their consequences. This task is performed by the interpreter.pl script
(see Figure 1). Two groups of rules are distinguished regarding the processing of conse-
quences.

On one hand, the common and relatively simple syntactic structure of boundary, po-
sition and choice rules make the processing of their consequences much easier. Essen-
tially, what it amount to is the deletion of any fluent f if that same fluent preceded by the
overwriting operator, ~ f, is derived from a higher priority rule. On the other hand, con-
trol rules need a much more thorough processing of consequences. Given a pre-transition
state s, (aka a set of fluents that completely characterise the current circumstances) and
a joint action profile 4 = {does(ag;,ac;),does(ags,acy),...}, the interpretation of con-
trol rules returns a set of potential post-transition states S, = {s; ;5> ,,...} and a
probability distribution over those P : S;1 — [0, 1].

We do not go into the details of this derivation and refer to the extended report for
a detailed exposition. However, it is worth explaining how the interpretation of control
rules tackles the frame problem [19]. This is an issue that any action formalism has to
address. It states that, when the effects of an action are axiomatised, it should only be
necessary to state the facts that do change due to it. Listing all variables that are not
affected by a particular action is not to be required. This is precisely the case in ASL,

©This paper presents only an overview of the game building process. For a more detailed report, see Sections
3 and 4 of the extended pre-print.

96 N. Montes et al. / Enabling Game-Theoretical Analysis of Social Rules

function BUILD-GAME-ROUND(s;):
Interpret choice rules to get the available action for every agent at s;
Starting from the root node (identified with s;,), add an information set for every agent
For every terminal node z:
Get the joint action profile u executed to get from the root to z
Interpret the control rules to get the potential next states S;; and probabilities P
If there are stochastic effects (| Sy41 |[> 1):
Turn z into a chance node and add one child for every s;+1 € S;+1
Set the edge probability to P(s;41)
Else identify z with s;11 (the only element in S; 1)

Algorithm 1. BUILD-GAME-ROUNDS constructs the EFG that represents the execution of one
action for agent in state s;.

as control rules state in their Consequence field only the terms that do change. Then,
prior to returning the set of potential next states S;;1, the rule interpreter goes through
the fluents in the pre-transition state s; and, by performing queries to the incompatible
clauses, determines which facts may be carried over to the post-transition states. Hence,
fluents that are not affected by the actions in g remain part of the state description.

3.2. Game round building and concatenation

The construction of the action situation semantics is performed by the script build.py
(see Figure 1), which repeatedly communicates with the rule interpreter to get the pro-
cessed consequences of rules.’ In order to build the complete EFG semantics of an ASL
description, the process is divided into the consecutive constructions of game rounds:

Definition 1. A game round is an extensive-form game® with the following characteris-
tics:

The root node is never a chance node.

There is, at most, one information set’ per player.

For any two nodes x{, x, that belong to the same information set, the length of the
path from the root to x; and from the root to x, must be equal.

e If node x is a chance node, then all of its children are terminal.

In practice, a game round is an EFG where every agent has the opportunity to make
at most one move. With imperfect information, the moves by every player are modelled
as simultaneous. In this work, we use game rounds to model all the ways by which the
system may transition from state s; (the root of the game round) to a post-transition state
in ;41 (the terminal nodes) by executing any of the actions available at s; according
to the choice rules. We choose to use imperfect-information EFGs instead of normal-
form games (the benchmark models for joint actions) because, through the use of chance

7The communication between Prolog and Python is achieved thanks to the open-source PySwip package:
https://github.com/yuce/pyswip.

8For a thorough definition of EFGs, see [20].

9In an extensive-form game, an information set is a subset of a player’s decision nodes such that, at the time
of making a move, the player only knows that the system is in one of the subset’s nodes, but not specifically
which one.

https://github.com/yuce/pyswip

N. Montes et al. / Enabling Game-Theoretical Analysis of Social Rules 97

function BUILD-FULL-GAME:

Interpret the boundary rules to get the set of participants
Interpret the position rules to get their roles
Set sg to the set of derivable instanced from initially (F)
Q <+ QUEUE(sp)
While Q is not empty:

s; < PopP(Q)

If 7- terminal returns true at s; then continue

Y + BUILD-GAME-ROUNDS(s/)

Append 7 to overall game tree by s;

Push the terminal nodes in y to Q

Algorithm 2. BUILD-FULL-GAME constructs the complete EFG semantics of an ASL description
by concatenating game rounds.

nodes, EFGs explicitly store the information on the stochastic dynamics of the environ-
ment, a feature that is not available in normal-form games. Pseudo-code for the construc-
tion of game rounds is shown in Algorithm 1.

Now that we know how to build a single round, the only step that is left is their con-
catenation in order to build the complete game. Prior to that, the boundary and position
rules have to be interpreted to get the participants and their roles, and the initial state of
the system is derived as the set of instantiations of initially (F). The pseudo-code for
the function that concatenates the game rounds and builds the complete EFG semantics
appears in Algorithm 2.

Note that, by construction, some of the nodes in the final game tree cannot be iden-
tified with the actual states of the system, but are auxiliary nodes necessary to capture
the simultaneity of moves. Similarly, chance nodes do not correspond to actual states,
but are needed to explicitly store the probabilities of random effects. In fact, the only
nodes that can be identified with an actual state (i.e., with a set of fluents that completely
characterise the circumstances of the system) are the root nodes of game rounds and the
terminal nodes.

Typically, extensive-form games have some numerical rewards assigned to every
agent at their leaf nodes. These quantities, typically referred to as the utilities of the
game, serve as the objective function to implement various reasoning schemes. Our game
building algorithms, however, do not assign utilities to the resulting leaf nodes. Once the
complete game tree is constructed, we leave it to the discretion of the user to set rewards
a posteriori (e.g., as a function of the fluents that hold at the terminal nodes and/or the
path of play from the root node).

Fishers example: Semantics We complement the fishers action situation description
with its corresponding game semantics, which appear in Figure 10 of the extended pre-
print version. This extensive game has been built solely from the default rules, intended
to capture the dynamics of the unregulated situation.

To illustrate the addition of a new policy, we append some extra rules to the ac-
tion situation description with priority 1. This new extended description constitutes the
first-in-time, first-in-right configuration. The additional rules are displayed in Listing 7
in Appendix C of the extended pre-print. Now, when agents leave the shore for the same
fishing spot, they race to get there. The winner of the race is determined by the same
mechanism as the loser of the fight was (by flipping a biased coin), but with the speed

98 N. Montes et al. / Enabling Game-Theoretical Analysis of Social Rules

Table 3. Terminal node and its associated state fluents that are most likely to be reached under the two rule
configurations for the fishers action situation.

Rule configuration Most likely outcome (Probability)
Default 15 - at (alice,spotl) ,at(bob,spotl) ,won_fight(alice) (0.31)
First-in-time, first-in-right 13 - at(alice,spot2) ,at (bob,spotl) ,won_race(bob) (0.62)

of the agents instead of their strength. This is captured by the last rule of type con-
trol. Then, the winner of the race is guaranteed the spot, meaning that he is obliged to
stay, while the loser must leave. These requirements correspond to the two first rules of
type choice. The resulting game semantics appear in Figure 11 of the extended pre-print
version.

We set the utilities to the resulting game trees by assigning the following benefits
and costs to some of the actions and outcomes: a fisher keeps a spot to himself or wins
the fight over it (v; = 10,v, = 5), a fisher looses a fight (d = —6), a fisher travels be-
tween spots (c = —2). Then, we implement the computation of subgame perfect equilib-
rium (SPE) strategies, by computing the Nash equilibria at the final game rounds (fol-
lowing [21, p. 104]) and backtracking the expected utilities. In fact, the game seman-
tics of ASL are particularly well suited for the implementation of subgame perfection
rationality schemes, as every subgame corresponds to a combination of game rounds,
and these are typically much smaller in size than the overall game tree, hence reducing
computation requirements.

The most likely terminal nodes, and their associated fluents, predicted by the SPE
strategies are displayed in Table 3. The default rule configuration predicts violence in the
most likely outcome, whose probability is around 30%. In fact, this rule configuration
leads to a violent outcome (leaf nodes 14 through 17, and 24 through 27) around 50%
of the times the game is played. In contrast, the implementation of first-in-time, first-in-
right rules avoid violence. By this evaluation criteria (avoidance of violence), the addi-
tional rules certainly lead to a more socially desirable outcome, thus the community may
collectively agree to incorporate them.

4. Conclusions

In this work, we have defined the syntax and semantics of the Action Situation Lan-
guage, which turns descriptions of social interactions into formal game models that can
be later examined using the standard tools of game theory. Our contribution, coupled
with some model of individual rationality and an evaluation criteria for the potential
outcomes, amounts to a complete computational model of Ostrom’s IAD framework.
The most interesting use that can be made of ASL is as a tool for the formal what-
if analysis of community rules. The ability to introduce and retract rules into a single
description is a feature that sets ASL apart from other game-oriented logical languages.
We have illustrated such an analysis with an example of interest for policy analysts, the
regulation of an open fishery through the introduction of first-in-time, first-in-right rules.
The work presented here can be expanded into several directions. For example, for-
mal aspects of ASL, such as its integration with an action formalism (e.g. Situation Cal-
culus), could be explored. On the more practical side, refinements to the language can
also help enhance its expressive power. For example, a new type of information rules,

N. Montes et al. / Enabling Game-Theoretical Analysis of Social Rules 99

whose consequences deal with sees or knows predicates, could be introduced to regulate
the observability of the current state, opening the door for extending the use of imperfect
information beyond the modelling of simultaneous actions.

References

(1]
(2]
(3]
(4]

(5]
(6]
(71

(8]

[9]
[10]
(11]
[12]
[13]
[14]
[15]
[16]

(17]

[18]
[19]
[20]

[21]

Yoav Shoham and Moshe Tennenholtz. On social laws for artificial agent societies: off-line design.
Artificial Intelligence, 73(1-2):231-252, 1995.
Shmuel Onn and Moshe Tennenholtz. Determination of social laws for multi-agent mobilization. Arti-

ficial Intelligence, 95(1):155-167, aug 1997.

Giulia Andrighetto, Guido Governatori, Pablo Noriega, and Leon van der Torre. Normative Multi-Agent
Systems (Dagstuhl Seminar 12111). Dagstuhl Reports, 2(3):23-49, 2012.

Carsten Hahn, Thomy Phan, Sebastian Feld, Christoph Roch, Fabian Ritz, Andreas Sedlmeier, Thomas
Gabor, and Claudia Linnhoff-Popien. Nash equilibria in multi-agent swarms. In Proceedings of the 12th
International Conference on Agents and Artificial Intelligence. SCITEPRESS - Science and Technology
Publications, 2020.

Philippe Caillou, Samir Aknine, and Suzanne Pinson. Searching pareto optimal solutions for the prob-
lem of forming and restructuring coalitions in multi-agent systems. Group Decision and Negotiation,
19(1):7-37, nov 2009.

Elinor Ostrom. Understanding Institutional Diversity. Princeton University Press, September 2005.
Sue E. S. Crawford and Elinor Ostrom. A grammar of institutions. American Political Science Review,
89(3):582-600, 1995.

Christopher Frantz, Martin K. Purvis, Mariusz Nowostawski, and Bastin Tony Roy Savarimuthu.
nADICO: A nested grammar of institutions. In Lecture Notes in Computer Science, pages 429-436.
Springer Berlin Heidelberg, 2013.

Christopher K. Frantz and Saba Siddiki. Institutional grammar 2.0: A specification for encoding and
analyzing institutional design. Public Administration, 2021.

Amineh Ghorbani and Giangiacomo Bravo. Managing the commons: a simple model of the emergence
of institutions through collective action. International Journal of the Commons, 10(1):200-219, 2016.
Alex Smajgl, Luis R. Izquierdo, and MArco Huigne. Modeling endogenous rule changes in an institu-
tional context: the adico sequence. Advances in Complex Systems, 11(02):199-215, 2008.

Michael Genesereth, Nathaniel Love, and Barney Pell. General game playing: Overview of the aaai
competition. A Magazine, 26:62-72, 06 2005.

S. Schiffel and M. Thielscher. Representing and reasoning about the rules of general games with imper-
fect information. Journal of Artificial Intelligence Research, 49:171-206, 2014.

Michael Thielscher. Gdl-iii: A proposal to extend the game description language to general epistemic
games. Frontiers in Artificial Intelligence and Applications, 285:1630-1631, 2016.

Dave de Jonge, Tomas Trescak, Carles Sierra, Simeon Simoff, and Ramon Lépez de Mantaras. Using
game description language for mediated dispute resolution. Al & SOCIETY, 34(4):767-784, 2017.
Dave de Jonge and Dongmo Zhang. GDL as a unifying domain description language for declarative
automated negotiation. Autonomous Agents and Multi-Agent Systems, 35(1), 2021.

Daniel L. Kovacs. A multi-agent extension of pddl3.1. In Proceedings of the 3rd Workshop on the
International Planning Competition (IPC), 22nd International Conference on Automated Planning and
Scheduling (ICAPS-2012), pages 19-27. ICAPS, 2012.

Elinor Ostrom, Roy Gardner, and Jimmy Walker. Rules, Games, and Common-Pool Resources. Univer-
sity of Michigan Press, 1994.

Fangzhen Lin. Situation Calculus, volume 3 of Foundations of Artificial Intelligence, chapter 16, pages
649-669. Elsevier, 2008.

Julio Diaz. An introductory course on mathematical game theory. American Mathematical Society and
Real Sociedad Matematica Espafiola, Providence, Rhode Island, USA and Madrid, 2010.

Yoav Shoham and Kevin Leyton-Brown. Multiagent Systems: Algorithmic, Game-Theoretic, and Logi-
cal Foundations. Cambridge University Press, October 2014.

